TWO-WEIGHTED INEQUALITY FOR p-ADMISSIBLE
B_{k,n}–SINGULAR OPERATORS IN WEIGHTED LEBESGUE
SPACES

VAGIF S. GULIYEV, FATAI A. ISAYEV, AND ZAMAN V. SAFAROV

Abstract. In this paper, we study the boundedness of p-admissible singular operators, associated with the Laplace-Bessel differential operator

\[B_{k,n} = \sum_{i=1}^{k} \frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^{n} \gamma_j \frac{\partial}{\partial x_j} \] (p-admissible \(B_{k,n} \)-singular operators) on a weighted Lebesgue spaces \(L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \) including their weak versions. These conditions are satisfied by most of the operators in harmonic analysis, such as the \(B_{k,n} \)-maximal operator, \(B_{k,n} \)-singular integral operators and so on. Sufficient conditions on weighted functions \(\omega \) and \(\omega_1 \) are given so that p-admissible \(B_{k,n} \)-singular operators are bounded from \(L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \) to \(L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+}) \) for \(1 \leq p < \infty \) and weak p-admissible \(B_{k,n} \)-singular operators are bounded from \(L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \) to \(L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+}) \) for \(1 \leq p < \infty \).

1. Introduction

The singular integral operators considered by S. Mihlin [26] and A. Calderon and A. Zygmund [7] are playing an important role in the theory of Harmonic Analysis and in particular, in the theory of partial differential equations. M. Klyuchantsev [25] and I. Kipriyanov and M. Klyuchantsev [24] have firstly introduced and investigated the boundedness in \(L_p \)-spaces of multidimensional singular integrals, generated by the \(B_{1,n} \)-Laplace-Bessel differential operator (\(B_{1,n} \)-singular integrals), where

\[B_{1,n} = B_1 + \sum_{j=2}^{n} \frac{\partial^2}{\partial x_j^2}, \quad B_1 = \frac{\partial^2}{\partial x_1^2} + \frac{\gamma}{x_1} \frac{\partial}{\partial x_1}, \quad \gamma > 0. \]

I.A. Aliev and A.D. Gadjiev [5], A.D. Gadjiev and E.V. Guliyev [11] and E.V. Guliyev [13] have studied the boundedness of \(B_{1,n} \) singular integrals in weighted \(L_p \)-spaces with radial and general weights consequently. The maximal functions, singular integrals, potentials and related topics associated with the Laplace-Bessel differential operator \(B_{k,n} \)–which is known as an important differential operator in analysis and its applications, have been the research areas of many mathematicians.

2000 Mathematics Subject Classification. 42B25.

Key words and phrases. weighted Lebesgue space; \(B_{k,n} \)-Laplace-Bessel differential operator; p-admissible \(B_{k,n} \)-singular operators; two-weighted inequality.
such as I. Kipriyanov and M. Klyuchantsev [24, 25], L. Lyakhov [29, 30], A.D. Gadjiev and I.A. Aliev [4, 5], I.A. Aliev and S. Bayrakci [2, 3], V.S. Gulyiev [15, 16, 17] and others.

In the paper, we shall prove the boundedness of p-admissible singular operators, associated with the Laplace-Bessel differential operator $B_{k,n} = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^{k} \frac{\gamma_j}{x_j} \frac{\partial}{\partial x_j}$ (p-admissible $B_{k,n}$–singular operators) on a weighted L_p spaces. Sufficient conditions on weighted functions ω and ω_1 are given so that p-admissible $B_{k,n}$–singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)$ to $L_{p,\omega_1,\gamma}(\mathbb{R}_{k,+}^n)$ for $1 < p < \infty$ and weak p-admissible $B_{k,n}$–singular operators are bounded from $L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)$ to $L_{p,\omega_1,\gamma}(\mathbb{R}_{k,+}^n)$ for $1 \leq p < \infty$. Note that, our results in the case $k = 1$ were proved in [13], which is some generalization of the paper by I. A. Aliev, A. D. Gadjiev [5].

We point out that the p-admissible $B_{k,n}$–singular operators (see Theorem 2.1). These conditions are satisfied by many interesting operators in harmonic analysis, such as the $B_{k,n}$–Riesz transforms (see [9, 10]), $B_{k,n}$–singular integral operators (for example, for $k = 1$ see [5, 11, 13, 24, 25]), $B_{k,n}$–Hardy–Littlewood maximal operators ([18], for $n = k = 1$ see [32], for $k = 1$ see [17] and for $k = n$ see [15]) and so on.

2. Notations and Background

Suppose that \mathbb{R}^n is the n-dimensional Euclidean space, $x = (x_1, \ldots, x_n)$, $\xi = (\xi_1, \ldots, \xi_n)$ are vectors in \mathbb{R}^n, $(x, \xi) = x_1\xi_1 + \cdots + x_n\xi_n$, $|x| = \sqrt{(x, x)}$, $x = (x', x'') = (x_1, \ldots, x_k, x_{k+1}, \ldots, x_n)$. Let $\mathbb{R}_{k,+}^n = \{x \in \mathbb{R}^k : x_1 > 0, \ldots, x_k > 0\}$, $\mathbb{R}_{k,+}^k = \{x = (x_1, \ldots, x_n) : x_1, x_2, \ldots, x_k > 0\}$, $1 \leq k \leq n$, $S_{k,+} = \{x \in \mathbb{R}_{k,+}^n : |x| = 1\}$.

For $x \in \mathbb{R}_{k,+}^n$ and $r > 0$, we denote by $E(x, r) = \{y \in \mathbb{R}_{k,+}^n : |x - y| < r\}$ the open ball centered at x of radius r, and by $E'(x, r) = \mathbb{R}_{k,+}^n \setminus E(x, r)$ denote its complement, $E'(x', r) = \{y' \in \mathbb{R}_{k,+}^k : |x' - y'| < r\}$, $E'(x', r) = \mathbb{R}_{k,+}^k \setminus E'(x', r)$.

For measurable set $E \subset \mathbb{R}_{k,+}^n$ denote $|E| = \int_E \gamma^\gamma d\gamma$, then $|E(0,r)|_\gamma = \omega(n, \gamma) r^{n+|\gamma|}$, where $\gamma = (\gamma_1, \ldots, \gamma_k)$, $(x')^\gamma = x_1^{\gamma_1} \cdots x_k^{\gamma_k}$ and $\omega(n, \gamma) = |E(0,1)|_\gamma$.

An almost everywhere positive and locally integrable function $\omega : \mathbb{R}_{k,+}^n \rightarrow \mathbb{R}$ will be called a weight. We shall denote by $L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)$ the set of all measurable functions f on $\mathbb{R}_{k,+}^n$ such that the norm

$$\|f\|_{L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)} \equiv \|f\|_{p,\omega,\gamma;\mathbb{R}_{k,+}^n} = \left(\int_{\mathbb{R}_{k,+}^n} |f(x)|^p \omega(x)(x')^\gamma d\gamma \right)^{1/p}, \quad 1 \leq p < \infty$$

is finite. For $\omega = 1$ the space $L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)$ is denoted by $L_{p,\gamma}(\mathbb{R}_{k,+}^n)$, and the norm $\|f\|_{L_{p,\omega,\gamma}(\mathbb{R}_{k,+}^n)}$ by $\|f\|_{L_{p,\gamma}(\mathbb{R}_{k,+}^n)}$.

The operator of generalized shift ($B_{k,n}$–shift operator) is defined by the following way (see [18], [30]):

$$T^\beta f(x) = C_{\gamma,k} \int_0^\pi \cdots \int_0^\pi f((x', y'), \beta, x'' - y'') d\nu(\beta),$$
where
\[C_{\gamma,k} = \pi^{-\frac{k}{2}} \Gamma^{-1}\left(\frac{\gamma+1}{2}\right) \prod_{i=1}^{k} \Gamma\left(\frac{\gamma+1}{2} - \frac{i}{2}\right), \quad (x', y')_\beta = ((x_1, y_1)_\beta, \ldots, (x_k, y_k)_\beta), \quad (x_i, y_i)_\beta = (x_i^2 - 2x_iy_i \cos \beta_i + y_i^2)^{1/2}, 1 \leq i \leq k. \]

Note that this shift operator is closely connected with \(B_{k,n}\)-Laplace-Bessel singular differential operators (see [18], [30]).

The translation operator \(T_y\) generated the corresponding \(B_{k,n}\)-convolution
\[(f \otimes g)(x) = \int_{\mathbb{R}^n_{k,+}} f(y)[T_y g(x)](y')^\gamma dy,\]
for which the Young inequality
\[\|f \otimes g\|_{L_{r,\gamma}} \leq \|f\|_{L_{p,\gamma}} \|g\|_{L_{q,\gamma}}, \quad 1 \leq p, q, r \leq \infty, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1\]
holds.

Lemma 2.1. [28] Let \(1 \leq p \leq \infty\). Then for all \(y \in \mathbb{R}^n_{k,+}\), \(T_y f\) belongs \(L_{p,\gamma}(\mathbb{R}^n_{k,+})\) and
\[\|T_y f(\cdot)\|_{L_{p,\gamma}} \leq \|f\|_{L_{p,\gamma}}. \quad (2.1)\]

Definition 2.1. A function \(K\) defined on \(\mathbb{R}^n_{k,+}\), is said to be \(B_{k,n}\)-singular kernel in the space \(\mathbb{R}^n_{k,+}\) if
i) \(K \in C^\infty(\mathbb{R}^n_{k,+})\); ii) \(K(rx) = r^{-n-\gamma} K(x)\) for each \(r > 0, x \in \mathbb{R}^n_{k,+}\); iii) \(\int_{S_{k,+}} K(x)x^\gamma d\sigma(x) = 0\), where \(d\sigma\) is the element of area of the \(S_{k,+}\).

