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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A

NABLA FRACTIONAL BOUNDARY VALUE PROBLEM WITH

DISCRETE MITTAG–LEFFLER KERNEL

JAGAN MOHAN JONNALAGADDA AND DUMITRU BALEANU

Abstract. We consider a two-point boundary-value problem of order
1 < α < 3

2 involving nabla fractional differences with discrete Mittag–
Leffler kernels. In [2], the authors obtained an expression for the Green’s
function of this boundary value problem. We determine an upper bound
for the Green’s function and derive a Lyapunov-type inequality. Fur-
ther, we also establish sufficient conditions on existence and uniqueness
of solutions for the corresponding nonlinear problem using fixed point
theorems.

1. Introduction

Nabla fractional calculus [9] is the theory of arbitrary order sum and difference
operators in the backward sense. Since nabla fractional sums and differences can
be used to model nonlocal phenomena, the theory of nabla fractional difference
equations has become a fruitful field of research in science and engineering. For
applications of nabla fractional calculus, we refer the reader to [4, 7, 15, 18, 19,
20, 21] and the references therein.

The dynamics of many real world phenomena in nature change only at discrete
times. If a natural system could be modeled by a discrete time system, many
qualitative aspects of such a system could be determined. But, these discrete
phenomena cannot be described by a single type of difference or fractional differ-
ence operator. Therefore, new discrete operators and their properties, particu-
larly nabla fractional difference operators, have to be analyzed and investigated.
The nabla discrete Mittag–Leffler function arises naturally in the solutions of
nabla fractional difference equations, and especially in investigations of discrete
fractional generalizations of the kinetic equation, random walks, Levy flights,
super-diffusive transport, and so on. Motivated by these facts, recently, several
authors introduced new nabla fractional difference operators with discrete expo-
nential [3] and discrete Mittag–Leffler kernels [1, 2, 14], and studied their real
world applications.

In this article, we consider a two-point boundary-value problem of order 1 <
α < 3

2 involving nabla fractional differences with discrete Mittag–Leffler kernels,
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and derive a Lyapunov-type inequality using the properties of its Green’s func-
tion. Further, we also establish sufficient conditions on existence and uniqueness
of solutions for the corresponding nonlinear problem using Brouwer and Banach
fixed point theorems.

2. Preliminaries

The following preliminaries shall be used in this article. Let a, b ∈ R with
b−a ∈ N1. Represent by Na := {a, a+1, a+2, . . .} and Nba := {a, a+1, a+2, . . . , b}.
The jump operator in the backward sense ρ is defined by

ρ(t) := t− 1, t ∈ Na+1.

Definition 2.1 (See [9]). For t ∈ R \ {· · · ,−2,−1, 0} and r ∈ R such that
(t+ r) ∈ R \ {· · · ,−2,−1, 0}, the generalized rising function is defined by

tr :=
Γ(t+ r)

Γ(t)
, 0r := 0.

Here Γ(·) denotes the Euler gamma function.

Definition 2.2 (See [9]). The µth-order nabla fractional Taylor monomial is
defined by

Hµ(t, a) =
(t− a)µ

Γ(µ+ 1)
, µ ∈ R \ {. . . ,−2,−1}.

Definition 2.3 (See [9]). Let ν > 0 and u : Na+1 → R. The νth-order nabla sum
of u is defined by(

∇−νa u
)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na.

Notice that
(
∇−νa u

)
(a) = 0.

Definition 2.4 (See [9]). Let λ ∈ R and α, β, z ∈ C such that |λ| < 1 and
<(α) > 0. The nabla discrete Mittag–Leffler functions are defined by

Eα,β(λ, z) :=

∞∑
k=0

λk
zkα+β−1

Γ(kα+ β)
,

and

Eα(λ, z) := Eα,1(λ, z) :=

∞∑
k=0

λk
zkα

Γ(kα+ 1)
.

Definition 2.5 (See [1]). Let u : Na → R and 0 < ν < 1
2 . The νth-order

Caputo-type nabla difference with discrete Mittag–Leffler kernel is defined by(ABC
a
∇νu

)
(t) :=

B(ν)

1− ν

t∑
s=a+1

(
∇u
)
(s)Eν

(
− ν

1− ν
, t− ρ(s)

)
, t ∈ Na+1.

The corresponding nabla sum is given by(AB
a
∇−νu

)
(t) :=

1− ν
B(ν)

u(t) +
ν

B(ν)

(
∇−νa u

)
(t), t ∈ Na+1.

