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ON DISCRETENESS OF THE SPECTRUM OF A HIGH

ORDER DIFFERENTIAL OPERATOR IN

MULTIDIMENSIONAL CASE

ARAZ R. ALIEV AND ELSHAD H. EYVAZOV

Abstract. In the paper, the self-adjointness of a high order differential
operator in multidimensional case and the discreteness of its spectrum
are proved. Furthermore, the expansion in terms of eigenfunctions of an
arbitrary function from the space L2 (Rn) is obtained.

1. Introduction

Consider in Rn the differential expression `V given by the formula

`V =

m∑
|α|=1

aαD
α + V (x) ,

where m is a natural number, x = (x1, x2, ..., xn) ∈ Rn, V (x) is a real measurable
function, α = (α1, α2, ..., αn) is a multi-index, i.e. its components αj are integer
non-negative numbers, |α| = α1 + α2 + ...+ αn,

Dα =
∂|α|

∂xα1
1
∂xα2

2
...∂xαn

n

,

aα is a real number if |α| is even, is pure imaginary if |α| is odd.
Assume that the following conditions are fulfilled:

a) V (x) ∈ L2,loc (Rn);

b) lim
|x|→+∞

V (x) = +∞, where |x| =
√∑n

k=1 x
2
k;

c) for any p = (p1, p2, ..., pn) ∈ Rn, G (p) =
∑m
|α|=1 (−1)|α| aαp

α ≥ 0, where
pα = pα1

1
pα2
2
...pαn

n
;

d) lim
|p|→+∞

G (p) = +∞, where |p| =
√∑n

k=1 p
2
k.

Introduce the operator H̃V : L2 (Rn) → L2 (Rn) by the formula H̃Vu = `Vu

with domain of definition D
(

H̃V

)
= C∞0 (Rn) (C∞0 (Rn) is the totality of all

finite, infinitely differentiable in Rn functions). If V (x) = 0, then denote H̃V by

2010 Mathematics Subject Classification. 47F05, 35P05, 35P10.
Key words and phrases. self-adjoint operator, discrete spectrum, resolvent, expansion in

terms of eigenfunctions.

28



ON DISCRETENESS OF THE SPECTRUM . . . 29

H̃0. Denote the closure of the operators H̃V and H̃0, by HV and H0, respectively.
Obviously, H0 is a self-adjoint absolutely continuous operator with domain of
definition Wm

2 (Rn) (Sobolev’s space of m order) and its spectrum fills the positive
semi-axis, i.e.

σ (H0) = σac (H0) = [0,+∞) .

The goal of the paper is to prove the self-adjointness of the operator HV and
discreteness of its spectrum under conditions a)-d) and to obtain expansion in
eigenfunctions of an arbitrary function from space L2 (Rn).

At present, there are many papers on investigation of the character of the spec-
trum of differential operators of any order (see, e.g. [1,3-5,10-12,14,16,18,19]).
Both mathematicians and physicists pay rather great attention to studying spec-
tral properties of differential operator. This is connected with applications of such
problems, for example, in quantum mechanics and acoustics (see, e.g. [7,17]).
The problem on control of a discrete spectrum of differential operators (see, e.g.
[2]) is of special interest. A discrete spectrum consists of isolated eigenvalues of
finite algebraic multiplicity, and describes important characteristics of physical
and chemical objects (squares of frequencies of eigen vibrations of mechanical
systems, energy levels of quantum objects, etc). Investigation of many problems
of mathematical physics and quantum mechanics is connected with expansions
in series in terms of eigenfunctions of differential operators (see, e.g., [6,20]).

2. Self-adjointness

Theorem 2.1. In conditions a)-d) the operator HV is self-adjoint in L2 (Rn).

Proof. M be a positive number. Then from condition b) it follows that there ex-
ists a positive number RM that for |x| > RM there will be V (x) ≥M . Introduce
the functions V1 (x) and V2 (x) assuming

V1 (x) =

{
V (x) , if |x| ≤ RM ,
0, if |x| > RM ,

and

V2 (x) =

{
0, if |x| ≤ RM ,
V (x) , if |x| > RM .

It is easy to see that V (x) = V1 (x) + V2 (x). From condition a) it follows that
the finite function V1 (x) belongs to the space L2 (Rn). To prove the theorem it
is enough to prove the self-adjointness of the operator HV2 that is generated by
the differential expression

`V2 =
m∑
|α|=1

aαD
α + V2 (x) .