The operator \(T\) is called sublinear, if for all \(\lambda, \mu > 0\) and for all \(f\) and \(g\) in the domain of \(T\)
\[|T(\lambda f + \mu g)(x)| \leq \lambda |Tf(x)| + \mu |Tg(x)|.\]

Definition 2.2. (\(p\)-admissible \(B_{k,n}\)-singular operator). Let \(1 < p < \infty\). A sublinear operator \(T\) will be called \(p\)-admissible \(B_{k,n}\)-singular operator, if:
1) \(T\) satisfies the size condition of the form
\[\chi_{E(x,r)}(z) \left| T\left(f_{x_{E(x,r)}} \right)(z) \right| \leq C\chi_{E(x,r)}(z) \int_{\mathbb{R}^n_{k,+} \setminus E(x,2r)} T_y |x|^{-n-\gamma} |y| (y')^\gamma dy \quad (2.2)\]
for \(x \in \mathbb{R}^n_{k,+}\) and \(r > 0\); 2) \(T\) is bounded in \(L_{p,\gamma}(\mathbb{R}^n_{k,+})\).

Definition 2.3. (weak \(p\)-admissible \(B_{k,n}\)-singular operator). Let \(1 \leq p < \infty\). A sublinear operator \(T\) will be called the weak \(p\)-admissible \(B_{k,n}\)-singular operator, if:
1) \(T\) satisfies the size condition (2.2). 2) \(T\) is bounded from \(L_{p,\gamma}(\mathbb{R}^n_{k,+})\) to the weak \(WL_{p,\gamma}(\mathbb{R}^n_{k,+})\).
Remark 2.1. Note that p-admissible singular operators were introduced and their boundedness on vanishing generalized Morrey spaces was studied in [31]. Also Φ-admissible singular operators and weak Φ-admissible singular operators were introduced and their boundedness on generalized Orlicz-Morrey spaces was studied in [19, 21].

First, we establish the boundedness in weighted $L_{p,\gamma}$ spaces for a large class of p-admissible $B_{k,n}$-singular operator.

Theorem 2.1. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$-singular operators.

Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and the following three conditions are satisfied:
(a) there exist $b > 0$ such that
$$\sup_{|x|/8 <|y| \leq 8|x|} \omega_1(y) \leq b \omega(x) \quad \text{for a.e. } x \in \mathbb{R}^n_{k,+},$$

(b) $A \equiv \sup_{r>0} \left(\int_{E(0,2r)} \omega_1(x) |x|^{-(n+|\gamma|)p(x')} \gamma dx \right) \left(\int_{E(0,r)} \omega^{1-p'}(x)(x')^\gamma dx \right)^{p-1} < \infty,$

(c) $B \equiv \sup_{r>0} \left(\int_{E(0,r)} \omega_1(x)(x')^\gamma dx \right) \left(\int_{E(0,2r)} \omega^{1-p'}(x) |x|^{-(n+|\gamma|)p(x')} \gamma dx \right)^{p-1} < \infty.$

Then there exists a constant c, independent of f, such that for all $f \in L_{p,\omega_1}(\mathbb{R}^n_{k,+})$
$$\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(x)(x')^\gamma dx \leq c \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x)(x')^\gamma dx.$$ \hspace{1cm} (2.3)

Moreover, condition (a) can be replaced by the condition
\hspace{1cm} (a') \therefore there exist $b > 0$ such that
$$\omega_1(x) \left(\sup_{|x|/8 <|y| \leq 8|x|} \frac{1}{\omega(y)} \right) \leq b \quad \text{for a.e. } x \in \mathbb{R}^n.$$

Proof. For $l \in \mathbb{Z}$ we define $E_l = \{ x \in \mathbb{R}^n_{k,+} : 2^l < |x| \leq 2^{l+1} \}$, $E_{l,1} = \{ x \in \mathbb{R}^n_{k,+} : |x| \leq 2^{l-1} \}$, $E_{l,2} = \{ x \in \mathbb{R}^n_{k,+} : 2^{l-1} < |x| \leq 2^{l+2} \}$, $E_{l,3} = \{ x \in \mathbb{R}^n_{k,+} : |x| > 2^{l+2} \}$. Then $E_{l,2} = E_{l-1} \cup E_l \cup E_{l+1}$ and the multiplicity of the covering $\{E_{l,2}\}_{l \in \mathbb{Z}}$ is equal to 3.

Given $f \in L_{p,\omega_1}(\mathbb{R}^n_{k,+})$, we write
$$|Tf(x)| = \sum_{l \in \mathbb{Z}} |Tf(x)| \chi_{E_l}(x) \leq \sum_{l \in \mathbb{Z}} |Tf_{l,1}(x)| \chi_{E_l}(x)$$
$$+ \sum_{l \in \mathbb{Z}} |Tf_{l,2}(x)| \chi_{E_l}(x) + \sum_{l \in \mathbb{Z}} |Tf_{l,3}(x)| \chi_{E_l}(x)$$
$$\equiv T_1 f(x) + T_2 f(x) + T_3 f(x),$$

where χ_{E_l} is the characteristic function of the set E_l, $f_{l,i} = f \chi_{E_l,i}$, $i = 1, 2, 3$.

First we shall estimate $\|T_1f\|_{L^{p,\omega_1,\gamma}}$. Note that for $x \in E_t$, $y \in E_{k,1}$ we have $|y| \leq 2^{l-1} \leq |x|/2$. Moreover, $E_t \cap supp f_{k,1} = \emptyset$ and $|x - y| \geq |x|/2$. Hence by (2.2)

$$T_1f(x) \leq c_0 \sum_{t \in \mathbb{Z}} \left(\int_{\mathbb{R}^n_{k,+}} T^y|x|^{-n-|\gamma|} |f_{t,1}(y)| |y|\gamma dy \right) \chi_{E_t}$$

$$\leq c_0 \int_{E(0,|x|/2)} |x - y|^{-n-|\gamma|} |f(y)| (y')\gamma dy$$

$$\leq 2^{n+|\gamma|} c_0 |x|^{-n-|\gamma|} \int_{E(0,|x|/2)} |f(y)| (y')\gamma dy$$

for any $x \in E_t$. Hence we have

$$\int_{\mathbb{R}^n_{k,+}} |T_1f(x)|^p \omega_1(x) (x')\gamma dx$$

$$\leq \left(2^{n+|\gamma|} c_0 \right)^p \int_{\mathbb{R}^n_{k,+}} \left(\int_{E(0,|x|/2)} |f(y)| (y')\gamma dy \right)^p |x|^{-(n+|\gamma|)} \omega_1(x) (x')\gamma dx.$$

Since $A < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^n_{k,+}} \omega_1(x)|x|^{-(n+|\gamma|)} p \left(\int_{E(0,|x|/2)} |f(y)| (y')\gamma dy \right)^p (x')\gamma dx$$

$$\leq C \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) (x')\gamma dx$$

holds and $C \leq c' A$, where c' depends only on n and p. In fact the condition $A < \infty$ is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we obtain

$$\int_{\mathbb{R}^n_{k,+}} |T_1f(x)|^p \omega_1(x) (x')\gamma dx \leq c_1 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) (x')\gamma dx. \quad (2.4)$$

where c_1 is independent of f.

Next we estimate $\|T_3f\|_{L^{p,\omega_1,\gamma}}$. As is easy to verify, for $x \in E_t$, $y \in E_{k,3}$ we have $|y| > 2|x|$ and $|x - y| \geq |y|/2$. Since $E_t \cap supp f_{k,3} = \emptyset$, for $x \in E_t$ by (2.2) we obtain

$$T_3f(x) \leq c_0 \int_{E(0,|x|)} T^y|x|^{-n-|\gamma|} |f(y)| (y')\gamma dy$$

$$\leq 2^{n+|\gamma|} c_0 \int_{E(0,|x|)} |f(y)||x - y|^{-n-|\gamma|} (y')\gamma dy$$

$$\leq 2^{n+|\gamma|} c_0 \int_{E(0,|x|)} |f(y)||y|^{-n-|\gamma|} (y')\gamma dy.$$
Hence we have
\[
\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x) \, (x')^\gamma \, dx \\
\leq \left(2^{n+\gamma}c_0\right)^p \int_{\mathbb{R}^n_{k,+}} \left(\int_{E(0,2|x|)} |f(y)||y|^{-n-\gamma} \, (y')^\gamma \, dy \right)^p \omega_1(x) \, (x')^\gamma \, dx.
\]
Since \(B < \infty \), the Hardy inequality
\[
\int_{\mathbb{R}^n_{k,+}} \omega_1(x) \left(\int_{E(0,2|x|)} |f(y)||y|^{-n-\gamma} \, (y')^\gamma \, dy \right)^p \, (x')^\gamma \, dx \\
\leq C \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) \, (x')^\gamma \, dx
\]
holds and \(C \leq c'B \), where \(c' \) depends only on \(n \) and \(p \). In fact the condition \(B < \infty \) is necessary and sufficient for the validity of this inequality (see [1], [8]). Hence, we obtain
\[
\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x) \, (x')^\gamma \, dx \leq c_2 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x) \, (x')^\gamma \, dx, \tag{2.5}
\]
where \(c_2 \) is independent of \(f \).