Here B(ν) > 0 is a normalization function satisfying B(0) = B(1) = 1.
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Definition 2.6 (See [2]). Let u : Na−1 → R and 1 < ν < 3
2 . The νth-order

Caputo-type nabla difference with discrete Mittag–Leffler kernel is defined by

(ABC
a
∇νu

)
(t) :=

(ABC
a
∇ν−1

(
∇u
))

(t), t ∈ Na+1.

The corresponding nabla sum is given by

(AB
a
∇−νu

)
(t) :=

2− ν
B(ν − 1)

(
∇−1a u

)
(t) +

ν − 1

B(ν − 1)

(
∇−νa u

)
(t), t ∈ Na+1.

Remark 2.1. For 0 < ν < 1, the parameter λ = − ν
1−ν in the discrete Mittag–

Leffler kernel satisfies |λ| < 1 for the convergence purpose if and only if 0 < ν < 1
2 .

Similarly, for 1 < ν < 2, the parameter λ = −ν−1
2−ν in the discrete Mittag–Leffler

kernel satisfies |λ| < 1 for the purpose of convergence if and only if 1 < ν < 3
2 .

Proposition 2.1 (See [10]). Let s ∈ Na and −1 < µ. The following properties
hold:

(a) Hµ(t, ρ(s)) ≥ 0 for t ∈ Nρ(s), and if t ∈ Ns, then Hµ(t, ρ(s)) > 0.
(b) Hµ(t, ρ(s)) is a decreasing function with respect to s for t ∈ Nρ(s) and µ ∈

(0,∞), and if t ∈ Ns and µ ∈ (−1, 0), then Hµ(t, ρ(s)) is an increasing
function of s.

(c) Hµ(t, ρ(s)) is a nondecreasing function with respect to t for t ∈ Nρ(s) and
µ ∈ [0,∞), and if t ∈ Ns and µ ∈ (0,∞), then Hµ(t, ρ(s)) is an increasing
function of t.

(d) Hµ(t, ρ(s)) is a decreasing function with respect to t for t ∈ Ns+1 and
µ ∈ (−1, 0).

Proposition 2.2 (See [10]). Let u and v be two nonnegative real-valued functions
defined on a set S. Further, assume u and v achieve their maximum values in S.
Then,

|u(t)− v(t)| ≤ max{u(t), v(t)} ≤ max
{

max
t∈S

u(t),max
t∈S

v(t)
}
,

for every fixed t in S.

3. Lyapunov-type Inequality

Assume 1 < α < 3
2 and h : Nba+1 → R. Consider the boundary-value problem

{(ABC
a
∇αy

)
(t) + h(t) = 0, t ∈ Nb−1a+1,

y(ρ(a)) = y(b) = 0.
(3.1)
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In [2], the authors obtained the following expression for the unique solution of
(3.1).

y(t) =
(2− α)(t− ρ(a))

(b− ρ(a))B(α− 1)

b∑
s=a+1

h(s)

+
(α− 1)(t− ρ(a))

(b− ρ(a))B(α− 1)

b∑
s=a+1

Hα−1(b, ρ(s))h(s)− (2− α)

B(α− 1)

t∑
s=a+1

h(s)

− (α− 1)

B(α− 1)

t∑
s=a+1

Hα−1(t, ρ(s))h(s), t ∈ Nbρ(a). (3.2)

In Theorem 3.1, we rearrange this solution and determine the expression for
the Green’s function.

Theorem 3.1. [2] The unique solution of (3.1) is given by

y(t) =
b∑

s=a+1

G(t, s)h(s), t ∈ Nbρ(a), (3.3)

where

G(t, s) =

{
G1(t, s), t ∈ Ns−1ρ(a),

G2(t, s), t ∈ Nbs,
(3.4)

G1(t, s) =
(t− ρ(a))

(b− ρ(a))B(α− 1)
[(2− α) + (α− 1)Hα−1(b, ρ(s))] , (3.5)

and

G2(t, s) = G1(t, s)−
1

B(α− 1)
[(2− α) + (α− 1)Hα−1(t, ρ(s))] . (3.6)

Remark 3.1. Clearly, G(ρ(a), s) = G1(ρ(a), s) = 0 and G(b, s) = G2(b, s) = 0.

Lemma 3.1. For all (t, s) ∈ Nbρ(a) × Nba+1,

|G(t, s)| ≤ 1

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] .

Proof. Assume t ∈ Ns−1ρ(a) and s ∈ Nba+1. Clearly, (t−ρ(a))
(b−ρ(a))B(α−1) ≥ 0, (2 − α) ≥ 0

and (α− 1) > 0. From Proposition 2.1, we have Hα−1(b, ρ(s)) > 0. Thus,

G1(t, s) > 0, t ∈ Ns−1ρ(a), s ∈ Nba+1.