For that, as in the paper [15] (see also [12]), establish that the equation

HV2u (x) + u (x) = 0 (2.1)
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may not have non-trivial solutions in L2 (Rn). Let the function u(x) ∈ L2 (Rn)
be the solution of equation (2.1). Then this function in the sense of distributions
satisfies the equation

m∑
|α|=1

aαD
αu (x) + V2 (x)u (x) + u (x) = 0. (2.2)

Using condition c) and Kato’s inequality [8] (see also [9]), we get

m∑
|α|=1

aαD
α |u (x)| ≤ Re

sgnu (x)
m∑
|α|=1

aαD
αu (x)

 , (2.3)

where u (x) is complex conjugated to u (x),

sgnu (x) =

{
u(x)
|u(x)| , if u (x) 6= 0,

0, if u (x) = 0.

Remark 2.1. From condition c) it follows that if |α| is an odd number, then
aα = 0, and from condition d) it follows that even one among the numbers aα
is non-zero. Thus, the operator H0 is a non-negative self-adjoint operator. The
operator in the Kato inequality is non-positive. Therefore, in our case, the Kato
inequality is of the form (2.3).

It follows from (2.2) and (2.3) that in the sense of distributions, the following
inequality is valid

−
m∑
|α|=1

aαD
α |u (x)| ≥ (V2 (x) + 1) |u (x)| . (2.4)

Let (see [21, p. 16])

ωε (x) =

{
cεe
− ε2

ε2−x2 , if |x| < ε,
0, if |x| ≥ ε,

is an averaging kernel, where ε and cε are positive numbers, cε is chosen so that∫
Rn
ωε (x) dx = 1.

Determine the convolution ωε (x) and |u (x)|:

ϕε (x) = ωε (x) ∗ |u (x)| =
∫
Rn
ωε (x− y) |u (y)| dy.

From (2.4) it follows that

−
m∑
|α|=1

aαD
αϕε (x) ≥ 0 (2.5)

in the sense of distributions. Since the function ϕε (x) is infinitely differentiable,
inequality (2.5) is true and pointwise. Thus, for any positive number ε we have
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ϕε (x) , −
m∑
|α|=1

aαD
αϕε (x)

 ≥ 0. (2.6)

On the other hand, from conditions c) and d) we haveϕε (x) , −
m∑
|α|=1

aαD
αϕε (x)

 ≤ 0. (2.7)

From inequalities (2.6) and (2.7) we haveϕε (x) , −
m∑
|α|=1

aαD
αϕε (x)

 = 0. (2.8)

Since ϕε (x) ∈ L2 (Rn), and the operator H0 has no eigenfunctions, from (2.8) we
get ϕε (x) = 0. Since

lim
ε→0

ϕε (x) = lim
ε→0

∫
Rn
ωε (x− y) |u (y)| dy = |u (x)| ,

we have |u (x)| = 0, and consequently, u (x) = 0. The theorem is proved. �

3. The spectrum of operator HV

There exist different definitions of the discrete spectrum of an operator. Their
equivalence is formulated in [1] in the form of a proposal.

We need the following two lemmas.

Lemma 3.1 (see [16, p. 269, Theorem XIII.64]). Let A be a self-adjoint operator.
The following two statements are equivalent:

(i) the operator (A− µE)−1 is compact for some µ ∈ ρ (A);

(ii) the operator (A− λE)−1 is compact for all λ ∈ ρ (A).
(Here E is a unit operator, ρ (A) is a resolvent set of the operator A).

Remark 3.1. In book [16], the lower boundedness of the operator A is required.
But Lemma 1 is a special case of Theorem XIII.64 from [16], and its statement
follows from the resolvent formula

(A− λE)−1 = (A− µE)−1 + (µ− λ) (A− µE)−1 (A− λE)−1 ,

therefore, here this requirement is not necessary.

Denote by Q (HV) the domain of definition of quadratic form, generated by
the linear operator HV. Obviously, D (HV) ⊂ Q (HV).

Lemma 3.2. Let conditions a)-d) be fulfilled. Then for any positive number b,
the set

F bHV
= {ψ (x) ∈ Q (HV) : ‖ψ‖ ≤ 1, (HVψ, ψ) ≤ b}

is compact.
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Proof. Going over to the Fourier transform

ψ̂ (p) =

∫
Rn
ψ (x) ei(p,x)dx

in the inequality

(H0ψ, ψ) ≤ b
and using the Plancherel theorem, we get∫

Rn
G (p)

∣∣∣ψ̂ (p)
∣∣∣2 dp ≤ b̃, (3.1)

where b̃ = b
(2π)n

.

Using inequality (3.1) and (V (x)ψ, ψ) ≤ b, we get ”x− p”-representation for
the set

F bHV
=

{
ψ (x) ∈ Q (HV) : ‖ψ‖ ≤ 1,

∫
Rn

V (x) |ψ (x)|2 dx ≤ b,∫
Rn
G (p)

∣∣∣ψ̂ (p)
∣∣∣2 dx ≤ b̃} .

