MORREY-TYPE BANACH SPACES, MAXIMAL OPERATOR AND FOURIER MULTIPLIERS

VAGIF S. GULIYEV, ZHIJIAN WU, AND YING XIAO

Abstract. Let \((F, \| \cdot \|_F)\) be a Banach space of complex-valued measurable functions on \(\mathbb{R}^{n+1}\). In this paper, we consider the Morrey-type Banach space \(M_F(p, \lambda)\) as well as its weak type \(M_F^*(1, \lambda)\). We develop the theory of maximal operator and Fourier multipliers on these spaces.

1. Introduction

Let \(\mathbb{R}^n\) be the \(n\)-dimensional Euclidean space of points \(x = (x_1, ..., x_n)\) with norm \(\|x\| = (\sum_{i=1}^{n} x_i^2)^{1/2}\). For \(x \in \mathbb{R}^n\) and \(r > 0\), let \(B(x, r)\) be the open ball in \(\mathbb{R}^n\) centered at \(x\) with radius \(r\).

For \(f \in L_1^{loc}(\mathbb{R}^n)\), the Hardy-Littlewood maximal operator \(M\) is defined by

\[
M(f)(x) = \sup_{t>0} |B(x, t)|^{-1} \int_{B(x, t)} |f(y)| \, dy,
\]

where \(|B(x, t)|\) is the Lebesgue measure of the ball \(B(x, t)\).

For a domain \(\Omega \subset \mathbb{R}^n\) denote by \(WL_p(\Omega)\), the weak \(L_p\) space of locally integrable functions \(f\) on \(\Omega\) with the finite quasi-norm

\[
\|f\|_{WL_p(\Omega)} = \sup_{t>0} t \left| \{ x \in \Omega \mid |f(x)| > t \} \right|^{1/p}.
\]

Let \(0 < p \leq \infty\) and \(\lambda \in \mathbb{R}\). Denote by \(M(p, \lambda)\) the space of all functions \(f \in L_p^{loc}(\mathbb{R}^n)\) satisfying

\[
\|f\|_{M(p, \lambda)} = \sup_{x \in \mathbb{R}^n, r>0} r^{-\frac{\lambda}{p}} \|f\|_{L_p(B(x, r))} < \infty.
\]

Denote by \(M^*(p, \lambda)\) the space of all functions \(f \in L_p^{loc}(\mathbb{R}^n)\) satisfying

\[
\|f\|_{M^*(p, \lambda)} = \sup_{x \in \mathbb{R}^n, r>0} r^{-\frac{\lambda}{p}} \|f\|_{WL_p(B(x, r))} < \infty.
\]

If \(0 < p \leq \infty\), then \(M(p, 0) = L_p(\mathbb{R}^n)\) and \(M(p, n) = L_\infty(\mathbb{R}^n)\) isometrically.

The space \(M(p, \lambda)\), called the Morrey space, is first introduced by C. Morrey in 1938 in [9]. It plays an important role in the study of partial differential equations, especially the local behaviour of the solutions of elliptic partial differential equations.

2010 Mathematics Subject Classification. 42B25, 31C15.

Key words and phrases. Morrey-type space, Hardy-Littlewood maximal function, Fourier multiplier.
equations. We refer the reader to the papers [1, 5, 10, 11] and the references therein. The following result is from [5], which is a model to our study.

Theorem 1.1 (see [5]). Suppose $1 \leq p < \infty$ and $0 < \lambda < n$.

1. If $p > 1$, then the maximal operator M is bounded on $\mathcal{M}(p, \lambda)$.
2. The maximal operator M is bounded from $\mathcal{M}(1, \lambda)$ to $\mathcal{M}(1, \lambda)$.

Let $(\mathcal{F}, \| \cdot \|_{\mathcal{F}})$ be a Banach space of complex-valued measurable functions on \mathbb{R}^{n+1}_+. In this paper, we consider the Morrey-type Banach space $\mathcal{M}_\mathcal{F}(p, \lambda)$ as well as the weak type $\mathcal{M}_\mathcal{F}^*(1, \lambda)$. We aim at developing the theory of maximal operator and Fourier multipliers acting on these spaces.

There are rich literatures about various Morrey-type spaces and operators acting on them. We refer the readers to [2, 3, 4, 7, 8]. It should be noted that our Morrey-type Banach space $\mathcal{M}_\mathcal{F}(p, \lambda)$ includes all the Morrey-type spaces studied in above papers. In particular, the Morrey-type space $\mathcal{M}_{\rho\theta, \lambda}$ introduced by D.R. Adams in [2] and used heavily by G. Lu in [8] for studying the embedding theorems for vector fields of Hörmander type is a special case of our Morrey-type Banach spaces.

