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APPROXIMATION BY LINEAR MEANS OF FOURIER SERIES

IN WEIGHTED ORLICZ SPACES

SADULLA Z. JAFAROV

Abstract. In this work the approximation of functions by linear means
of Fourier series in reflexive weighted Orlicz spaces with Muckenhoupt
weights is studied. This result is applied to the approximation of func-
tions by linear means of Faber series in weighted Smirnov-Orlicz classes
defined on simply connected domain of the complex plane.

1. Introduction and main results

Let M(u) be a continuous increasing convex function on [0,∞) such that
M(u)/u→ 0 if u→ 0, and M(u)/u→∞ if u→∞. We denote by N the comple-
mentary function of M in Young’s sense, i.e. N(u) = max {uv −M(v) : v ≥ 0}
if u ≥ 0. We will say that M satisfies the ∆2−condition if M(2u) ≤ cM(u) for
any u ≥ u0 with some constant c independent of u.

Let T denote the interval [−π, π] ,C the complex plane, and Lp(T), 1 ≤ p ≤ ∞,
the Lebesgue space of measurable complex-valued functions on T.

For a given Young function M , let L̃M (T) denote the set of all Lebesgue mea-
surable functions f : T→ C for which∫

T

M (|f(x)|) dx <∞.

Let N be the complementary Young function of M . It is well-known [25, p.

69], [31, pp. 52-68] that the linear span of L̃M (T) equipped with the Orlicz norm

‖f‖LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N (T),

∫
T

N (|g(x)|) dx ≤ 1

 ,

or with the Luxembourg norm

‖f‖∗LM (T) := inf

k > 0 :

∫
T

M

(
|f(x)

k

)
dx ≤ 1
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becomes a Banach space. The space is denoted by LM (T) and is called an Orlicz
space [25, p. 26]. The Luxembourg norm is equivalent to the Orlicz norm as

‖f‖∗LM (T) ≤ ‖f‖LM (T) ≤ 2 ‖f‖LM (T) , f ∈ LM (T)

holds true [25, p. 80].
If we choose M(u) = up/p (1 < p <∞) then the complementary function is

N(u) = uq/q with 1/p+ 1/q = 1 and we have the relation

p−1/p ‖u‖Lp(T) = ‖u‖∗LM (T) ≤ ‖u‖LM (T) ≤ q
1/q ‖u‖Lp(T) ,

where ‖u‖Lp(T) =

(∫
T
|u(x)|p dx

)1/p

denotes the usual norm of the Lp(T)−space.

If N is complementary to M in Young’s sense and f ∈ LM (T), g ∈ LN (T) then
the so-called strong Hölder inequalities [25, p.80]∫

T

|f(x)g(x)| dx ≤ ‖f‖LM (T) ‖g‖
∗
LN (T) ,∫

T

|f(x)g(x)| dx ≤ ‖f‖∗LM (T) ‖g‖LN (T) .

are satisfied.
The Orlicz space LM (T) is reflexive if and only if the N−function M and its

complementary function N both satisfy the ∆2−condition [31, p. 113].
Let M−1 : [0,∞)→ [0,∞) be the inverse function of the N−function M. The

lower and upper indices αM , βM [3, p. 350]

αM := lim
t→+∞

− log h(t)

log t
, βM := lim

t→o+
− log h(t)

log t

of the function

h : (0,∞)→ (0,∞], h(t) := lim
y→∞

sup
M−1(y)

M−1(ty)
, t > 0

first considered by Matuszewska and Orlicz [28], are called the Boyd indices of
the Orlicz spaces LM (T).

It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN +βM =
1, αM +βN = 1 and the space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1.
The detailed information about the Boyd indices can be found in [2], [3], [4], [21]
and [27].

A function ω is called a weight on T if ω : T→ [0,∞] is measurable and
ω−1 ({0,∞}) has measure zero (with respect to Lebesgue measure). With any
given weight ω we associate the ω-weighted Orlicz space LM (T, ω) consisting of
all measurable functions f on T such that

‖f‖LM (T, ω) := ‖fω‖LM (T) .