Finally, we estimate \(||T_2 f||_{L_{p,\omega_1,\gamma}} \). By the \(L_{p,\gamma}(\mathbb{R}^n_{k,+}) \) boundedness of \(T \) and condition (a) we have
\[
\int_{\mathbb{R}^n_{k,+}} |T_2 f(x)|^p \omega_1(x) \, (x')^\gamma \, dx = \int_{\mathbb{R}^n_{k,+}} \left(\sum_{l \in \mathbb{Z}} |T f_{l,2}(x)| \chi_{E_l}(x) \right)^p \omega_1(x) \, (x')^\gamma \, dx \\
= \int_{\mathbb{R}^n_{k,+}} \left(\sum_{l \in \mathbb{Z}} |T f_{l,2}(x)|^p \chi_{E_l}(x) \right) \omega_1(x) \, (x')^\gamma \, dx \\
= \sum_{l \in \mathbb{Z}} \int_{E_l} |T f_{l,2}(x)|^p \omega_1(x) \, (x')^\gamma \, dx \\
\leq \sum_{l \in \mathbb{Z}} \sup_{y \in E_l} \omega_1(y) \int_{\mathbb{R}^n_{k,+}} |T f_{l,2}(x)|^p \, (x')^\gamma \, dx \\
\leq ||T||^p \sum_{l \in \mathbb{Z}} \sup_{y \in E_l} \omega_1(y) \int_{E_{l,2}} |f_{l,2}(x)|^p \, (x')^\gamma \, dx \\
= ||T||^p \sum_{l \in \mathbb{Z}} \sup_{y \in E_l} \omega_1(y) \int_{E_{l,2}} |f(x)|^p \, (x')^\gamma \, dx,
\]
where \(||T|| \equiv ||T||_{L_{p,\gamma}(\mathbb{R}^n_{k,+}) \rightarrow L_{p,\gamma}(\mathbb{R}^n_{k,+})} \). Since, for \(x \in E_{l,2}, 2^{l-1} < |x| \leq 2^{l+2} \), we have by condition (a)
\[
\sup_{y \in E_l} \omega_1(y) = \sup_{2^{l-1} < |y| \leq 2^{l+2}} \omega_1(y) \leq \sup_{|x|/8 < |y| \leq 8|x|} \omega_1(y) \leq b \omega(x)
\]

Corollary 2.1. Let K Then the operator $\omega_p(x)(x')^\gamma dx \leq \|T\|_{p,b} \sum_{l \in Z} \int_{E_{l,2}} |f(x)|^p \omega(x)(x')^\gamma dx
\leq c_3 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x)(x')^\gamma dx, \quad (2.6)$

where $c_3 = 3\|T\|_{p,b}$, since the multiplicity of covering $\{E_{l,2}\}_{l \in Z}$ is equal to 3. Inequalities (2.4), (2.5), (2.6) imply (2.3) which completes the proof.

Similarly we prove the following weak variant of Theorem 2.1.

Theorem 2.2. Let $p \in [1, \infty)$ and let T be a p-admissible $B_{k,n}$-singular operators. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied.

Then there exists a constant c, independent of f, such that

$$\int_{\{x \in \mathbb{R}^n_{k,+} : |Tf(x)| > \lambda\}} \omega_1(x)(x')^\gamma dx \leq \frac{c}{\lambda^p} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x)(x')^\gamma dx \quad (2.7)$$

for all $f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$.

Let k is a $B_{k,n}$-singular kernel and K be the $B_{k,n}$-singular integral operator

$$Kf(x) = \text{p.v.} \int_{\mathbb{R}^n_{k,+}} T^y k(x)f(y')(y')^\gamma dy.$$

Then K is a p-admissible $B_{k,n}$-singular operator for $1 < p \leq \infty$ and weak p-admissible $B_{k,n}$-singular operators for $1 \leq p < \infty$. Thus, we have

Corollary 2.1. Let $p \in (1, \infty)$, K be a $B_{k,n}$-singular operator. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied. Then the operator K is bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $L_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$.

Corollary 2.2. Let $p \in [1, \infty)$, K be a $B_{k,n}$-singular operator. Moreover, let $\omega(x)$, $\omega_1(x)$ be weight functions on $\mathbb{R}^n_{k,+}$ and conditions (a), (b), (c) be satisfied. Then the operator K is bounded from $L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+})$ to $WL_{p,\omega_1,\gamma}(\mathbb{R}^n_{k,+})$.

Remark 2.2. Note that, the conditions p-admissible $B_{k,n}$-singular operators are satisfied by many interesting operators in harmonic analysis, such as the $B_{k,n}$-maximal operator, $B_{k,n}$-singular integral operators, $B_{k,n}$-Riesz transforms and so on.

Theorem 2.3. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$-singular operators. Moreover, let $\omega(x')$, $\omega_1(x')$ be a weight functions on $\mathbb{R}^k_{k,+}$ and the following three conditions be satisfied

(a) there exists a constant $b > 0$ such that

$$\sup_{|x'|/8 < |y'| < 8|x'|} \omega_1(y') \leq b \omega(x') \quad \text{for a.e. } x' \in \mathbb{R}^k_{k,+},$$
Moreover, condition (R) covering \(\|x\| \) shall estimate \(\chi_{E} \) for a.e. \(x \) such that for all \(f \in L_{p,\omega}(\mathbb{R}^{n}_{k,+}) \)

\[
\int_{\mathbb{R}^{n}_{k,+}} |Tf(x)|^{p} \omega_{1}(x') dx' \leq c \int_{\mathbb{R}^{n}_{k,+}} |f(x)|^{p} \omega_{1}(x') dx' .
\]

(2.8)

Moreover, condition (a) can be replaced by the condition (a') there exists a constant \(b > 0 \) such that

\[
\omega_{1}(x') \left(\sup_{|x'|/8 < |y'| < 8|x'|} \frac{1}{\omega(y')} \right) \leq b \quad \text{for a.e. } x' \in \mathbb{R}^{k}_{+}.
\]

Proof. For \(l \in Z \) we define \(\bar{E}_{l} = \{ x \in \mathbb{R}^{n}_{k,+} : 2^{l} < |x'| \leq 2^{l+1} \} \), \(\bar{E}_{l,1} = \{ x \in \mathbb{R}^{n}_{k,+} : |x'| \leq 2^{l-1} \} \), \(\bar{E}_{l,2} = \{ x \in \mathbb{R}^{n}_{k,+} : 2^{l-1} < |x'| \leq 2^{l+1} \} \), \(\bar{E}_{l,3} = \{ x \in \mathbb{R}^{n}_{k,+} : |x'| > 2^{l+2} \} \). Then \(\bar{E}_{l,2} = \bar{E}_{l-1} \cup \bar{E}_{l} \cup \bar{E}_{l+1} \) and the multiplicity of the covering \(\{ \bar{E}_{l,2} \}_{l \in Z} \) is equal to 3. Given \(f \in L_{p,\omega,\gamma}(\mathbb{R}^{n}_{k,+}) \), we write

\[
|Tf(x)| = \sum_{l \in Z} |Tf(x)| \chi_{\bar{E}_{l}}(x) \leq \sum_{l \in Z} |Tf_{l,1}(x)| \chi_{\bar{E}_{l}}(x)
\]

\[
+ \sum_{l \in Z} |Tf_{l,2}(x)| \chi_{\bar{E}_{l}}(x) + \sum_{l \in Z} |Tf_{l,3}(x)| \chi_{\bar{E}_{l}}(x) \tag{2.9}
\]

\[
\equiv T_{1} f(x) + T_{2} f(x) + T_{3} f(x),
\]

where \(\chi_{\bar{E}_{l}} \) is the characteristic function of the set \(\bar{E}_{l} \). \(f_{l,i} = f \chi_{\bar{E}_{l,i}} \), \(i = 1, 2, 3 \). We shall estimate \(\|T_{1} f\|_{L_{p,\omega,\gamma}} \). Note that for \(x \in \bar{E}_{l}, y \in \bar{E}_{l,1} \) we have \(|y'| \leq 2^{l-1} \leq |x'|/2 \). Moreover, \(\bar{E}_{l} \cap \text{supp} f_{l,1} = \emptyset \) and \(|x' - y'| \geq |x'|/2 \). Hence by (2.2)

\[
T_{1} f(x) \leq c_{4} \sum_{l \in Z} \left(\int_{\mathbb{R}^{n}_{k,+}} |f_{l,1}(y)| T^{y} |x|^{-n-|\gamma|} dy \right) \chi_{\bar{E}_{l}}
\]

\[
\leq c_{4} \int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} T^{y} |x|^{-n-|\gamma|} f(y) |(y')^{|\gamma|} dy dy'
\]

\[
\leq c_{5} \int_{\mathbb{R}^{n-k}} \int_{E'(0,|x'|/2)} |x'| + |x'' - y''|^{-n-|\gamma|} f(y) |(y')^{|\gamma|} dy' dy''
\]
for any $x \in E_l$. Using this last inequality we have

$$\int_{\mathbb{R}^n_{k,+}} |T_1 f(x)|^p \omega_1(x')(x')^\gamma dx$$

$$\leq c_5^p \int_{\mathbb{R}^n_{k,+}} \left(\int_{\mathbb{R}^n_{k,-}} E'(0,|x'|/2) \left(|x'| + |x'' - y''| \right)^{-n-\gamma} |f(y')|^\gamma dy' dy'' \right)^p$$

$$\times \omega_1(x')(x')^\gamma dx.$$

For $x = (x', x'') \in \mathbb{R}^n$ let

$$I(x')$$

$$= \int_{\mathbb{R}^n_{k,-}} \left(\int_{\mathbb{R}^n_{k,-}} E'(0,|x'|/2) \left(|x'| + |x'' - y''| \right)^{-n-\gamma} |f(y', y'')|^\gamma dy' dy'' \right)^p dx''$$

$$= \int_{\mathbb{R}^n_{k,-}} \left(\int_{E'(0,|x'|/2)} \left(\int_{\mathbb{R}^n_{k,-}} \left(|x'| + |x'' - y''| \right)^{-n-\gamma} |f(y', y'')|^\gamma dy' \right)(x')^\gamma dy'' \right)^p dx.'$$