2. Definitions and basic properties of Morrey-type spaces

Suppose $0 < p \leq \infty$, $\lambda \in \mathbb{R}$ and $f \in L_p^{loc}(\mathbb{R}^n)$. For $x \in \mathbb{R}^n$ and $r > 0$, define

$$E_{p, \lambda}(f)(x, r) = r^{-\frac{\lambda}{p}} \| f \|_{L_p(B(x, r))} \quad \text{and} \quad E_{p, \lambda}^*(f)(x, r) = r^{-\frac{\lambda}{p}} \| f \|_{W_{L_p}(B(x, r))}.$$

These two quantities can be viewed as functions of $(x, r) \in \mathbb{R}^{n+1}_+.$

Definition 2.1. Let $0 < p \leq \infty$, $\lambda \in \mathbb{R}$ and $(\mathcal{F}, \| \cdot \|_{\mathcal{F}})$ be a Banach space of complex-valued measurable functions on \mathbb{R}^{n+1}_+. Denote by $\mathcal{M}_\mathcal{F}(p, \lambda)$ the Morrey-type Banach space of all functions $f \in L_p^{loc}(\mathbb{R}^n)$ satisfying

$$\| f \|_{\mathcal{M}_\mathcal{F}(p, \lambda)} = \| E_{p, \lambda}(f) \|_{\mathcal{F}}.$$

Denote by $\mathcal{M}_\mathcal{F}^*(p, \lambda)$ the weak Morrey-type Banach space of all functions $f \in L_p^{loc}(\mathbb{R}^n)$ satisfying

$$\| f \|_{\mathcal{M}_\mathcal{F}^*(p, \lambda)} = \| E_{p, \lambda}^*(f) \|_{\mathcal{F}}.$$

It is clear that for the Banach space $L_\infty(\mathbb{R}^{n+1}_+)$, $\| \cdot \|_{\mathcal{M}_{L_\infty}(p, \lambda)} = \| \cdot \|_{\mathcal{M}(p, \lambda)}$.

For $0 < \theta, p \leq \infty$, let $L(\theta, p)$ be the space of functions h on \mathbb{R}^{n+1}_+ satisfying

$$\| h \|_{L(\theta, p)} = \left\| \left\{ \int_0^\infty |h(x, s)|^\frac{p}{\theta} \frac{ds}{s} \right\}^{\frac{1}{p}} \right\|_{L_p(\mathbb{R}^n)} < \infty.$$

Clearly, $L(\theta, p)$ is a Banach space and $L(\infty, \infty) = L_\infty(\mathbb{R}^{n+1}_+)$. In fact

$$\mathcal{M}_{L(\theta, \infty)}(p, \lambda) = \mathcal{M}_{p\theta, \lambda},$$

(the space introduced by D.R. Adams in [2]). For $0 < p \leq \infty$ and $1 \leq \theta \leq \infty$, denote by $\Lambda_n(p, \theta)$ the interval $(0, n - \frac{p}{\theta})$ if $1 \leq \theta < \infty$; the interval $[0, n]$ if $\theta = \infty$. It is easy to see that for $0 < p \leq \infty$ and $1 \leq \theta \leq \infty$, $\mathcal{M}_{p\theta, \lambda}$ is trivial if $\lambda \notin \Lambda_n(p, \theta)$. Therefore the interesting case of λ for the space $\mathcal{M}_{p\theta, \lambda}$ is $\lambda \in \Lambda_n(p, \theta)$.
Lemma 2.1. Let $1 \leq p \leq q \leq \infty$ and \mathcal{F} be a Banach space of measurable functions on \mathbb{R}_+^{n+1}. If $f \in \mathcal{M}_\mathcal{F}(q, \lambda)$, then $f \in \mathcal{M}_\mathcal{F}(p, (\lambda-n)\frac{q}{q}+n)$ and

$$
\|f\|_{\mathcal{M}_\mathcal{F}(p, (\lambda-n)\frac{q}{q}+n)} \leq v_n^{\frac{1}{p}-\frac{1}{q}} \|f\|_{\mathcal{M}_\mathcal{F}(q, \lambda)}.
$$

(2.1)

Here v_n is the volume of the unit ball in \mathbb{R}^n.

Proof. For $x \in \mathbb{R}^n$ and $r > 0$, applying Hölder inequality, we have

$$
\|f\|_{L_p(B(x,r))} \leq \|f\|_{L_q(B(x,r))} \frac{1}{p} \frac{1}{q} = v_n^{\frac{1}{p}-\frac{1}{q}} \|f\|_{L_q(B(x,r))} r^{\frac{n}{q}-\frac{n}{p}}.
$$

This implies

$$
E_{p, (\lambda-n)\frac{q}{q}+n}(f)(x,r) \leq v_n^{\frac{1}{p}-\frac{1}{q}} E_{q, \lambda}(f)(x,r),
$$

and hence (2.1) follows. \(\square\)

Assume $(\mathcal{F}_i, \|\cdot\|_{\mathcal{F}_i})$, $i = 1, 2$, and $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ are Banach spaces of complex-valued measurable functions on \mathbb{R}_+^{n+1}. The following two properties are considered also.