Let 1 < p <∞, 1/p+ 1/p′ = 1 and let ω be a weight function on T. ω is said to
satisfy Muckenhoupt’s Ap-condition on T if

sup
J

 1

|J |

∫
J

ωp (t) dt

1/p 1

|J |

∫
J

ω−p′ (t) dt

1/p′

<∞,
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where J is any subinterval of T and |J | denotes its length.
Let us denote by Ap (T) the set of all weight functions satisfying Muckenhoupt’s

Ap-condition on T.
Note that by [20, Lemma 3.3], [ 22, Theorem 4.5 ] and [19, Section 2.3] if

LM (T) is reflexive and ω weight function satisfying the condition ω ∈ A1/αM (T)∩
A1/βM (T) , then the space LM (T, ω) is also reflexive.

Let LM (T, ω) be a weighted Orlicz space, let αM and βM be nontrivial, and
let ω ∈ A 1

αM

(T) ∩A 1
βM

(T). For f ∈ LM (T, ω) we set

(νhf) (x) :=
1

2h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.

By reference [15, Lemma 1] the shift operator νh is a bounded linear operator on
LM (T, ω):

‖νh (f)‖LM (T,ω) ≤ C ‖f‖LM (T,ω) .

The function

Ωr
M,ω (δ, f) := sup

0<hi≤δ
1≤i≤k

∥∥∥∥∥
k∏
i=1

(I − νhi) f

∥∥∥∥∥
LM (T,ω)

, δ > 0, r = 1, 2, ...

is called r-th modulus of smoothness of f ∈ LM (T, ω), where I is the identity
operator.

It can easily be shown that Ωr
M,ω (·, f) is a continuous, nonnegative and non-

decreasing function satisfying the conditions

lim
δ→0

Ωr
M,ω (δ, f) = 0, Ωr

M,ω (δ, f + g) ≤ Ωr
M,ω (δ, f) + Ωr

M,ω (δ, g)

for f, g ∈ LM (T, ω).
Let

a0

2
+

∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) (1.1)

be the Fourier series of the function f ∈ L1(T), where αk(f) are bk(f) the Fourier
coefficients of the function f .

Let (1.1) be the Fourier series of the function f . For f ∈ LM (T, ω) we define

the summability method by the triangular matrix Λ = {λij}j,∞i,j=0 by the linear
means

Un(x, f) = λ0n
a0

2
+

n∑
i=1

λin(ai(f) cos ix+ bi(f) sin ix)

If the Fourier series of f is given by (1.1), then Zygmund-Riesz means of order
k is defined as

Zkn(x, f) =
a0

2
+

n∑
i=1

(
1− ik

(n+ 1)k

)
(ai (f) cos ix+ bi (f) sin ix) .
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We denote by En(f)M the best approximation of f ∈ LM (T,ω) by trigonomet-
ric polynomials of degree not exceeding n, i.e.,

En(f)M,ω = inf
{
‖f − Tn‖LM (T,ω) : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
Let Tn ∈ Πn

Tn =
c0

2
+

n∑
i=1

(ci cos ix+ di sin ix).

The conjugate polynomial T̃n is defined by

T̃n =

n∑
i=1

(ci sin ix− di cos ix).

We will say that the method of summability by the matrix Λ satisfies condition
bk,M ( respectively b∗k,M ) if for Tn ∈ Πn the inequality

‖Tn − Un(Tn)‖LM (T,ω) ≤ c(n+ 1)−k
∥∥∥T (k)

n

∥∥∥
LM (T,ω)(

‖Tn − Un(Tn)‖LM (T,ω) ≤ c(n+ 1)−k
∥∥∥∥T̃n(k)

∥∥∥∥
LM (T,ω)

)
holds and the norms

‖Λ‖1 :=

2π∫
0

∣∣∣∣∣λ0n

2
+

n∑
i=1

λin cos it

∣∣∣∣∣ dt
are bounded.

We use the constants c, c1, c2, ... (in general, different in different relations)
which depend only on the quantities that are not important for the questions of
interest.

The problems of approximation theory in the weighted and non-weighted Orlicz
spaces have been investigated by several authors (see, for example, [1], [10], [11],
[14]-[18], [23] and [30]).

In the present paper necessary and sufficient condition about the relationship
between the approximation of functions by linear means of Fourier series and by
Zygmund-Riesz means of order k was investigated in reflexive weighted Orlicz
spaces with Muckenhoupt weights Also, we investigate the approximation of
functions by linear means of Fourier series in terms of the modulus of smoothness
of these functions in reflexive weighted Orlicz spaces with Muckenhoupt weights.
This result was applied to the approximation of the functions by linear means
of Faber series in weighted Smirnov-Orlicz classes defined on simply connected
domain of the complex plane. The similar problems in different spaces were
investigated in [5] ,[6], [12], [13], [24], [32], and [34]-[36].