Applying the Rellich compactness criterion (see [16, p. 271, Theorem XIII.65]),
we complete the proof of the lemma. �

Theorem 3.1. In conditions a)-d), the spectrum of the operator HV is purely
discrete.

Proof. By the theorem condition, the operator HV is lower semi-bounded. Denote
its lower bound by m, i.e.

m = inf
u∈D(HV)

(HVu, u)

(u, u)
> −∞.

Then for µ > −m the operator HV,µ = HV +µE is non-negative. From Lemma 1,

to prove the theorem, it is enough to prove that the operator (HV,µ + E)−1 ∈ σ∞.
Let ϕ ∈ D (HV,µ) = D (HV). Then from the equality

‖(HV,µ + E)ϕ‖2 = ‖HV,µϕ‖2 + ‖ϕ‖2 + 2 (HV,µϕ, ϕ)

it follows that

‖HV,µϕ‖ ≤ ‖(HV,µ + E)ϕ‖
and

‖ϕ‖ ≤ ‖(HV,µ + E)ϕ‖ .
From these inequalities we get∥∥∥HV,µ (HV,µ + E)−1

∥∥∥ ≤ 1 (3.2)

and
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∥∥∥(HV,µ + E)−1
∥∥∥ ≤ 1. (3.3)

Now prove that the operator (HV,µ + E)−1 takes the unit ball to the compact
set, i.e. the set

L =
{
ψ (x) = (HV,µ + E)−1 ϕ : ‖ϕ‖ ≤ 1

}
⊂ L2 (Rn)

is a compact set. From inequalities (3.2) and (3.3) it follows

‖HV,µψ‖ =
∥∥∥HV,µ (HV,µ + E)−1 ϕ

∥∥∥ ≤ ∥∥∥HV,µ (HV,µ + E)−1
∥∥∥ ≤ 1 (3.4)

and

‖ψ‖ =
∥∥∥(HV,µ + E)−1 ϕ

∥∥∥ ≤ ∥∥∥(HV,µ + E)−1
∥∥∥ ≤ 1. (3.5)

From inequalities (3.4) and (3.5) it follows

L ⊂ {ψ ∈ D (HV,µ) : ‖ψ‖ ≤ 1, ‖HV,µψ‖ ≤ 1} ≡ S. (3.6)

It follows from the Schwarz inequality that the set S is a subset of F 1
HV,µ

:

F 1
HV,µ

≡ {ψ ∈ D (HV,µ) : ‖ψ‖ ≤ 1, (HV,µψ,ψ) ≤ 1} ⊃ S. (3.7)

From Lemma 3.2 it follows that the set F 1
HV,µ

is compact and therefore by (3.6)

and (3.7), the set L is compact. This means that the operator (HV,µ + E)−1 is
compact. The theorem is proved. �

4. Expansion in terms of eigenfunctions of operator HV

Let ϕ1 (x) , ϕ2 (x) , ϕ3 (x) , ... be orthonormal eigenfunctions of the operator

(HV,m + E)−1 responding to positive eigenvalues
τ1 ≥ τ2 ≥ τ3 ≥ ... ≥ τk ≥ ... → 0 as k → +∞.

Then for each k, ϕk (x) is an eigenfunction of the operator HV, responding to the
eigenvalue

λk =
1

τk
−m− 1 (k = 1, 2, 3, ...),

i.e.

HVϕk (x) = λkϕk (x) , k = 1, 2, 3, ....

Then according to Hilbert-Schmidt expansion theorem (see [13, p. 172, Theorem
3.1]) for any f (x) ∈ D (HV) we have

(HV + (m+ 1)E) f (x) =

+∞∑
k=1

1

τk
(f, ϕk)ϕk (x) . (4.1)

Hence it follows

(HV + (m+ 1)E)

(
f (x)−

+∞∑
k=1

(f, ϕk)ϕk (x)

)
= 0.
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Since HV + (m+ 1)E > 0, we get

f (x) =
∞∑
k=1

(f, ϕk)ϕk (x) .

Expansion (4.1) means that the orthonormal system of eigenfunctions

{ϕk (x)}∞k=1

forms a complete system in the space (HV + (m+ 1)E)D (HV).
Since by Theorem 3.1 the spectrum of the operator HV is purely discrete, it

holds the following

Theorem 4.1. For any element f (x) ∈ L2 (Rn) it is valid the equality

f (x) =

+∞∑
k=1

akϕk (x) , (4.2)

where

ak = (f, ϕk) =

∫
Rn
f (x)ϕk (x)dx, k = 1, 2, 3, ...,

and series (4.2) converges in the sense of L2 (Rn).
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