(I) $\mathcal{F}_1, \mathcal{F}_2 \subseteq \mathcal{F}$, i.e., $fg \in \mathcal{F}$ if $f \in \mathcal{F}_1$ and $g \in \mathcal{F}_2$.

(II) If $\mathcal{F}_1 \mathcal{F}_2 \subseteq \mathcal{F}$, then the Hölder inequality holds, i.e.,

$$
\|fg\|_{\mathcal{F}} \leq \|f\|_{\mathcal{F}_1} \|g\|_{\mathcal{F}_2}
$$

holds for any $f \in \mathcal{F}_1$ and any $g \in \mathcal{F}_2$.

Lemma 2.2 (the Hölder inequality). Suppose $\mathcal{F}, \mathcal{F}_1, \mathcal{F}_2$ are Banach spaces of functions on \mathbb{R}_+^{n+1} satisfying (I) and (II). Let $0 < p, p_1, p_2 \leq \infty$ and $\lambda, \lambda_1, \lambda_2 \in \mathbb{R}^n$ such that $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$ and $\frac{1}{\lambda} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$. If $f \in \mathcal{M}_{\mathcal{F}_1}(p_1, \lambda_1)$ and $g \in \mathcal{M}_{\mathcal{F}_2}(p_2, \lambda_2)$, then $fg \in \mathcal{M}_{\mathcal{F}}(p, \lambda)$ and

$$
\|fg\|_{\mathcal{M}_\mathcal{F}(p, \lambda)} \leq \|f\|_{\mathcal{M}_{\mathcal{F}_1}(p_1, \lambda_1)} \|g\|_{\mathcal{M}_{\mathcal{F}_2}(p_2, \lambda_2)}.
$$

Proof. For $x \in \mathbb{R}^n$ and $r > 0$, applying Hölder inequality, we have

$$
\|fg\|_{L_p(B(x,r))} \leq \|f\|_{L_{p_1}(B(x,r))} \|g\|_{L_{p_2}(B(x,r))}.
$$

Therefore,

$$
E_{p, \lambda}(fg)(x,r) = r^{-\frac{1}{\lambda}} \|fg\|_{L_p(B(x,r))} \leq r^{-\frac{1}{\lambda_1}} r^{-\frac{1}{\lambda_2}} \|f\|_{L_{p_1}(B(x,r))} \|g\|_{L_{p_2}(B(x,r))} = E_{p_1, \lambda_1}(f)(x,r) E_{p_2, \lambda_2}(g)(x,r).
$$

Because of the assumption (II), the above estimate implies the desired result. \(\square\)

3. Maximal operator on $\mathcal{M}_\mathcal{F}(p, \lambda)$

For a positive integer $k \geq 1$ and a measurable function h defined on \mathbb{R}_+^{n+1}, denote by V_k, the compression of h by a factor of 2^k on the $(n+1)^{th}$ variable, i.e.,

$$
V_k(h)(x,y) = h(x, 2^k y), \quad \text{for all } (x, y) \in \mathbb{R}_+^{n+1}.
$$
Clearly V_k is a linear operator. A Banach space $(\mathcal{F}, \|\cdot\|_{\mathcal{F}})$ of complex-valued measurable functions on \mathbb{R}^{n+1}_+ is said to be $\{V_k\}_{k \geq 1}$ admissible if there exists a $C > 0$ such that

$$\|V_k(h)\|_{\mathcal{F}} \leq C \|h\|_{\mathcal{F}}, \quad \text{for all } h \in \mathcal{F} \text{ and } k \geq 1.$$

It is easy to check that the space $L(\theta,p)$ is $\{V_k\}_{k \geq 1}$ admissible. In fact, it is $\{V_k\}_{k \geq 1}$ invariant, i.e., $\|V_k(h)\|_{L(\theta,p)} = \|h\|_{L(\theta,p)}$ for all $h \in L(\theta,p)$ and $k \geq 1$.

Inspired by the results in [3] about boundedness of the maximal operator in the local Morrey-type spaces, we establish the following theorem, which clearly implies Theorem 1.1.

Theorem 3.1. Let $1 \leq p < \infty$, $\lambda < n$, and \mathcal{F} be a $\{V_k\}_{k \geq 1}$ admissible Banach space of functions on \mathbb{R}^{n+1}_+. Then

1. For $1 < p < \infty$, the maximal operator M is bounded on $\mathcal{M}_F(p,\lambda)$, i.e., there is a constant $C > 0$ such that
 $$\|M(f)\|_{\mathcal{M}_F(p,\lambda)} \leq C \|f\|_{\mathcal{M}_F(p,\lambda)}, \quad \text{for all } f \in \mathcal{M}_F(p,\lambda).$$

2. The maximal operator M is bounded from $\mathcal{M}_F(1,\lambda)$ to $\mathcal{M}_F^*(1,\lambda)$, i.e., there is a constant $C > 0$ such that
 $$\|M(f)\|_{\mathcal{M}_F^*(1,\lambda)} \leq C \|f\|_{\mathcal{M}_F(1,\lambda)}, \quad \text{for all } f \in \mathcal{M}_F(1,\lambda).$$

Instead of proofing Theorem 3.1, we prove the following generalized result for the Morrey-type Banach spaces of vector-valued functions.