Main results in the present work are the following theorems:
Theorem 1.1. Let LM (T) be a reflexive Orlicz space and ω ∈ A1/αM (T) ∩

A1/βM (T). In order that for f ∈ LM (T, ω)

‖f − Un(·, f)‖LM (T,ω) ≤ c1

∥∥∥f − Zkn(·, f)
∥∥∥
LM (T,ω)

(1.2)
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it is sufficient and necessary that for f ∈ LM (T, ω)

‖Tn − Un(·, Tn)‖LM (T,ω) ≤ c2

∥∥∥Tn − Zkn(·, Tn)
∥∥∥
LM (T,ω)

. (1.3)

Theorem 1.2. Let LM (T) be a reflexive Orlicz space and ω ∈ A1/αM (T) ∩
A1/βM (T). If the summability method with the matrix Λ satisfies the condition

(bk,M ) or
(
b∗k,M

)
, then for f ∈ LM (T, ω) the inequality

‖f − Un(·, f)‖LM (T,ω) ≤ c3Ωr
M,ω

(
1

n+ 1
, f

)
(1.4)

holds with a constant c3 > 0 independent of n.
Theorem 1.3. Let LM (T) be a reflexive Orlicz space and ω ∈ A1/αM (T) ∩

A1/βM (T). If the summability method with the matrix Λ satisfies the condition

(bk,M ) or
(
b∗k,M

)
, then for f ∈ LM (T, ω) the estimate

Ωr
M,ω (δ, Un(·, f)) ≤ c4Ωr

M,ω (δ, f) , (1.5)

holds with a constant c4 > 0 not depend on n, f and δ.
Corollary 1.4. This results obtained in Theorems 1.1 and 1.2 are valid for

the Zugmund-Riesz means of order k.
Note that Theorem 1.1 was proved in[11], for modulus of continuity ΩM,ω (δ, f)

(r = 1) and Zygmund-Riesz means of order 2.
Let G be a finite domain in the complex plane C, bounded by a rectifiable

Jordan curve Γ, and let G− := extΓ. Further let

T := {w ∈ C : |w| = 1} ,D := intT and D− := extT.

Let w = φ(z) be the conformal mapping of G− onto D− normalized by

φ(∞) =∞, lim
z→∞

φ(z)

z
> 0,

and let ψ denote the inverse of φ.
Let w = φ1(z) denote a function that maps the domain G conformally onto

the disk |w| < 1. The inverse mapping of φ1 will be denoted by ψ1. Let Γr
denote circular images in the domain G, that is, curves in G corresponding to
circle |φ1(z)| = r under the mapping z = ψ1(w).

Let us denote by Ep, where p > 0, the class of all functions f(z) 6= 0 which are
analytic in G and have the property that the integral∫

Γr

|f(z)|p |dz|

is bounded for 0 < r < 1. We shall call the Ep-class the Smirnov class. If the
function f(z) belongs to Ep, then f(z) has definite limiting values f(z′) almost
every where on Γ, over all nontangential paths; |f(z′)| is summable on Γ; and

lim
r→1

∫
Γr

|f(z)|p |dz| =
∫
Γ

∣∣f(z′)
∣∣p |dz| .
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It is known that ϕ′ = E1(G−) and ψ′ ∈ E1(D−). Note that the general informa-
tion about Smirnov classes can be found in the books [9, pp. 438-453] and [7, pp.
168-185].

Let LM (T, ω) is a weighted Orlicz space defined on Γ. We define also the
ω-weighted Smirnov-Orlicz class EM (G,ω) as

EM (G,ω) := {f ∈ E1 (G) : f ∈ LM (Γ, ω)} .
With every weight function ω on Γ, we associate another weight ω0 on T defined

by
ω0 (t) := ω (ψ (t)) , t ∈ T.

For f ∈ LM (Γ, ω) we define the function

f0(t) := f (ψ(t)) , t ∈ T.

Let h be a continuous function on [0, 2π]. Its modulus of continuity is defined
by

ω (t, h) := sup {|h (t1)− h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t} , t ≥ 0.