Using the Minkowski and Young inequalities we obtain

$$I(x') \leq \left[\int_{E'(0,|x'|/2)} \left(\int_{\mathbb{R}^n_{k,-}} |f(y', y'')|^p dy'' \right)^{1/p} \left(\int_{\mathbb{R}^n_{k,-}} \left(|x'| + |x''| \right)^{n+\gamma} (x')^\gamma dy' \right)^{1/p} \right]^p$$

$$= \left(\int_{E'(0,|x'|/2)} \| f(\cdot, y'') \|_{p, \mathbb{R}^n_{k,-}} (y')^\gamma dy'' \right)^p \left(\int_{\mathbb{R}^n_{k,-}} \left(|x'| + |x''| \right)^{n+\gamma} (x')^\gamma dy' \right)^p$$

$$= |x'|^{-\gamma(k+|\gamma|)} \left(\int_{E'(0,|x'|/2)} \| f(\cdot, y'') \|_{p, \mathbb{R}^n_{k,-}} (y')^\gamma dy'' \right)^p \left(\int_{\mathbb{R}^n_{k,-}} \left(|x''| + 1 \right)^{n+\gamma} \right)^p$$

$$= c_6 |x'|^{-\gamma(k+|\gamma|)} \left(\int_{E'(0,|x'|/2)} \| f(\cdot, y'') \|_{p, \mathbb{R}^n_{k,-}} (y')^\gamma dy'' \right)^p.$$

Integrating in $\mathbb{R}^n_{k,+}$ we get

$$\int_{\mathbb{R}^n_{k,+}} |T_1 f(x)|^p \omega_1(x')(x')^\gamma dx$$

$$\leq c_7 \int_{\mathbb{R}^n_{k,+}} \omega_1(x') |x'|^{-(k+|\gamma|)} \left(\int_{E'(0,|x'|/2)} \| f(\cdot, y'') \|_{p, \mathbb{R}^n_{k,-}} (y')^\gamma dy'' \right)^p (x')^\gamma dx'.$$

Since $A_1 < \infty$, the Hardy inequality

$$\int_{\mathbb{R}^n_{k,+}} \omega_1(x') |x'|^{-(k+|\gamma|)} \left(\int_{E'(0,|x'|/2)} \| f(\cdot, y'') \|_{p, \mathbb{R}^n_{k,-}} (y')^\gamma dy'' \right)^p (x')^\gamma dx'$$

$$\leq C \int_{\mathbb{R}^n_{k,+}} \| f(\cdot, x') \|_{p, \mathbb{R}^n_{k,-}} \omega_1(x')(x')^\gamma dx'$$

holds and $C \leq c'A_1$, where c' depends only on n and p. In fact the condition $A_1 < \infty$ is necessary and sufficient for the validity of this inequality (see [6], [22]).
Hence, we obtain
\[
\int_{\mathbb{R}^n_{k,+}} |T_1 f(x)|^p \omega_1(x')(x')^\gamma dx \leq c_9 \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x')(x')^\gamma dx.
\] (2.10)

Let us estimate \(|T_3 f| \) \(\|_{L^p,\omega_1,\gamma} \). As is easy to verify, for \(x \in \tilde{E}_l, \ y \in \tilde{E}_{l,3} \) we have \(|y'| > 2|x'| \) and \(|x' - y'| > |y'|/2 \). Since \(\tilde{E}_l \cap \text{supp} f_{k,3} = \emptyset \), for \(x \in \tilde{E}_l \) by (2.2) we obtain
\[
T_3 f(x) \leq c_5 \int_{\mathbb{R}^{n-k}} \int_{\mathcal{E}'(0,2|x'|)} |f(y)| \left(|y'| + |x'' - y''| \right)^{-n-\gamma} (y')^\gamma \ dy' dy''.
\]

Using this last inequality we have
\[
\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x')(x')^\gamma dx
\]
\[
\leq c_5^p \int_{\mathbb{R}^{n-k}} \left(\int_{\mathbb{R}^{n-k}} \int_{\mathcal{E}'(0,2|x'|)} |f(y)| \left(|y'| + |x'' - y''| \right)^{-n-\gamma} (y')^\gamma \ dy' dy'' \right)^p \omega_1(x')(x')^\gamma dx.
\]

For \(x = (x', x'') \in \mathbb{R}^n \) let
\[
I_1(x') = \int_{\mathbb{R}^{n-k}} \left(\int_{\mathbb{R}^{n-k}} \int_{\mathcal{E}'(0,2|x'|)} |f(y)| \left(|y'| + |x'' - y''| \right)^{-n-\gamma} (y')^\gamma \ dy' dy'' \right)^p \ (x')^\gamma dx''.
\]

Using the Minkowski and Young inequalities we obtain
\[
I_1(x') \leq \left[\int_{\mathcal{E}'(0,2|x'|)} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^p dy'' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y'| + |x''|)^{n+\gamma}} (y')^\gamma dy' \right)^p \right]^p
\]
\[
= c_6 \left(\int_{\mathcal{E}'(0,2|x'|)} \left| y' \right|^{-k-\gamma} \| f(\cdot, y') \|_{p,\mathbb{R}^{n-k}} (y')^\gamma dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y''| + 1)^{n+\gamma}} \right)^p
\]
\[
= c_7 \left(\int_{\mathcal{E}'(0,2|x'|)} \left| y' \right|^{-k-\gamma} \| f(\cdot, y') \|_{p,\mathbb{R}^{n-k}} (y')^\gamma dy' \right)^p.
\]

Integrating over \(\mathbb{R}^k_{++} \) we get
\[
\int_{\mathbb{R}^k_{++}} |T_3 f(x)|^p \omega_1(x')(x')^\gamma dx
\]
\[
\leq c_8 \int_{\mathbb{R}^k_{++}} \left(\int_{\mathcal{E}'(0,2|x'|)} \left| y' \right|^{-k-\gamma} \| f(\cdot, y') \|_{p,\mathbb{R}^{n-k}} (y')^\gamma dy'' \right)^p \omega_1(x')(x')^\gamma dx''.
\]
Since $B_1 < \infty$, the Hardy inequality
\[
\int_{\mathbb{R}^n_{k,+}} \omega_1(x') \left(\int_{E^{2}(0,2|x|)} |y'|^{-k-|\gamma|} \|f(\cdot, y')\|_{p,\mathbb{R}^{n-1}}(y') \gamma dy' \right)^p (x')^\gamma dx'
\leq C \int_{\mathbb{R}^n_{k,+}} \|f(\cdot, x')\|^p_{p,\mathbb{R}^{n-k}} |x'|^{-(k+|\gamma|)} \|\omega(x')\| |x'|^{(k+|\gamma|)} dx'
\]
holds and $C \leq c' B_1$, where c' depends only on n, γ and p. In fact the condition $B_1 < \infty$ is necessary and sufficient for the validity of this inequality (see [6], [22]). Hence, we obtain
\[
\int_{\mathbb{R}^n_{k,+}} |T_3 f(x)|^p \omega_1(x')(x')^\gamma dx \leq c_{10} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x')(x')^\gamma dx. \tag{2.11}
\]
Finally, we estimate $\|T_2 f\|_{L^p,\omega_{1}\gamma}$ by the $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ boundedness of T and condition (a1) we have
\[
\int_{\mathbb{R}^n_{k,+}} |T_2 f(x)|^p \omega_1(x_n)(x')^\gamma dx = \int_{\mathbb{R}^n_{k,+}} \left(\sum_{l \in Z} |T_{f_{1,2}}(x)| \chi_{E_l}(x) \right)^p \omega_1(x')(x')^\gamma dx
\]
\[
= \int_{\mathbb{R}^n_{k,+}} \left(\sum_{l \in Z} |T_{f_{1,2}}(x)| \chi_{E_l}(x) \right) \omega_1(x')(x')^\gamma dx = \sum_{l \in Z} \int_{E_l} |T_{f_{1,2}}(x)|^p \omega_1(x')(x')^\gamma dx
\]
\[
\leq \sum_{l \in Z} \sup_{x \in E_l} \omega_1(y') \int_{\mathbb{R}^n} |T_{f_{1,2}}(x)|^p (x')^\gamma dx
\]
\[
\leq \|T\|^p \sum_{l \in Z} \sup_{x \in E_l} \omega_1(y') \int_{\mathbb{R}^n} |f_{1,2}(x)|^p (x')^\gamma dx
\]
\[
= \|T\|^p \sum_{l \in Z} \sup_{x \in E_l} \omega_1(y') \int_{E_{1,2}} |f(x)|^p (x')^\gamma dx,
\]
where $\|T\| = \|T\|_{L_{p,\gamma}(\mathbb{R}^n_{k,+})} \to L_{p,\gamma}(\mathbb{R}^n_{k,+})$. Since, for $x \in \widetilde{E}_{1,2}, 2^{l-1} < |x'| \leq 2^{l+2}$, we have by condition (a1)
\[
\sup_{y \in E_l} \omega_1(y') = \sup_{2^{l-1} < |y'| \leq 2^{l+2}} \omega_1(y') \leq \sup_{|x'|/8 < |y'| < 8|x'|} \omega_1(y') \leq b \omega(x')
\]
for almost all $x \in \widetilde{E}_{1,2}$. Therefore
\[
\int_{\mathbb{R}^n_{k,+}} |T_2 f(x)|^p \omega_1(x')(x')^\gamma dx
\]
\[
\leq \|T\|^p b \sum_{l \in Z} \int_{\widetilde{E}_{1,2}} |f(x)|^p \omega(x')(x')^\gamma dx \leq c_{11} \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(x')(x')^\gamma dx, \tag{2.12}
\]
where $c_{11} = 3 \|T\|^p b$, since the multiplicity of covering $\left\{ \widetilde{E}_{1,2} \right\}_{l \in Z}$ is equal to 3. Inequalities (2.9), (2.10), (2.11), (2.12) imply (2.8) which completes the proof. \hfill \Box
Similarly we prove the following weak variant of Theorem 2.3.