Let $0 < q \leq \infty$. If $f = \{f_j\}_{j=-\infty}^{\infty}$ is a sequence of complex-valued Lebesgue measurable functions on \mathbb{R}^n, we write $f \in \mathcal{M}_F(p,\lambda)(l_q)$, if

$$\|f\|_{\mathcal{M}_F(p,\lambda)(l_q)} = \left\|\|f\|_{l_q}\right\|_{\mathcal{M}_F(p,\lambda)}.$$

Denote $M(f) = \{M(f_j)\}_{j=-\infty}^{\infty}$, if $f = \{f_j\}_{j=-\infty}^{\infty}$.

Theorem 3.2. Let $1 \leq p < \infty$, $1 \leq q \leq \infty$, $\lambda < n$, and \mathcal{F} be a $\{V_k\}_{k \geq 1}$ admissible Banach space of functions on \mathbb{R}^{n+1}_+. Then

1. For $1 < p < \infty$, the maximal operator M is bounded on $\mathcal{M}_F(p,\lambda)(l_q)$, i.e., there is a constant $C > 0$ such that
 $$\|M(f)\|_{\mathcal{M}_F(p,\lambda)(l_q)} \leq C \|f\|_{\mathcal{M}_F(p,\lambda)(l_q)}$$
 holds for all $f \in \mathcal{M}_F(p,\lambda)(l_q)$.

2. The maximal operator M is bounded from $\mathcal{M}_F(1,\lambda)(l_q)$ to $\mathcal{M}_F^*(1,\lambda)(l_q)$, i.e., there is a constant $C > 0$ such that
 $$\|M(f)\|_{\mathcal{M}_F^*(1,\lambda)(l_q)} \leq C \|f\|_{\mathcal{M}_F(1,\lambda)(l_q)}$$
 holds for all $f \in \mathcal{M}_F(1,\lambda)(l_q)$.

Remark 3.1. From the proof below, we will see that Theorem 3.2 remains true if the condition of “\mathcal{F} is a $\{V_k\}_{k \geq 1}$ admissible Banach space of functions on \mathbb{R}^{n+1}_+” is replaced by following ($1 < p < \infty$ for case (1) and $p = 1$ for case (2), respectively)

$$\sum_{k=0}^{\infty} (2^k)^{-n/p+\lambda/p} \|V_k\|_{\mathcal{F}} < \infty.$$
Remark 3.2. In Theorem 3.2, let $F = L(\theta, t)$ (which is clearly $\{V_k\}_{k \geq 1}$ admissible), especially for $\theta = t = \infty$ or $t = \infty$, we obtain results about the boundedness of the maximal operator on the classical Morrey spaces $M(p, \lambda)(l_q)$ (see [12]), or on the space $M_{p,\theta,\lambda}(l_q)$ for $1 \leq p, \theta \leq \infty$ and $\lambda \in \Lambda_n(p, \theta)$.

Proof of Theorem 3.2. Let $1 \leq p < \infty$ and $f = \{f_j\}_{j=-\infty}^{\infty}$. For fixed $u \in \mathbb{R}^n$ and $r > 0$ denote

$$T^0_{u,r}(f) = \chi_{B(u,2r)}f = \{\chi_{B(u,2r)}f_j\}_{j=-\infty}^{\infty},$$

$$T^k_{u,r}(f) = \chi_{B(u,2^{k+1}r) \setminus B(u,2^kr)}f = \{\chi_{B(u,2^{k+1}r) \setminus B(u,2^kr)}f_j\}_{j=-\infty}^{\infty}, \quad k = 1, 2, \ldots$$

Clearly $f = \sum_{k=0}^{\infty} T^k_{u,r}(f)$ and

$$\|M(f)(x)\|_{l_q} \leq \sum_{k=0}^{\infty} \|M(T^k_{u,r}(f))(x)\|_{l_q}, \quad \forall x \in \mathbb{R}^n.$$

This implies that

$$E_{p,\lambda}(\|M(f)\|_{l_q})(u, r) \leq \sum_{k=0}^{\infty} E_{p,\lambda}(\|M(T^k_{u,r}(f))\|_{l_q})(u, r), \quad (3.1)$$

$$E^*_{p,\lambda}(\|M(f)\|_{l_q})(u, r) \leq \sum_{k=0}^{\infty} E^*_{p,\lambda}(\|M(T^k_{u,r}(f))\|_{l_q})(u, r). \quad (3.2)$$