The curve Γ is called Dini-smooth if it has a parametrization

Γ : ϕ0(s), 0 ≤ s ≤ 2π

such that ϕ′0(s) is Dini-continuous, i.e.
π∫

0

ω (t, ϕ′0)

t
dt <∞

and ϕ′0 (s) 6= 0 [29, p. 48].
If Γ is Dini-smooth curve, then there exist [37] the constants c5 and c6 such

that
0 ≤ c5 ≤

∣∣ψ′ (t)∣∣ ≤ c6 <∞, |t| > 1. (1.6)

Note that if Γ is a Dini-smooth curve, then by (1.6) we have f0 ∈ LM (T, ω0) for
f ∈ LM (Γ, ω).

Let 1 < p <∞, 1
p + 1

p′ and let ω be a weight function on Γ. ω is said to satisfy

Muckenhoupt’s Ap -condition on Γ if

sup
z∈Γ

sup
r>0

1

r

∫
Γ∩D(z,r)

|ω (τ)|p |dτ |


1/p1

r

∫
Γ∩D(z,r)

[ω (τ)]−p
′
|dτ |


1/p′

<∞,

where D(z, r) is an open disk with radius r and centered z.
Let us denote by Ap(Γ) the set of all weight functions satisfying Muckenhoupt’s

Ap -condition on Γ. For a detailed discussion of Muckenhoupt weights on curves,
see, e.g. [8].

Let Γ be a rectifiable Jordan curve and f ∈ L1(Γ). Then the function f+

defined by

f+(z) :=
1

2πi

∫
Γ

f(s)ds

s− z
, z ∈ G

is analytic in G. Note that if 0 < αM ≤ βM < 1, ω ∈ A1/αM (Γ)∩A1/βM (Γ) and

f ∈ LM (Γ, ω), then by Lemma 1 in [14] f+ ∈ EM (G,ω).
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Let φk(z), k = 0, 1, 2, ... be the Faber polynomials for G. The Faber polyno-
mials φk(z), associated with G ∪ Γ, are defined through the expansion

ψ′ (w)

ψ (w)− z
=

∞∑
k=0

φk (z)

wk+1
, z ∈ G, w ∈ D− (1.7)

and the equalities

φk (z) =
1

2πi

∫
T

tkψ′ (t)

ψ (t)− z
dt, z ∈ G, (1.8)

φk (z) = φk (z) +
1

2πi

∫
T

φk (s)

s− z
ds, z ∈ G−

hold [33, p. 33-48].
Let f ∈ EM (G,ω) . Since f ∈ E1 (G) . we obtain

f(z) :=
1

2πi

∫
Γ

f(s)ds

s− z
=

1

2πi

∫
T

f(ψ (t))ψ′ (t)

ψ (t)− z
dt,

for every z ∈ G. Considering this formula and expansion (1.7), we can associate
with f the formal series

f(z) ∼
∞∑
i=0

ai(f)φi(z), z ∈ G, (1.9)

where

ai(f) :=
1

2πi

∫
T

f(ψ (t))

ti+1
dt. i = 0, 1, 2,...

This series is called the Faber series expansion of f, and the coefficients ai(f) are
said to be the Faber coefficients of f.

Let (1.9) be the Faber series of the function f ∈ EM (G,ω) . For the function

f we define the summability method by the triangular matrix Λ = {λij}j,∞i,j=0 by

the linear means

Un(z, f) =
n∑
i=0

λinai(f)φi(z),

The n-the partial sums and Zygmund means of order k of the series (1.9) are
defined, respectively, as

Sn(z, f) =
n∑
k=0

ak(f)φk(z),

Zkn(z, f) =

n∑
i=0

(
1− ik

(n+ 1)k

)
ai(f)φi(z).

Let Γ be a Dini-smooth curve. Using the nontangential boundary values of f+
0

on T we define the r − th modulus of smoothness
of f ∈ LM (Γ, ω) as

Ωr
Γ,.M,ω (δ, f) := Ωr

M,ω0

(
δ, f+

0

)
, δ > 0,
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for r = 1, 2, 3, ...
The following theorem holds.
Theorem 1.5. Let Γ be a Dini-smoth curve, and let LM (Γ) be a reflexive

Orlicz space. If ω ∈ A1/αM (Γ)∩A1/βM (Γ) and the summability method with the

matrix Λ satisfies the condition (bk,M ) or
(
b∗k,M

)
, then for f ∈ EM (G,ω) the

estimate

‖f − Un(·, f)‖LM (Γ,ω) ≤ c7Ωr
Γ,M,ω

(
1

n+ 1
, f

)
(1.10)

holds with a constant c7 > 0, independent of n.
Let P be the set of al algebraic polynomials ( with no restriction on the degree),

and let P(D) be the set of traces of members of P on D. We define the operator

T : P(D) −→ EM (G,ω)

as

T (P )(z) :=
1

2πi

∫
T

P (w)ψ′ (w)

ψ (w)− z
dw, z ∈ G.