Theorem 2.4. Let \(p \in [1, \infty) \) and let \(T \) be a weak \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(x'), \omega_1(x') \) be weight functions on \(\mathbb{R}_+^k \) and conditions \((a_1), (b_1), (c_1)\) be satisfied.

Then there exists a constant \(c\), independent of \(f\), such that

\[
\int_{\{x \in \mathbb{R}_+^k : |Tf(x)| > \lambda\}} \omega_1(x')(x')^\gamma dx \leq \frac{c}{\lambda^p} \int_{\mathbb{R}_+^k} |f(x)|^p \omega(x')(x')^\gamma dx \quad (2.13)
\]

for all \(f \in L_{p,\omega,\gamma}(\mathbb{R}_+^k)\).

Corollary 2.3. Let \(p \in (1, \infty), T \) be the \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(x'), \omega_1(x') \) be weight functions on \(\mathbb{R}_+^k \) and conditions \((a_1), (b_1), (c_1)\) be satisfied. Then inequality \((2.8)\) is valid.

Corollary 2.4. Let \(p \in [1, \infty) \), \(T \) be the weak \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(x'), \omega_1(x') \) be weight functions on \(\mathbb{R}_+^k \) and conditions \((a_1), (b_1), (c_1)\) be satisfied. Then inequality \((2.13)\) is valid.

Remark 2.3. Note that, if instead of \(\omega(x'), \omega_1(x') \) respectively put \(\omega(x'), \omega_1(\infty) \), then from conditions \((a), (b), (c)\) will not follows conditions \((a_1), (b_1), (c_1)\) respectively.

Theorem 2.5. Let \(p \in (1, \infty) \) and \(T \) be a \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(t) \) be a weight function on \((0, \infty) \), \(\omega_1(t) \) be a positive increasing function on \((0, \infty) \) and the weighted pair \((\omega(|x|), \omega_1(|x|))\) satisfies conditions \((a), (b)\). Then there exists a constant \(c > 0 \), such that for all \(f \in L_{p,\omega,\gamma}(\mathbb{R}_+^k)\)

\[
\int_{\mathbb{R}_+^k} |Tf(x)|^p \omega_1(|x|)(x')^\gamma dx \leq c \int_{\mathbb{R}_+^k} |f(x)|^p \omega(|x|)(x')^\gamma dx. \quad (2.14)
\]

Proof. Suppose that \(f \in L_{p,\omega,\gamma}(\mathbb{R}_+^k) \) and \(\omega_1 \) are positive increasing functions on \((0, \infty)\) and \(\omega, \omega_1 \) satisfied the conditions \((a), (b)\).

Without loss of generality we can suppose that \(\omega_1 \) may be represented by

\[
\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\lambda)d\lambda,
\]

where \(\omega_1(0+) = \lim_{t \to 0+} \omega_1(t) \) and \(\omega_1(t) \geq 0 \) on \((0, \infty)\). In fact there exists a sequece of increasing absolutely continuous fuctions \(\varpi_1 \), such that \(\varpi_1(t) \leq \omega_1(t) \) and \(\lim_{n \to \infty} \varpi_1(t) = \omega_1(t) \) for any \(t \in (0, \infty) \) (see [12], [14] for details).

We have

\[
\int_{\mathbb{R}_+^k} |Tf(x)|^p \omega_1(|x|)(x')^\gamma dx = \omega_1(0+) \int_{\mathbb{R}_+^k} |Tf(x)|^p (x')^\gamma dx + \int_{\mathbb{R}_+^k} |Tf(x)|^p \left(\int_0^{|x|} \psi(\lambda)d\lambda \right) (x')^\gamma dx = J_1 + J_2.
\]

If \(\omega_1(0+) = 0 \), then \(J_1 = 0 \). If \(\omega_1(0+) \neq 0 \) by the boundedness of \(T \) in \(L_{p,\gamma}(\mathbb{R}_+^k) \) thanks to \((a)\)

\[
J_1 \leq \|T\|^p \omega_1(0+) \int_{\mathbb{R}_+^k} |f(x)|^p (x')^\gamma dx
\]
\[\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega_1(|x|)(x')^\gamma \, dx \leq b \, ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x|)(x')^\gamma \, dx. \]

After changing the order of integration in \(J_2 \) we have
\[
J_2 = \int_0^\infty \psi(\lambda) \left(\int_{E(0, \lambda)} |Tf(x)|^p (x')^\gamma \, dx \right) d\lambda \\
\leq 2^{p-1} \int_0^\infty \psi(\lambda) \left(\int_{E(0, \lambda)} |T(\chi_{E(0, \lambda/2)})(x)|^p (x')^\gamma \, dx \right) d\lambda \\
+ \int_{E(0, \lambda)} |T(\chi_{E(0, \lambda/2)})(x)|^p (x')^\gamma \, dx \, d\lambda = J_{21} + J_{22}.
\]

Using the boundedness of \(T \) in \(L_{p, \gamma}(\mathbb{R}^n_{k,+}) \) and condition (a) we have
\[
J_{21} \leq ||T||^p \int_0^\infty \psi(t) \left(\int_{E(0, \lambda/2)} |f(y)|^p (y')^\gamma \, dy \right) dt \\
= ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \left(\int_0^{2|y|} \psi(\lambda) d\lambda \right) (y')^\gamma \, dy \\
\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega_1(2|y|)(y')^\gamma \, dy \\
\leq b \, ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|)(y')^\gamma \, dy.
\]

Let us estimate \(J_{22} \). For \(|x| > \lambda \) and \(|y| \leq \lambda/2 \) we have
\[
|x|/2 \leq |x - y| \leq 3|x|/2,
\]
and so
\[
J_{22} \leq c_4 \int_0^\infty \psi(\lambda) \left(\int_{E(0, \lambda)} \left(\int_{E(0, 2\lambda)} T^y |x|^{-n+|\gamma|}|f(y)|(y')^\gamma \, dy \right)^p (x')^\gamma \, dx \right) d\lambda \\
\leq c_5 \int_0^\infty \psi(\lambda) \left(\int_{E(0, \lambda)} \left(\int_{E(0, 2\lambda)} |f(y)|(y')^\gamma \, dy \right)^p |x|^{-(n+|\gamma|)}(x')^\gamma \, dx \right) d\lambda \\
= c_6 \int_0^\infty \psi(\lambda) \lambda^{-(n+|\gamma|)(p-1)} \left(\int_{E(0, \lambda/2)} |f(y)|(y')^\gamma \, dy \right)^p d\lambda.
\]

The Hardy inequality
\[
\int_0^\infty \psi(\lambda) \lambda^{-(n+|\gamma|)(p-1)} \left(\int_{E(0, \lambda/2)} |f(y)|(y')^\gamma \, dy \right)^p d\lambda \\
\leq C \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|)(y')^\gamma \, dy
\]
ie valid, for \(p \in (1, \infty) \) is valid by the condition \(C \leq c' A' \) (see \([6], [22]\)), where
\[
A' \equiv \sup_{\tau > 0} \left(\int_{2\tau}^{\infty} \psi(t) t^{-(n+|\gamma|)(p-1)} d\tau \right) \left(\int_{E(0, \tau)} \omega^{-p'}(|y|)(y')^{\gamma} dy \right)^{p^{-1}} < \infty.
\]
Note that
\[
\int_{2t}^{\infty} \psi(\tau) \tau^{-(n+|\gamma|)(p-1)} d\tau \\
= (n + |\gamma|)(p-1) \int_{2t}^{\infty} \psi(\tau) d\tau \int_{\tau}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)} d\lambda \\
= (n + |\gamma|)(p-1) \int_{2t}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)} d\lambda \int_{2t}^{\infty} \psi(\tau) d\tau \\
\leq (n + |\gamma|)(p-1) \int_{2t}^{\infty} \lambda^{-k-(n+|\gamma|)(p-1)} \omega_1(\lambda) d\lambda \\
= \frac{(p-1)}{\omega(n, |\gamma|)} \int_{E(0, 2t)} \omega_1(|y|) |y|^{-(n+|\gamma|)p} (y')^{\gamma} dy.
\]
Condition (b) of the theorem guarantees that \(A' \leq \frac{(n+|\gamma|)(p-1)}{\omega(n, |\gamma|)} A < \infty \). Hence, applying the Hardy inequality, we obtain
\[
J_{22} \leq c_7 \int_{\mathbb{R}_+^n} |f(x)|^p \omega(|x|)(x')^\gamma dx.
\]
Combining the estimates of \(J_1 \) and \(J_2 \), we get (2.14) for \(\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau) d\tau \). By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (2.14). The theorem is proved.