Since (t−ρ(a)) ≤ (b−1−ρ(a)) and, from Proposition 2.1, we have Hα−1(b, ρ(s)) ≤
Hα−1(b, a), it follows that

|G1(t, s)| ≤
(b− a)

(b− ρ(a))B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] . (3.7)

Now, assume t ∈ Nbs and s ∈ Nba+1. Consider

|G2(t, s)| =
∣∣∣G1(t, s)− G̃(t, s)

∣∣∣ ,



NABLA FRACTIONAL BVP WITH DISCRETE MITTAG–LEFFLER KERNEL 5

where

G̃(t, s) =
1

B(α− 1)
[(2− α) + (α− 1)Hα−1(t, ρ(s))] .

From Proposition 2.1, we have Hα−1(b, ρ(s)), Hα−1(t, ρ(s)) > 0. Consequently,

G1(t, s), G̃(t, s) > 0. Then, by Proposition 2.2, we obtain

|G2(t, s)| ≤ max

{
max

t∈Nbs, s∈Nba+1

G1(t, s), max
t∈Nbs, s∈Nba+1

G̃(t, s)

}
.

Clearly, (t− ρ(a)) ≤ (b− ρ(a)) and, from Proposition 2.1, we have

(i) Hα−1(b, ρ(s)) ≤ Hα−1(b, a);
(ii) Hα−1(t, ρ(s)) ≤ Hα−1(b, a).

Thus, we have

max
t∈Nbs, s∈Nba+1

G1(t, s) =
1

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ,

and

max
t∈Nbs, s∈Nba+1

G̃(t, s) =
1

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] .

Consequently,

|G2(t, s)| ≤
1

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] . (3.8)

Therefore, from (3.7) and (3.8), we obtain the required result. The proof is
complete. �

Now, we derive a Lyapunov-type inequality for{(ABC
a
∇αy

)
(t) + q(t)y(t) = 0, t ∈ Nb−1a+1,

y(ρ(a)) = y(b) = 0,
(3.9)

where q : Nba+1 → R.

Theorem 3.2. If (3.9) possess a nontrivial solution, then

b∑
s=a+1

|q(s)| ≥ B(α− 1)

[(2− α) + (α− 1)Hα−1(b, a)]
. (3.10)

Proof. Use the norm

‖y‖ = max
t∈Nb

ρ(a)

|y(t)|.

We know that every solution of (3.9) satisfies the following equation:

y(t) =
b∑

s=a+1

G(t, s)q(s)y(s).



6 JAGAN MOHAN JONNALAGADDA AND DUMITRU BALEANU

Consider

|y(t)| ≤
b∑

s=a+1

∣∣G(t, s)
∣∣|q(s)||y(s)|

≤ ‖y‖
b∑

s=a+1

∣∣G(t, s)
∣∣|q(s)|

≤ ‖y‖
B(α− 1)

[(2− α) + (α− 1)Hα−1(b, a)]
b∑

s=a+1

|q(s)|,

implying that (3.10) holds. �

4. Existence & Uniqueness Results

We present some existence and uniqueness results for the following boundary
value problem using various fixed point theorems.{

−
(ABC
a
∇αy

)
(t) = f(t, y(t)), t ∈ Nb−1a+1,

y(ρ(a)) = y(b) = 0,
(4.1)

where 1 < α < 3
2 and f : Nba+1 × R → R. By Theorem 3.1, we observe that y is

a solution of (4.1) if and only if y is a solution of the summation equation

y(t) =

b∑
s=a+1

G(t, s)f(s, y(s)), t ∈ Nbρ(a). (4.2)

Any solution y : Nbρ(a) → R of (4.1) can be treated as a real (b − a + 2)-tuple

vector. Consequently, y ∈ Rb−a+2. Define the operator T : Rb−a+2 → Rb−a+2 by

(Ty)(t) =
b∑

s=a+1

G(t, s)f(s, y(s)), t ∈ Nbρ(a). (4.3)

Clearly, y is a fixed point of T if and only if y is a solution of (4.1). We use the
fact that Rb−a+2 is a Banach space equipped with the maximum norm defined
by

‖y‖ = max
t∈Nb

ρ(a)

|y(t)|.

Let
BR = {y ∈ Rb−a+2 : ‖y‖ ≤ R},

be a closed ball in Rb−a+2.