To prove Theorem 3.2 (1), we estimate $E_{p,\lambda}(\|M(T^0_{u,r}(f))\|_{l_q})(u, r)$ first. Recall the well known Fefferman-Stein maximal inequality (see [6])

$$\left\|\|M(f)\|_{l_q}\right\|_{L^p(\mathbb{R}^n)} \leq C \left\|f\right\|_{l_q}\left\|_{L^p(\mathbb{R}^n)},$$

where $C > 0$ is independent of the vector-valued function f. We have

$$\left\|\|M(T^0_{u,r}(f))\|_{l_q}\right\|_{L^p(B(2r))} \leq \left\|\|M(T^0_{u,r}(f))\|_{l_q}\right\|_{L^p(\mathbb{R}^n)} \leq C \left\|\|T^0_{u,r}(f)\|_{l_q}\right\|_{L^p(\mathbb{R}^n)} = C \left\|f\right\|_{L^p(B(2r))},$$

where $C > 0$ is independent of $u \in \mathbb{R}^n$, $r > 0$ and the vector-valued function f. This yields

$$E_{p,\lambda}(\|M(T^0_{u,r}(f))\|_{l_q})(u, r) \leq CV_1(E_{p,\lambda}(\|f\|_{l_q}))(u, r).$$

It remains to estimate $E_{p,\lambda}(\|M(T^k_{u,r}(f))\|_{l_q})(u, r)$ for $k \geq 1$. Let $x \in B(u, r)$ and let

$$t_x = \inf\{t : B(x,t) \setminus B(u,2^{k+1}r) \neq \emptyset\}.$$

It is easy to see that

$$t_x \asymp 2^{kr} \quad \text{for all} \quad x \in B(u, r).$$
Therefore for a complex-valued function \(g \in L^\infty_p(\mathbb{R}^n) \) and \(x \in B(u, r) \), we have
\[
M(T^k_{u,r}(g))(x) = \sup_{t>0} |B(x,t)|^{-1} \int_{B(x,t)} |T^k_{u,r}(g)(y)| \, dy \\
\leq |B(x, t_x)|^{-1} \int_{\mathbb{R}^n} |T^k_{u,r}(g)(y)| \, dy \\
\asymp C(2^k r)^{-n} \int_{\mathbb{R}^n} |T^k_{u,r}(g)(y)| \, dy.
\]

Therefore by the Minkowski inequality, we have
\[
\left\| M(T^k_{u,r}(f))(x) \right\|_{L^q} \leq C(2^k r)^{-n} \left\{ \int_{\mathbb{R}^n} |T^k_{u,r}(f_j)(y)| \, dy \right\}_j^{\infty} \\
\leq C \left(2^k r \right)^{-n} \int_{\mathbb{R}^n} \left\| T^k_{u,r}(f)(y) \right\|_{L^q} \, dy \\
= C \left(2^k r \right)^{-n} \int_{B(u,2^k+1)r \setminus B(u,2^k r)} \left\| f(y) \right\|_{L^q} \, dy
\]

(Hölder) \(\leq C(2^k r)^{-n/p} \left\| f \right\|_{L^p(B(u,2^k+1r))} \).

This yields
\[
E_{p,\lambda}\left(\left\| M(T^k_{u,r}(f)) \right\|_{L^q} \right)(u, r) \leq C(2^k)^{-n/p+\lambda/p} V_{k+1}(E_{p,\lambda}(\left\| f \right\|_{L^q}))(u, r).
\]

Combining the estimates above and using estimate (3.1), we obtain
\[
E_{p,\lambda}\left(\left\| M(f) \right\|_{L^q} \right)(u, r) \leq \sum_{k=0}^{\infty} E_{p,\lambda}\left(\left\| M(T^k_{u,r}(f)) \right\|_{L^q} \right)(u, r) \\
\leq C \sum_{k=0}^{\infty} (2^k)^{-n/p+\lambda/p} V_{k+1}(E_{p,\lambda}(\left\| f \right\|_{L^q}))(u, r).
\]

Applying \(\left\| \cdot \right\|_{\mathcal{F}} \) to both sides of the above estimate and using the fact that \(\mathcal{F} \) is a \(\{V_k\}_{k \geq 1} \) admissible Banach space of functions on \(\mathbb{R}^{n+1}_+ \) and the series \(\sum_{k=0}^{\infty} (2^k)^{-\frac{n}{p}+\frac{\lambda}{p}} \) converges when \(\lambda < n \), we can conclude the desired result.