Corollary 2.5. Let \(p \in (1, \infty) \), \(k \) be a \(B_{k,n} \)-singular kernel and \(K \) be the corresponding operator. Moreover, let \(\omega(t) \) be a weight function on \((0, \infty)\), \(\omega_1(t) \) be a positive increasing function on \((0, \infty)\) and the weighted pair \((\omega(|x|), \omega_1(|x|)) \) satisfies conditions (a), (b). Then for the operator \(K \) the inequality (2.14) is valid.

Example 2.1. Let
\[
\omega(t) = \begin{cases}
 t^{(n+|\gamma|)(p-1)} \ln^p \frac{1}{t^\gamma}, & \text{for } t \in \left(0, \frac{1}{2}\right) \\
 2^{p-1} \ln^p t^\beta, & \text{for } t \in \left[\frac{1}{2}, \infty\right),
\end{cases}
\]
\[
\omega_1(t) = \begin{cases}
 t^{(n+|\gamma|)(p-1)} \nu^\alpha, & \text{for } t \in \left(0, \frac{1}{2}\right) \\
 2^{p-1} \nu^\alpha, & \text{for } t \in \left[\frac{1}{2}, \infty\right),
\end{cases}
\]
where \(0 < \alpha \leq \beta < (n + |\gamma|)(p-1) \). Then the weighted pair \((\omega(|x|), \omega_1(|x|)) \) satisfies the condition of Theorem 2.5.

Theorem 2.6. Let \(p \in (1, \infty) \) and \(T \) be a \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(t) \) be a weight function on \((0, \infty)\), \(\omega_1(t) \) be a positive decreasing function on \((0, \infty)\) and the weighted pair \((\omega(|x|), \omega_1(|x|)) \) satisfies conditions (a), (c). Then inequality (2.14) is valid.

Proof. Without loss of generality we can suppose that \(\omega_1 \) may be represented by
\[
\omega_1(t) = \omega_1(+\infty) + \int_t^{\infty} \psi(\tau) d\tau,
\]
where $\omega_1(+\infty) = \lim_{t \to \infty} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0, \infty)$. In fact there exists a sequence of decreasing absolutely continuous functions ω_n such that $\omega_n(t) \leq \omega_1(t)$ and $\lim_{n \to \infty} \omega_n(t) = \omega_1(t)$ for any $t \in (0, \infty)$ (see [12], [14] for details).

We have

$$\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(|x|)(x')^\gamma dx = \omega_1(+\infty) \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p (x')^\gamma dx$$

$$+ \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \left(\int_{|x|}^\infty \psi(\tau)d\tau \right) (x')^\gamma dx$$

$$= I_1 + I_2.$$

If $\omega_1(+\infty) = 0$, then $I_1 = 0$. If $\omega_1(+\infty) \neq 0$, by the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n_{k,+})$ and condition (a) we have

$$J_1 \leq ||T|| \omega_1(+\infty) \int_{\mathbb{R}^n_{k,+}} |f(x)|^p (x')^\gamma dx$$

$$\leq ||T|| \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega_1(|x|)(x')^\gamma dx$$

$$\leq b ||T|| \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x|)(x')^\gamma dx.$$

After changing the order of integration in J_2 we have

$$J_2 = \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} |Tf(x)|^p (x')^\gamma dx \right) d\lambda$$

$$\leq 2^{p-1} \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} |T(f\chi_{E(0,2\lambda)})(x)|^p (x')^\gamma dx \right)$$

$$+ \int_{E(0,\lambda)} |T(f\chi_{E(0,2\lambda)})(x)|^p (x')^\gamma dx \right) d\lambda$$

$$= J_{21} + J_{22}.$$

Using the boundedness of T in $L_p(\mathbb{R}^n_{k,+})$ and condition (a) we obtain

$$J_{21} \leq ||T|| \int_0^\infty \psi(t) \left(\int_{|y|<2\lambda} |f(y)|^p (y')^\gamma dy \right) dt$$

$$= ||T|| \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \left(\int_{|y|/2}^\infty \psi(\lambda)d\lambda \right) (y')^\gamma dy$$

$$\leq ||T|| \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega_1(|y|/2)(y')^\gamma dy$$

$$\leq b ||T|| \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y|)(y')^\gamma dy.$$
Let us estimate J_{22}. For $|x| < \lambda$ and $|y| \geq 2\lambda$ we have $|y|/2 \leq |x - y| \leq 3|y|/2$, and so
\[
J_{22} \leq c_8 \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} \left(\int_{E(0,2\lambda)} T^y |x|^{-n-|\gamma|} |f(y)(y')^\gamma dy \right)^p (x')^\gamma dx \right) d\lambda
\]
\[
\leq 2^n c_8 \int_0^\infty \psi(\lambda) \left(\int_{E(0,\lambda)} \left(\int_{E(0,2\lambda)} |y|^{-n-|\gamma|} |f(y)(y')^\gamma dy \right)^p (x')^\gamma dx \right) d\lambda
\]
\[
= c_9 \int_0^\infty \psi(\lambda) \lambda^{n+|\gamma|} \left(\int_{E(0,2\lambda)} |y|^{-n-|\gamma|} |f(y)(y')^\gamma dy \right)^p d\lambda.
\]

The Hardy inequality
\[
\int_0^\infty \psi(\lambda) \lambda^{n+|\gamma|} \left(\int_{E(0,2\lambda)} |y|^{-n-|\gamma|} |f(y)(y')^\gamma dy \right)^p d\lambda
\]
\[
\leq C \int_{\mathbb{R}_{k,+}^n} |f(y)|^p |y|^{-(n+|\gamma|)p} |y|^{(n+|\gamma|)p} \omega(|y|)(y')^\gamma dy = C \int_{\mathbb{R}_{k,+}^n} |f(y)|^p \omega(|y|)(y')^\gamma dy
\]
is valid, for $p \in (1, \infty)$ is valid by the condition $C \leq c\mathcal{B}'$ (see [6], [22]), where
\[
\mathcal{B}' = \sup_{\tau > 0} \left(\int_{E(0,\tau)} \omega^{1-p'}(|y|)|y|^{-(n+|\gamma|)p'}(y')^\gamma dy \right)^{p-1} < \infty.
\]

Note that
\[
\int_0^\tau \psi(t)t^{n+|\gamma|} dt = (n + |\gamma|) \int_0^\tau \psi(t) dt \int_0^t \lambda^{n+|\gamma|-1} d\lambda
\]
\[
= (n + |\gamma|) \int_0^\tau \lambda^{n+|\gamma|-1} d\lambda \int_0^\tau \psi(t) d\tau
\]
\[
\leq (n + |\gamma|) \int_0^\tau \lambda^{n+|\gamma|-1} \omega_1(\lambda) d\lambda
\]
\[
= \frac{n + |\gamma|}{\omega(n, |\gamma|)} \int_{E(0,\tau)} \omega_1(|x|)(x')^\gamma dx.
\]

Condition (c) of the theorem guarantees that $\mathcal{B}' \leq \frac{n+|\gamma|}{\omega(n,|\gamma|)} \mathcal{B} < \infty$. Hence, applying the Hardy inequality, we obtain
\[
J_{22} \leq c_{10} \int_{\mathbb{R}_{k,+}^n} |f(x)|^p \omega(|x|)(x')^\gamma dx.
\]

Combining the estimates of J_1 and J_2, we get (2.14) for $\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(t) d\tau$. By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (2.14). The theorem is proved.

Corollary 2.6. Let $p \in (1, \infty)$, k be a $B_{k,n}$–singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and the weighted pair $(\omega(|x|), \omega_1(|x|))$ satisfies conditions (a), (c). Then for the operator K the inequality (2.14) is valid.
Example 2.2. Let
\[
\omega(t) = \begin{cases}
\frac{1}{(n+|\gamma|+\alpha)} \ln ^\frac{\nu}{\alpha} \frac{1}{t}, & \text{for } t < d \\
\ (d-n-|\gamma|) t^\alpha, & \text{for } t \geq d,
\end{cases}
\]

\[
\omega_1(t) = \begin{cases}
\frac{1}{(n+|\gamma|+\alpha)} \ln ^\frac{\beta}{\alpha} \frac{1}{t}, & \text{for } t < d \\
\ (d-n-|\gamma|-\lambda) t^\lambda, & \text{for } t \geq d
\end{cases}
\]

where \(\beta < \nu \leq 0, -n - |\gamma| < \lambda < \alpha < 0, d = e^{\frac{\beta}{n+|\gamma|}} \).

Then the weighted pair \((\omega(|x|), \omega_1(|x|))\) satisfies the condition of Theorem 2.6.

Theorem 2.7. Let \(p \in (1, \infty) \) and \(T \) be a \(p \)-admissible \(B_{k,n} \)-singular operators. Moreover, let \(\omega(t) \) be a weight function on \((0, \infty)\), \(\omega_1(t) \) be a positive increasing function on \((0, \infty)\) and \(\omega(|x'|), \omega_1(|x'|) \) be satisfied the conditions (a1), (b1).