Then from (1.8) we have

T

(
n∑
k=0

βkw
k

)
=

n∑
k=0

βkφk(z).

The following result hold for the linear operator T [14].
Theorem 1.6. Let Γ be a Dini- smooth curve and LM (Γ) be a reflexive Orlicz

space. If ω ∈ A1/αM (Γ)∩A1/βM (Γ),then linear operator T : P (D) −→ EM (G,ω)
is bounded.

Theorem 1.7. If Γ is a Dini- smooth curve, 0 < αM ≤ βM < 1 and ω ∈
A1/αM (Γ) ∩A1/βM (Γ), then the operator

T : EM (D, ω0) −→ EM (G , ω)

is one-to-one and onto.

2. Proof of main results

Proof of Theorem 1.1. Necessity. It is clear that the inequality (1.3) follows
from the inequality (1.2).
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Sufficiency. Let f ∈ LM (T, ω) and let Tn ∈ Πn (n = 0, 1, 2, ...) be the polyno-
mial of best approximation to f . We obtain

‖f − Un(·, f)‖LM (T,ω)

≤ ‖f − Tn‖LM (T,ω) − ‖Tn − Un(·, Tn)‖LM (T,ω)

+ ‖Un(·, Tn)− Tn‖LM (T,ω)

≤ En(f)M,ω + c2

∥∥∥Tn − Zkn(·, Tn)
∥∥∥
LM (T,ω)

+ c8En(f)M,ω

≤ c9En(f)M,ω + c2

(
‖Tn − f‖LM (T,ω) +

∥∥∥f − Zkn(·, f)
∥∥∥
LM (T,ω)

)
+c2

∥∥∥Zkn(·, f − Tn)
∥∥∥
LM (T,ω)

≤ c9En(f)M,ω + c2En(f)M,ω

+c2

∥∥∥f − Zkn(·, f)
∥∥∥
LM (T,ω)

+ c2c10En(f)M,ω

≤ c11En(f)M,ω + c2

∥∥∥f − Zkn(·, f)
∥∥∥
LM (T,ω)

≤ c12

∥∥∥f − Zkn(·, f)
∥∥∥
LM (T,ω)

and Theorem 1.1 is proved.
Proof of Theorem 1.2. We suppose that the condition b∗k,M is satisfied. Let

f ∈ LM (T, ω) and Tn ∈ Πn be the polynomial of best approximation to f. Note
that Un(f) = Λn∗f. The operator Un(f) is bounded in Lp (T, ω) and Lq (T, ω) (see
[8] and[26]). Using the method of proof of Lemma 1 in [15] we can show that the
operator Un(f) is bounded in LM (T, ω) , i.e. ‖Un(·, f)‖LM (T,ω) ≤ c5 ‖f‖LM (T,ω) .

Then we get

‖f − Un(·, f)‖LM (T,ω)

≤ ‖f − Tn‖LM (T,ω) + ‖Tn − Un(·, Tn)‖LM (T,ω)

+ ‖Un(·, Tn)− Un(·, f)‖LM (T,ω)

≤ c13En(f)M,ω + c7En(f)M,ω + c14(n+ 1)−2r

∥∥∥∥T̃n(2r)
∥∥∥∥
LM (T,ω)

≤ c15En(f)M,ω + c16n
−2r

∥∥∥∥T̃n(2r)
∥∥∥∥
L(T,ω)

. (2.1)

Using boundedness of the linear operator f → f̃ in LM (T, ω) into account [15,
(15)] we have ∥∥∥∥T̃n(2r)

∥∥∥∥
LM (T,ω)

≤ c17

∥∥∥T (2r)
n

∥∥∥
LM (T,ω)

(2.2)

where f̃ is the conjugate function of f ∈ LM (T, ω).
Note that according to the direct theorem of approximation in LM (T, ω) given
in [15] following inequality holds:

En(f)M,ω ≤ c18Ωr
M,ω

(
1

n+ 1
, f

)
.
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Using (2.2) and [15] we get

n−2r

∥∥∥∥T̃n(2r)
∥∥∥∥
LM (T,ω)

≤ c19n
−2r
∥∥∥T (2r)

n

∥∥∥
LM (T,ω)

≤ c20Ωr
M,ω

(
1

n+ 1
, f

)
. (2.3)

Note that according to the direct theorem of approximation in LM (T, ω) given
in [15] following inequality holds:

En(f)M,ω ≤ c21Ωr
M,ω

(
1

n+ 1
, f

)
. (2.4)

Taking into account the relations (2.1), (2.3), and (2.4) we have

‖f − Un(·, f)‖LM (T,ω) ≤ c22Ωr
M,ω

(
1

n+ 1
, f

)
.