The weak case can be proved similarly by using the weak type Fefferman-Stein maximal inequality [6]
\[
\left\| \left\| M(f) \right\|_{L^q} \right\|_{W L^1(\mathbb{R}^n)} \leq C \left\| \left\| f \right\|_{L^q} \right\|_{L^1(\mathbb{R}^n)},
\]
where \(C > 0 \) is independent of the vector-valued function \(f \). Indeed, we have
\[
\left\| \left\| M(T^0_{u,r}(f)) \right\|_{L^q} \right\|_{W L^1(B(u,r))} \leq \left\| \left\| M(T^0_{u,r}(f)) \right\|_{L^q} \right\|_{W L^1(\mathbb{R}^n)} \\
\leq C \left\| T^0_{u,r}(f) \right\|_{L^1(\mathbb{R}^n)} \\
= C \left\| f \right\|_{L^q(B(u,2r))},
\]
where $C > 0$ is independent of $u \in \mathbb{R}^n$, $r > 0$ and the vector-valued function f. This implies
\[E_{1,\lambda}^*(\|M(T_{u,r}^0(f))\|_{l_q})(u,r) \leq CV_1(E_{1,\lambda}(\|f\|_{l_q}))(u,r). \]

On the other hand, by (3.3) we have
\[E_{1,\lambda}^*(\|M(T_{u,r}^k(f))\|_{l_q})(u,r) \leq C(2^k)^{-n+\lambda}V_{k+1}(E_{1,\lambda}(\|f\|_{l_q}))(u,r). \]

Hence by (3.2), we obtain
\[E_{1,\lambda}^*(\|M(f)\|_{l_q})(u,r) \leq \sum_{k=0}^{\infty} E_{1,\lambda}^*(\|M(T_{u,r}^k(f))\|_{l_q})(u,r) \leq C \sum_{k=0}^{\infty} (2^k)^{-n+\lambda}V_{k+1}(E_{1,\lambda}(\|f\|_{l_q}))(u,r). \]

Applying $\|\cdot\|_F$ to both sides of the above estimate and using the fact that F is a $\{V_k\}_{k \geq 1}$ admissible Banach space of functions on \mathbb{R}^{n+1} and the series $\sum_{k=0}^{\infty} (2^k)^{-n+\lambda}$ converges when $\lambda < n$, we can conclude the desired result. □

4. Fourier multipliers on $M_\mathcal{F}(p, \lambda)$

In this section, we establish an application of our theorems in previous section for Fourier multipliers on $M_\mathcal{F}(p, \lambda)$. Our approach has its root in [13].

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz space of all rapidly decreasing infinitely differential complex-valued functions on \mathbb{R}^n and $\mathcal{S}'(\mathbb{R}^n)$ is the space of all complex-valued tempered distributions on \mathbb{R}^n. Let
\[(F\phi)(\xi) = (2\pi)^{n/2} \int_{\mathbb{R}^n} \phi(x)e^{-ix\cdot\xi}dx \]
and let F^{-1} denote the Fourier transform and its inverse on $\mathcal{S}'(\mathbb{R}^n)$, respectively.

If $s \in \mathbb{R}$, we write
\[H^s_2(\mathbb{R}^n) = \left\{ f \in \mathcal{S}'(\mathbb{R}^n) : \|f\|_{H^s_2} = \left\| (1 + |x|^2)^{s/2} Ff(x) \right\|_{L^2} < \infty \right\}. \]

If Ω is a compact set of \mathbb{R}^n, we write
\[L_{p,\Omega} = \left\{ f \in \mathcal{S}'(\mathbb{R}^n) : \text{supp } Ff \subset \Omega, \|f\|_{L^p} < \infty \right\}. \]

For $p \geq 1$ and $0 < s < p$, it is proved in [13] (page 22) that if $g \in L_{p,B(0,1)}$, then
\[\frac{|g(x - z)|}{1 + |z|^{n/s}} \leq C \{M(\{|g|^s\}(x))\}^{1/s}, \quad \text{for all } x, z \in \mathbb{R}^n, \quad (4.1) \]
where the constant $C > 0$ is independent of x, z, and g.

For $d, s > 0$, consider the following maximal operator $N_{d,s}$ defined by
\[N_{d,s}(g)(x) = \sup_{y \in \mathbb{R}^n} \frac{|g(x - y)|}{1 + (d|y|)^{n/s}}. \]

We have the following result.
Theorem 4.1. Suppose \mathcal{F} is a $\{V_k\}_{k \geq 1}$ admissible Banach space of functions on \mathbb{R}^{n+1}. Let $1 \leq p < \infty$, $\lambda < n$, Ω be a compact set, d be the radius of Ω, $0 < s < p$ and $f \in L_{p,\Omega}$. Then there is a constant $C > 0$ such that

1. For $1 < p < \infty$
 \[
 \|N_{d,s}(f)\|_{\mathcal{M}_s^{(p,\lambda)}} \leq C \|f\|_{\mathcal{M}_s^{(p,\lambda)}}
 \]
 holds for all $f \in \mathcal{M}_s^{(p,\lambda)}$.