Then there exists a constant \(c > 0 \), such that for all \(f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \)
\[
\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(|x'|)(x')^\gamma dx \leq c \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x'|)(x')^\gamma dx.
\] (2.15)

Proof. Suppose that \(f \in L_{p,\omega,\gamma}(\mathbb{R}^n_{k,+}) \), \(\omega_1 \) are positive increasing functions on \((0, \infty)\) and \(\omega(t), \omega_1(t) \) satisfied the conditions (a1), (b1).

Without loss of generality we can suppose that \(\omega_1 \) may be represented by
\[
\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\lambda) d\lambda,
\]
where \(\omega_1(0+) = \lim_{t \to 0} \omega_1(t) \) and \(\omega_1(t) \geq 0 \) on \((0, \infty)\). In fact there exists a sequence of increasing absolutely continuous functions \(\omega_n \) such that \(\omega_n(t) \leq \omega_1(t) \) and \(\lim_{n \to \infty} \omega_n(t) = \omega_1(t) \) for any \(t \in (0, \infty) \) (see [12], [14] for details).

We have
\[
\int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \omega_1(|x'|)(x')^\gamma dx = \omega_1(0+) \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p(x')^\gamma dx +
\]
\[
+ \int_{\mathbb{R}^n_{k,+}} |Tf(x)|^p \left(\int_0^{x'} \psi(\lambda) d\lambda \right) (x')^\gamma dx = J_1 + J_2.
\]

If \(\omega_1(0+) = 0 \), then \(J_1 = 0 \). If \(\omega_1(0+) \neq 0 \) by the boundedness of \(T \) in \(L_{p,\gamma}(\mathbb{R}^n_{k,+}) \) thanks to (a)
\[
J_1 \leq ||T||^p \omega_1(0+) \int_{\mathbb{R}^n_{k,+}} |f(x)|^p(x')^\gamma dx
\]
\[
\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega_1(|x'|)(x')^\gamma dx
\]
\[
\leq ||T||^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x'|)(x')^\gamma dx.
\]
After changing the order of integration in J_2 we have

$$J_2 = \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}_+} \int_{E'(0,\lambda)} |Tf(x)|^p(x') \gamma dx \right) d\lambda$$

$$\leq 2^{p-1} \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} |T(f\chi_{|x'|>\lambda/2})(x)|^p(x') \gamma dx \right) d\lambda$$

$$+ \int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} |T(f\chi_{|x'|\leq\lambda/2})(x)|^p(x') \gamma dx \right) d\lambda = J_{21} + J_{22}.$$

Using the boundedness of T in $L_{p,\gamma}(\mathbb{R}^n)$ we obtain

$$J_{21} \leq \|T\|^p \int_0^\infty \psi(t) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda/2)} |f(y)|^p(y') \gamma dy \right) dt$$

$$= \|T\|^p \int_0^\infty \psi(t) \left(\int_{E'(0,\lambda/2)} \|f(\cdot, y')\|^p_{p,\mathbb{R}^{n-k}} \gamma dy' \right) dt$$

$$= \|T\|^p \int_{\mathbb{R}^{n-k}_+} \|f(\cdot, y')\|^p_{p,\mathbb{R}^{n-k}} \left(\int_0^2|y'| \psi(\lambda)d\lambda \right) (y') \gamma dy'$$

$$\leq \|T\|^p \int_{\mathbb{R}^{n-k}_+} \|f(\cdot, y')\|^p_{p,\mathbb{R}^{n-k}} \omega_1(2|y'|)(y') \gamma dy'$$

$$\leq b \|T\|^p \int_{\mathbb{R}^{n-k}_+} |f(y)|^p\omega(|y'|)(y') \gamma dy.$$

Let us estimate J_{22}. For $|x'| > \lambda$ and $|y'| \leq \lambda/2$ we have $|x'|/2 \leq |x'| - |y'| \leq 3|x'|/2$, and so

$$J_{22} \leq c_9 \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda/2)} \frac{|f(y)|}{|x-y|^{n+|\gamma|}} dy \right)^p (x') \gamma dx \right) d\lambda \leq$$

$$c_{10} \int_0^\infty \psi(\lambda) \left(\int_{E'(0,\lambda)} \int_{E'(0,\lambda/2)} \left(\int_{\mathbb{R}^{n-k}} \int_{E'(0,\lambda)} \frac{|f(y)|}{(|x'| + |x'' - y'|)^{n+|\gamma|}} (y') \gamma dy \right)^p (x') \gamma dx \right) d\lambda.$$

For $x = (x', x'') \in \mathbb{R}^{n-k}_+$ let

$$J(x', \lambda) = \int_{\mathbb{R}^{n-k}} \left(\int_{E'(0,\lambda/2)} \left(\int_{\mathbb{R}^{n-k}} \frac{|f(y)|}{(|x'| + |x'' - y''|)^{n+|\gamma|}} (y') \gamma dy \right)^p dx''$$
Using the Minkowski and Young inequalities we obtain

\[J(x', \lambda) \leq \left[\int_{E'(0, \lambda/2)} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^p \, dy'' \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(|y''| + |x'|)^{n+|\gamma|}} \right) (y')^\gamma \, dy' \right]^p \]

\[\leq \left(\int_{E'(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{(|y''| + |x'|)^{n+|\gamma|}} \right)^p \]

\[= c_3 |x'|^{-(k+|\gamma|)} \left(\int_{E'(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p \]

\[\times \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{(1 + |y'|)^{n+|\gamma|}} \right)^p \]

\[= c_4 |x'|^{-(k+|\gamma|)} \left(\int_{E'(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p. \]

Integrating in \((0, \infty) \times E'(0, \lambda)\) we get

\[J_{22} \leq c_5 \int_0^\infty \psi(\lambda) \]

\[\times \left(\int_{E'(0, \lambda)} \left(\int_{E(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p |x'|^{-(k+|\gamma|)} (x')^\gamma \, dx' \right) d\lambda \]

\[= \frac{2c_5}{p-1} \int_0^\infty \psi(\lambda)|\lambda|^{-(k+|\gamma|)} \left(\int_{E(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p d\lambda. \]

The Hardy inequality

\[\int_0^\infty \psi(\lambda)|\lambda|^{-(k+|\gamma|)} \left(\int_{E(0, \lambda/2)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma \, dy' \right)^p d\lambda \]

\[\leq C \int_{\mathbb{R}^{n-k}_{++}} \|f(\cdot, y')\|^p_{p, \mathbb{R}^{n-k}} \omega(|y'|)(y')^\gamma \, dy' \]

\[= C \int_{\mathbb{R}^{n-k}_{++}} |f(y)|^p \omega(|y'|)(y')^\gamma \, dy. \]

is valid, for \(p \in (1, \infty)\) is valid by the condition \(C \leq c' A''\), where

\[A'' \equiv \sup_{\tau > 0} \left(\int_{2\tau}^\infty \psi(t) t^{-(k+|\gamma|)p+|\gamma|+k} \, dt \right) \left(\int_0^\tau \omega^{1-p'} (t) t^{\gamma} \, dt \right)^{p-1} < \infty. \]

Note that

\[\int_{2\tau}^\infty \psi(\tau) \tau^{-(k+|\gamma|)p+|\gamma|+k} \, d\tau = (k + |\gamma|)(p-1) \int_{2\tau}^\infty \psi(\tau) \, d\tau \int_{\tau}^\infty \lambda^{-(k+|\gamma|)p+\gamma} \, d\lambda \]

\[= (k + |\gamma|)(p-1) \int_{2\tau}^\infty \lambda^{-(k+|\gamma|)p+|\gamma|} \, d\lambda \int_{2\tau}^\lambda \psi(\tau) \, d\tau \]

\[\leq (k + |\gamma|)(p-1) \int_{2\tau}^\infty \lambda^{-(k+|\gamma|)p+|\gamma|} \omega_1(\lambda) \, d\lambda. \]
Condition (b1) of the theorem guarantees that $A'' \leq (k + |\gamma|)(p - 1)A_1 < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \leq c_{11} \int_{\mathbb{R}^n_+} |f(x)|^p \omega(|x'|)(x')^\gamma dx.$$

Combining the estimates of J_1 and J_2, we get (2.14) for $\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau) d\tau$. By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (2.15). The theorem is proved. \hfill \Box

Example 2.3. Let

$$\omega(t) = \begin{cases} \frac{t^{p-1}}{(2^{\beta-p+1} + \ln p) t^\beta}, & \text{for } t \in \left(0, \frac{1}{2}\right), \\ \frac{t^{p-1}}{2^{\alpha-p+1} t^\alpha}, & \text{for } t \in \left[\frac{1}{2}, \infty\right). \end{cases}$$

$$\omega_1(t) = \begin{cases} \frac{t^{p-1}}{2^{\alpha-p+1} t^\alpha}, & \text{for } t \in \left(0, \frac{1}{2}\right), \\ \frac{t^{p-1}}{(2^{\beta-p+1} + \ln p) t^\beta}, & \text{for } t \in \left[\frac{1}{2}, \infty\right). \end{cases}$$

where $0 < \alpha < \beta < p - 1$. Then the pair $(\omega(|x'|), \omega_1(|x'|))$ satisfies the condition of Theorem 2.7.

Corollary 2.7. Let $p \in (1, \infty)$, k be a $B_{k,n}$-singular kernel and K be the corresponding operator. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and $\omega(|x'|), \omega_1(|x'|)$ be satisfied the conditions (a1), (b1). Then for the operator K the inequality (2.15) is valid.