If the summability method with the matrix Λ satisfies condition (b∗k,M ), the proof
is made anologously to the above.

The proof of Theorem 1.2 is completed.
Proof of Theorem 1.3. By [15] the following inequality holds:

Ωr
M,ω (δ, Un(f)− f) ≤ c23 ‖Un(·, f)− f‖LM (T,ω) . (2.5)

Let δ ≥ (n+ 1)−1. Using Theorem 1.2 and (2.5) we have

Ωr
M,ω (δ, Un(f)) ≤ Ωr

M,ω (δ, f) + Ωr
M,ω (δ, Un(·, f)− f)

≤ Ωr
M,ω (δ, f) + c24 ‖Un(·, f)− f‖LM (T,ω)

≤ Ωr
M,ω (δ, f) + c25Ωr

M,ω

(
1

n+ 1
, f

)
≤ c26Ωr

M,ω (δ, f) . (2.6)

Now we suppose that δ < (n + 1)−1. Then by virtue of Corollary 5 and
Theorem 8 in [15] we obtain

Ωr
M,ω (δ, Un(·, f))

≤ c27δ
2r
∥∥∥U (2r)

n (·, f)
∥∥∥
LM (T,ω)

≤ c28Ωr
M,ω(δ, f). (2.7)

Now combining (2.6) and (2.7) we obtain the inequality (1.3) of Theorem 1.3.
Proof of Theorem 1.5. Let f ∈ LM (G,ω) . Then by virtue of Theorem 1.7

the operator T : EM (D, ω0) −→ EM (G , ω) is bounded one-to-one and onto and
T (f+

0 ) = f.The function f has the following Faber series

f(z) v
∞∑
m=0

am(f)φm(z).

Since ω0 ∈ A1/αM (T)∩A1/αM (T),using Lemma 1 in [14, p.760] we conclude that

f+
0 ∈ EM (D, ω0). For the function f+

0 the following Taylor series holds:

f+
0 (w) =

∞∑
m=0

am(f)wm.
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Note that f+
0 ∈ E1(D) and boundary function f+

0 ∈ LM (T, ω). Then by [7,
Theorem, 3.4] for the function f+

0 we have the following Fourier expansion:

f+
0 (w) v

∞∑
m=0

am(f)eimt.

Hence, if we consider boundedness of the operator T : EM (D, ω0) −→ EM (G , ω)
and Theorem 1.2, we obtain

‖f − Un(., f)‖LM (Γ,ω)

=
∥∥T (f+

0 )− T (Un(., f+
0 ))
∥∥
LM (Γ,ω)

≤ c29

∥∥f+
0 − Un(., f+

0 )
∥∥
LM (T,ω)

≤ c30Ωr
M,ω0

(
1

n+ 1
, f+

0

)
= c31Ωr

Γ,M,ω

(
1

n+ 1
, f

)
.

and (1.8) is proved.
Remark 2.1. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1, and ω ∈ A1/αM (T) ∩ A1/βM (T). Then by virtue of Theorem
4 in [15] for f ∈ LM (T, ω) the inequality

Ωr
M,ω

(
1

n
, f

)
≤ ≤ c32

n2r

{
E0(f)M,ω +

n∑
m=1

m2r−1E(f)M,ω

}
, (2.8)

holds with a constant c independent of n. If the summability method with the

matrix Λ satisfy the condition (bk,M ) or
(
b∗k,M

)
then for f ∈ LM (T, ω) relation

(1.2) and inequality (2.8) immediately yield

‖f − Un(., f)‖LM (T,ω)

≤ c39

n2r

{
E0(f)M,ω +

n∑
m=1

m2r−1E(f)M,ω

}
. (2.9)

The inequality (2.9) holds for Zygmund-Riesz means of order k. Note that in
the Lebesgue spaces Lp(T), 1 < p ≤ ∞ the inequality (2.9) was proved in [34]
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