2. For $p = 1$
 \[
 \|N_{d,s}(f)\|_{\mathcal{M}_s^{+(1,\lambda)}} \leq C \|f\|_{\mathcal{M}_s^{+(1,\lambda)}}
 \]
 holds for all $f \in \mathcal{M}_s^{+(1,\lambda)}$.

Instead of proofing Theorem 4.1, we prove the following generalized result for vector-valued functions. Assume $0 < p, q < \infty$ and $\lambda \in \mathbb{R}^n$. If $\Omega = \{\Omega_j\}_{j=-\infty}^{\infty}$ is a sequence of compact sets on \mathbb{R}^n, we denote $f = \{f_j\}_{j=-\infty}^{\infty} \in \mathcal{M}_s^{(p,\lambda)}(l_q)$, if $f_j \in L_{p,\Omega_j}$ for $j \in \mathbb{Z}$ and f is in $\mathcal{M}_s^{(p,\lambda)}(l_q)$.

Theorem 4.2. Suppose \mathcal{F} is a $\{V_k\}$ admissible Banach space of functions on \mathbb{R}^{n+1}, $1 \leq p, q < \infty$, $\lambda < n$, $\Omega = \{\Omega_j\}_{j=-\infty}^{\infty}$ is a sequence of compact sets, and d_j is the radius of Ω_j for $j \in \mathbb{Z}$. If $f = \{f_j\}_{j=-\infty}^{\infty} \in \mathcal{M}_s^{(p,\lambda)}(l_q)$ and $0 < s < \min\{p, q\}$, then exists a constant C such that

1. For $1 < p < \infty$
 \[
 \|\{N_{d_j,s}(f_j)\}\|_{\mathcal{M}_s^{(p,\lambda)}(l_q)} \leq C \|f\|_{\mathcal{M}_s^{(p,\lambda)}(l_q)}
 \]
 holds for all $f \in \mathcal{M}_s^{(p,\lambda)}(l_q)$.

2. For $p = 1$
 \[
 \|\{N_{d_j,s}(f_j)\}\|_{\mathcal{M}_s^{+(1,\lambda)}(l_q)} \leq C \|f\|_{\mathcal{M}_s^{+(1,\lambda)}(l_q)}
 \]
 holds for all $f \in \mathcal{M}_s^{+(1,\lambda)}(l_q)$.

Proof. Let $1 \leq p < \infty$ and $f = \{f_j\}_{j=-\infty}^{\infty} \in \mathcal{M}_s^{(p,\lambda)}(l_q)$, and y_j be the center of Ω_j. Define $h_j(x) = e^{-ix \cdot y_j} f_j(x)$ for $j \in \mathbb{Z}$. We have clearly $|h_j(x)| = |f_j(x)|$, $F(h_j)(x) = F(f_j)(x)(x + y_j)$ and therefore $\text{supp } F(h_j) \subset \Omega_j - y_j$. Thus, without lost of generality, we assume that $0 \in \Omega_j$, and $\Omega_j = B(0, d_j)$ for all $j \in \mathbb{Z}$.

For $j \in \mathbb{Z}$, let $g_j(x) = f_j(d_j^{-1}x)$. Then $F(g_j)(x) = d_j^n F(f_j)(d_j x)$ and $\text{supp } F(g_j) \subset B(0, 1)$.

From (4.1), we obtain

\[
N_{d_j,s}(f_j)(x) \leq C [M(|f_j|^s)(x)]^{\frac{1}{s}} \quad \text{for all } x, z \in \mathbb{R}^n,
\]

(4.2)

where the constant $C > 0$ is independent of x, j, and f_j.

The above estimate implies

\[
\|\{N_{d_j,s}(f_j)\}\|_{l_q} \leq C \|\{[M(|f_j|^s)(x)]^{\frac{1}{s}}\}\|_{l_q} = C \|\{M(|f_j|^s)(x)\}\|_{\frac{1}{s} l_q}^{\frac{1}{s}},
\]

and therefore

\[
E_{p,\lambda}(\|\{N_{d_j,s}(f_j)\}\|_{l_q})(u, r) \leq C \left(E_{p/s,\lambda}(\|\{M(|f_j|^s)\}\|_{\frac{1}{s} l_q})(u, r) \right)^{\frac{1}{s}}.
\]

(4.3)
We conclude together with (4.3), we conclude the following theorem.