4.1. Assumptions. Assume

(C 1) f : Nba+1 × R→ R is continuous;

(C 2) |f(t, y)| ≤M for all (t, y) ∈ Nba+1 × BR;

(C 3) f is bounded on Nba+1 × Rb−a+2;

(C 4) For all (t, y), (t, z) ∈ Nba+1 × BR,

‖f(t, y)− f(t, z)‖ ≤ K‖y − z‖.
(C 5) maxt∈Nba+1

|f(t, 0)| = P and max(t,y)∈Nba+1×BR
|f(t, y)| = Q;
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(C 6) K
B(α−1) [(2− α) + (α− 1)Hα−1(b, a)] < 1;

(C 7) For all (t, y), (t, z) ∈ Nba+1 × Rb−a+2,

‖f(t, y)− f(t, z)‖ ≤ L‖y − z‖.
(C 8) L

B(α−1) [(2− α) + (α− 1)Hα−1(b, a)] < 1.

4.2. Existence of Solutions. First, we apply Brouwer fixed point theorem to
establish existence of solutions of (4.1).

Theorem 4.1. [5] (Brouwer fixed point theorem) Let C be a nonempty bounded
closed convex subset of Rn and T : C → C be a continuous mapping. Then, T
has a fixed point in C.

Theorem 4.2. (Local Existence) Assume (C 1) and (C 2) hold. If we choose

R ≥ M

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] , (4.4)

then (4.1) has a solution in BR.

Proof. We claim that T : BR → BR. To see this, let y ∈ BR, t ∈ Nbρ(a) and

consider

|(Ty)(t)| ≤
b∑

s=a+1

|G(t, s)||f(s, y(s))|

≤M
b∑

s=a+1

|G(t, s)|

≤ M

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ≤ R,

implying that T : BR → BR. Since f is continuous, T is also continuous. Hence,
(4.1) has at least one solution y in BR by Theorem 4.1. The proof is complete. �

Theorem 4.3. (Global Existence) Assume (C 1) and (C 3) hold. Then, (4.1)
has a solution in Rb−a+2.

Proof. The proof is similar to the proof of Theorem 4.2. �

4.3. Existence & Uniqueness Results. Next, we use Banach’s theorem to
establish existence and uniqueness of solutions of (4.1).

Theorem 4.4. [5] (Banach fixed point theorem) Let Br be the closed ball of
radius r > 0, centered at zero, in Rn with T : Br → Rn a contraction mapping
and T (∂Br) ⊆ Br. Then, T has a unique fixed point in Br.

Theorem 4.5. [5] (Banach fixed point theorem) Let T : Rn → Rn be a contrac-
tion. Then, T possesses a unique fixed point in Rn.

Theorem 4.6. (Local Existence & Uniqueness) Assume (C 1), (C 4), (C 5) and
(C 6) hold. If we choose

R ≥
P

B(α−1) [(2− α) + (α− 1)Hα−1(b, a)]

1− K
B(α−1) [(2− α) + (α− 1)Hα−1(b, a)]

, (4.5)
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or

R ≥ Q

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] , (4.6)

then (4.1) has a unique solution in BR.

Proof. Clearly, T : BR → Rb−a+2. Now, we claim that T is a contraction. To see
this, let y, z ∈ BR, t ∈ Nbρ(a) and consider

|(Ty)(t)− (Tz)(t)| ≤
b∑

s=a+1

|G(t, s)||f(s, y(s))− f(s, z(s))|

≤ K‖y − z‖
b∑

s=a+1

|G(t, s)|

≤ K

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ‖y − z‖,

implying that T is a contraction. Next, we show that T (∂BR) ⊆ BR. To see this,
let y ∈ ∂BR, t ∈ Nbρ(a) and consider

|(Ty)(t)| ≤
b∑

s=a+1

|G(t, s)||f(s, y(s))|

≤
b∑

s=a+1

|G(t, s)||f(s, y(s))− f(s, 0)|+
b∑

s=a+1

|G(t, s)||f(s, 0)|

≤ K‖y‖
b∑

s=a+1

|G(t, s)|+ P
b∑

s=a+1

|G(t, s)|

≤ (KR+ P )

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ≤ R,

implying that (Ty) ∈ BR. On the other hand, consider

|(Ty)(t)| ≤
b∑

s=a+1

|G(t, s)||f(s, y(s))|

≤ Q
b∑

s=a+1

|G(t, s)|

≤ Q

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ≤ R,

implying that (Ty) ∈ BR. Thus, we have T (∂BR) ⊆ BR. Hence, (4.1) has a
unique solution y in BR by Theorem 4.4. The proof is complete. �

Theorem 4.7. (Global Existence & Uniqueness) Assume (C 1), (C 7) and (C
8) hold. Then, (4.1) has a unique solution in Rb−a+2.
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Proof. First, we claim that T : Rb−a+2 → Rb−a+2 is a contraction. To see this,
let y, z ∈ Rb−a+2, t ∈ Nbρ(a) and consider

|(Ty)(t)− (Tz)(t)| ≤
b∑

s=a+1

|G(t, s)||f(s, y(s))− f(s, z(s))|

≤ L‖y − z‖
b∑

s=a+1

|G(t, s)|

≤ L

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ‖y − z‖,

implying that

‖Ty − Tz‖ ≤ L

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)] ‖y − z‖.

Therefore, T is a contraction. Hence, (4.1) has a unique solution y in Rb−a+2 by
Theorem 4.5. The proof is complete. �

5. Examples

Example 5.1. Consider the boundary value problem{
−
(ABC
1
∇1.5y

)
(t) = t2 + (0.1) sin y(t), t ∈ N9

2,

y(0) = y(10) = 0.
(5.1)

Here α = 1.5, f(t, y(t)) = t2 + (0.1) sin y(t), a = 1 and b = 10. Clearly, f(t, y)
is continuous on N10

2 × R. Further, f(t, y) satisfies a Lipschitz condition with
respect to y on N10

2 × R with Lipschitz constant L = 0.1. Consider

L

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)]

=
(0.1)

B(0.5)
[(0.5) + (0.5)H0.5(10, 1)]

=
(0.1)

B(0.5)
[(0.5) + (0.5)(3.3386)] =

0.2169

B(0.5)
.

If we choose B(0.5) > 0.2169, then L
B(α−1) [(2− α) + (α− 1)Hα−1(b, a)] < 1,

implying that (C 8) holds. Then, by Theorem 4.7, the boundary value problem
(5.1) has a unique solution y in R11.

Example 5.2. Consider the boundary value problem{
−
(ABC
1
∇1.5y

)
(t) = 1 + (0.1)y2(t), t ∈ N9

2,

y(0) = y(10) = 0.
(5.2)

Here α = 1.5, f(t, y) = 1 + (0.1)y2, a = 1 and b = 10. Clearly, f(t, y) is
continuous on N10

2 × BR. Further, f(t, y) satisfies a Lipschitz condition with
respect to y on N10

2 × BR with Lipschitz constant K = (0.2)R. Also, we have

P = max
t∈N10

2

|f(t, 0)| = 1,
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and

Q = max
(t,y)∈N10

2 ×BR
|f(t, y)| = 1 + (0.1)R2.

Consider

K

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)]

=
(0.2)R

B(0.5)
[(0.5) + (0.5)H0.5(10, 1)]

=
(0.2)R

B(0.5)
[(0.5) + (0.5)(3.3386)] =

(0.4339)R

B(0.5)
.

Next, consider

P
B(α−1) [(2− α) + (α− 1)Hα−1(b, a)]

1− K
B(α−1) [(2− α) + (α− 1)Hα−1(b, a)]

=

1
B(0.5) [(0.5) + (0.5)H0.5(10, 1)]

1− (0.2)R
B(0.5) [(0.5) + (0.5)H0.5(10, 1)]

=

(2.1693)
B(0.5)

1− (0.4339)R
B(0.5)

=
2.1693

B(0.5)− (0.4339)R
.

Further, consider

Q

B(α− 1)
[(2− α) + (α− 1)Hα−1(b, a)]

=
[1 + (0.1)R2]

B(0.5)
[(0.5) + (0.5)H0.5(10, 1)]

=
[1 + (0.1)R2]

B(0.5)
[(0.5) + (0.5)(3.3386)] =

(2.1693)
[
1 + (0.1)R2

]
B(0.5)

.

To apply Theorem 4.6, we must have

(1) (0.4339)R
B(0.5) < 1;

(2) R ≥ 2.1693
B(0.5)−(0.4339)R or R ≥ (2.1693)[1+(0.1)R2]

B(0.5) .

If we choose B(0.5) > 1.38, then R = 3 satisfies the first and the second part
of the second inequalities. Thus, by Theorem 4.6, the boundary value problem
(5.2) has a unique solution y in B3.

6. Conclusion

In this article, we derived a Lyapunov-type inequality for the boundary value
problem (3.9) using the properties of the corresponding Green’s function. Fur-
ther, we also established sufficient conditions on existence and uniqueness of
solutions for the boundary value problem (4.1) using Banach and Brouwer fixed
point theorems.
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