Since \(\frac{q}{s}, \frac{p}{s} > 1 \), by (3.4), we have

\[
E_{p/s, \lambda}(\|M(\{f_j \}^s)\|_{l_{q/2}})(u, r)
\leq C \sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} V_{k+1}(E_{p/s, \lambda}(\|\{f_j \}^s\|_{l_{q/2}}))(u, r)
\]

\[
= C \sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} \left(V_{k+1}(E_{p, \lambda}(\|f\|_{l_q}))(u, r) \right)^s.
\]

If \(s \geq 1 \), then

\[
\left(E_{p/s, \lambda}(\|M(\{f_j \}^s)\|_{l_{q/2}})(u, r) \right)^{\frac{1}{s}} \leq C \sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} V_{k+1}(E_{p, \lambda}(\|f\|_{l_q}))(u, r).
\]

If \(0 < s < 1 \), by Hölder inequality, we have

\[
\left(E_{p/s, \lambda}(\|M(\{f_j \}^s)\|_{l_{q/2}})(u, r) \right)^{\frac{1}{s}} \leq C \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} \right)^{\frac{1}{s}} \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} V_{k+1}(E_{p, \lambda}(\|f\|_{l_q}))(u, r) \right).
\]

Together with (4.3), we conclude

\[
\|\{N_{d_j, \lambda}(f_j)\}\|_{M\mathcal{F}(p, \lambda)(l_q)} \leq C \|f\|_{M\mathcal{F}(p, \lambda)(l_q)}.
\]

For the weak estimation, it is easy to see that if

\[
f = \{f_j\}_{j=-\infty}^{\infty} \in W\mathcal{M}\mathcal{F}(1, \lambda)(l_q)
\]

then

\[
E_{1, \lambda}^*\left(\|\{N_{d_j, \lambda}(f_j)\}\|_{l_q}(u, r)\right) \leq C \left(E_{1/s, \lambda}^*(\|M(\{f_j \}^s)\|_{l_{q/2}})(u, r) \right)^{\frac{1}{s}}.
\]

Since \(\frac{q}{s}, \frac{1}{s} > 1 \), we can continue the above estimation by

\[
\leq C \left(E_{1/s, \lambda}(\|M(\{f_j \}^s)\|_{l_{q/2}}))(u, r) \right)^{\frac{1}{s}}
\leq C \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} \left(V_{k+1}(E_{1, \lambda}(\|f\|_{l_q}))(u, r) \right)^s \right)^{\frac{1}{s}}
\leq C \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} \right)^{\frac{1}{s}} \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} \right)^{\frac{1}{s} - 1} \left(\sum_{k=0}^{\infty} \left(\frac{2^{n-k}}{p-q} \right)^{-k} V_{k+1}(E_{1, \lambda}(\|f\|_{l_q}))(u, r) \right).
\]

We conclude

\[
\|\{N_{d_j, \lambda}(f_j)\}\|_{W\mathcal{M}\mathcal{F}(1, \lambda)(l_q)} \leq C \|f\|_{M\mathcal{F}(1, \lambda)(l_q)}.
\]

By Theorem 4.2 and the proof of p. 31–32 in [13], it is easy to obtain the following theorem.
Theorem 4.3. Let \(1 \leq p < \infty, 1 \leq q \leq \infty, 1 \leq \theta < \infty, 0 < \lambda < n - \frac{p}{q} \). Let also \(\Omega = \{ \Omega_j \}_{j=-\infty}^\infty \) is a sequence of compact sets on \(\mathbb{R}^n \), \(f_j \in L^p(\Omega_j) \) for \(j \in \mathbb{Z} \), and \(d_j \) be the radius of \(\Omega_j \). If \(\nu > n/2 + n/\min\{p, q\} \), then exists a constant \(C \) such that

\[
\left\| \left\{ F^{-1} G_j F f_j \right\}_j \right\|_{M_{p\theta,\lambda}(l_q)} \leq C \sup_j \left\| G_j(d_j \cdot) \right\|_{H^\nu_2} \left\| \left\{ f_j \right\}_j \right\|_{M_{p\theta,\lambda}(l_q)}
\]

and

\[
\left(\sum_{j=\infty}^\infty \left\| F^{-1} G_j F f_j \right\|_{M_{p\theta,\lambda}}^q \right)^{1/q} \leq C \sup_j \left\| G_j(d_j \cdot) \right\|_{H^\nu_2} \left(\sum_{j=\infty}^\infty \left\| f_j \right\|_{M_{p\theta,\lambda}}^q \right)^{1/q}.
\]

for any sequence \(\{G_j\}_j \in H^\nu_2(\mathbb{R}^n) \).

Acknowledgements

The authors, correspondingly, were partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1 and the Scientific and Technological Research Council of Turkey (TUBITAK Project No: 110T695), a CRDF grant, and a youth research grant of the Ministry of Education of China (Grant No. 12YJC880123) and a humanities and social science research projects of the China University of Political Science and Law.

References

Vagif S. Guliyev
Department of Mathematics, Baku State University, Baku, Azerbaijan.
E-mail address: vagif@guliyev.com

Zhijian Wu
Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA.
E-mail address: zwu@as.ua.edu

Ying Xiao
Department of Science and Technology, China University of Political Science and Law, Beijing, 102249, China.
E-mail address: yingx@cupl.edu.cn

Received: January 9, 2014; Accepted: February 7, 2014