Theorem 2.8. Let $p \in (1, \infty)$ and T be a p-admissible $B_{k,n}$-singular operators. Moreover, let $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and $\omega(|x'|), \omega_1(|x'|)$ be satisfied the conditions (a1), (c1). Then inequality (2.15) is valid.

Proof. Without loss of generality we can suppose that ω_1 may be represented by

$$\omega_1(t) = \omega_1(+\infty) + \int_0^\infty \psi(\tau) d\tau,$$

where $\omega_1(+\infty) = \lim_{t \to \infty} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0, \infty)$. In fact there exists a sequence of decreasing absolutely continuous functions ω_n such that $\omega_n(t) \leq \omega_1(t)$ and $\lim_{n \to \infty} \omega_n(t) = \omega_1(t)$ for any $t \in (0, \infty)$ (see [12], [14] for details). We have

$$\int_{\mathbb{R}^n_+} |Tf(x)|^p \omega_1(|x'|)(x')^\gamma dx = \omega_1(+\infty) \int_{\mathbb{R}^n_+} |Tf(x)|^p (x')^\gamma dx$$

$$+ \int_{\mathbb{R}^n_+} |Tf(x)|^p \left(\int_{|x'|}^\infty \psi(\tau) d\tau \right) (x')^\gamma dx$$

$$= \int_1 + \int_2.$$
If \(\omega_1(+\infty) = 0 \), then \(I_1 = 0 \). If \(\omega_1(+\infty) \neq 0 \) by the boundedness of \(T \) in \(L_{p,\gamma}(\mathbb{R}^n_{k,+}) \)

\[
J_1 \leq \|T\|^p \omega_1(+\infty) \int_{\mathbb{R}^n_{k,+}} |f(x)|^p(x')^\gamma dx
\]
\[
\leq \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega_1(|x'|)(x')^\gamma dx
\]
\[
\leq b \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(x)|^p \omega(|x'|)(x')^\gamma dx.
\]

After changing the order of integration in \(J_2 \) we have

\[
J_2 = \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^n_{k,+}} \int_{E'(0,\lambda)} |Tf(x)|^p(x')^\gamma dx \right) d\lambda
\]
\[
\leq 2^{p-1} \int_0^\infty \psi(\lambda) \left(\int_{\mathbb{R}^n_{k,+}} \int_{E'(0,\lambda)} |Tf(|x'|<2\lambda)|^p(x')^\gamma dx \right.
\]
\[
+ \int_{\mathbb{R}^n_{k,+}} \int_{E'(0,\lambda)} |Tf(|x'|\geq2\lambda)|^p(x')^\gamma dx \right) d\lambda
\]
\[
= J_{21} + J_{22}.
\]

Using the boundedness of \(T \) in \(L_{p,\gamma}(\mathbb{R}^n_{k,+}) \) we obtain

\[
J_{21} \leq \|T\|^p \int_0^\infty \psi(t) \left(\int_{\mathbb{R}^n_{k,+}} \int_{E'(0,2\lambda)} |f(y)|^p(y')^\gamma dy \right) dt
\]
\[
= \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \left(\int_0^\infty \psi(\lambda) d\lambda \right) (y')^\gamma dy
\]
\[
\leq \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega_1(|y'/2|)(y')^\gamma dy
\]
\[
\leq b \|T\|^p \int_{\mathbb{R}^n_{k,+}} |f(y)|^p \omega(|y'|)(y')^\gamma dy.
\]
Let us estimate J_{22}. For $|x'| < \lambda$ and $|y'| \geq 2\lambda$ we have $|y'|/2 \leq |x' - y'| \leq 3|y'|/2$, and so

$$J_{22} \leq c_{12} \int_0^\infty \psi(\lambda) \times \left(\int_{\mathbb{R}^{n-k}} \int_{E(0,\lambda)} \int_{\mathbb{R}^{n-k}} \int_{E(0,2\lambda)} \frac{|f(y)|(y')^\gamma dy}{(|x' - y'| + |x'' - y''|)^{n+|\gamma|}} (x')^\gamma dx \right) d\lambda \leq 2^{2n} c_{12} \int_0^\infty \psi(\lambda) \times \left(\int_{\mathbb{R}^{n-k}} \int_{E(0,\lambda)} \int_{\mathbb{R}^{n-k}} \int_{E(0,2\lambda)} \frac{|f(y)|(y')^\gamma dy}{(|x'' - y''| + |y'|)^{n+|\gamma|}} (x')^\gamma dx \right) d\lambda.$$

For $x = (x', x'') \in \mathbb{R}^n_{k, +}$ let

$$J_1(x', \lambda) = \int_{\mathbb{R}^{n-k}} \int_{E(0,2\lambda)} \int_{\mathbb{R}^{n-k}} \int_{E(0,2\lambda)} \frac{|f(y)|(y')^\gamma dy}{(|x'' - y''| + |y'|)^{n+|\gamma|}} (x')^\gamma dx'. $$

Using the Minkowski and Young inequalities we obtain

$$J_1(x', \lambda) \leq \int_{E(0,2\lambda)} \left(\int_{\mathbb{R}^{n-k}} |f(y)|^p dy \right)^{1/p} \left(\int_{\mathbb{R}^{n-k}} \frac{dy'}{|y''| + |y'|)^{n+\gamma}} (y')^\gamma dy' \right)^p \leq \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} (y')^\gamma dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(1 + |y'|)^{n+|\gamma|}} \right)^p = c_3 \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^\gamma dy' \right)^p \left(\int_{\mathbb{R}^{n-k}} \frac{dy''}{(1 + |y'|)^{n+|\gamma|}} \right)^p = c_4 \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^\gamma dy' \right)^p.$$

Integrating in $(0, \infty) \times (0, \lambda)$ we get

$$J_{22} \leq c_5 \int_0^\infty \psi(\lambda) \times \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^\gamma dy' \right)^p (x')^\gamma dx d\lambda = 2c_5 \int_0^\infty \psi(\lambda) \lambda^{k+|\gamma|} \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^\gamma dy' \right)^p d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{1+|\gamma|} \left(\int_{E(0,2\lambda)} \|f(\cdot, y')\|_{p, \mathbb{R}^{n-k}} |y'|^{-k-|\gamma|} (y')^\gamma dy' \right)^p d\lambda$$
Combining the estimates of the Hardy inequality, we obtain

$$
\leq C \int_{\mathbb{R}^n_{++}} |f(\cdot, x')|_p^p,_{\mathbb{R}^{n-k}} \omega(|x'|)(x')^\gamma dx' = C \int_{\mathbb{R}^n_{++}} |f(y)|_p^p \omega(|y'|)(y')^\gamma dy,
$$

is valid, for \(p \in (1, \infty) \) is valid by the condition \(C \leq c'B'' \), where

$$
B'' \equiv \sup_{\tau > 0} \left(\int_0^\tau \psi(t) t^{k+|\gamma|} d\tau \right) \left(\int_0^\infty \omega^{1-p'}(t) t^{-(k+|\gamma|)p' |\gamma|} dt \right)^{p-1} < \infty.
$$

Note that

$$
\int_0^\tau \psi(t) t^{k+|\gamma|} dt = (k + |\gamma|) \int_0^\tau \psi(t) dt \int_0^t \lambda^{|\gamma|} d\lambda = (k + |\gamma|) \int_0^\tau \lambda^{|\gamma|} d\lambda \int_\lambda^\tau \psi(\tau) d\tau \leq (k + |\gamma|) \int_0^\tau \omega(\lambda) \lambda^{|\gamma|} d\lambda.
$$

Condition \((c_1)\) of the theorem guarantees that \(B'' \leq B_1 < \infty\). Hence, applying the Hardy inequality, we obtain

$$
J_{22} \leq c \int_{\mathbb{R}^n_{++}} |f(x)|_p^p \omega(|x'|)(x')^\gamma dx.
$$

Combining the estimates of \(J_1 \) and \(J_2 \), we get (2.14) for \(\omega_1(t) = \omega_1(+\infty) + \int_0^\infty \psi(\tau) d\tau \). By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies (2.15). The theorem is proved.

Corollary 2.8. Let \(p \in (1, \infty) \), \(k \) be a \(B_{k,n} \)-singular kernel and \(K \) be the corresponding operator. Moreover, let \(\omega(t) \) be a weight function on \((0, \infty)\), \(\omega_1(t) \) be a positive decreasing function on \((0, \infty)\) and \(\omega(|x'|), \omega_1(|x'|) \) be satisfied the conditions \((a_1), (c_1)\). Then for the operator \(K \) the inequality (2.15) is valid.

Example 2.4. Let

$$
\omega(t) = \begin{cases}
\frac{1}{2} \ln^\nu \frac{1}{t}, & \text{for } t < d \\
(d^{-1-\alpha} \ln^\alpha \frac{d}{t})^\alpha, & \text{for } t \geq d,
\end{cases}
$$

$$
\omega_1(t) = \begin{cases}
\frac{1}{2} \ln^\beta \frac{1}{t}, & \text{for } t < d \\
(d^{-1-\lambda} \ln^\beta \frac{d}{t})^\lambda, & \text{for } t \geq d,
\end{cases}
$$

where \(\beta < \nu \leq 0 \), \(-1 < \lambda < \alpha < 0\), \(d = e^\beta\). Then the pair \((\omega(|x'|), \omega_1(|x'|))\) satisfies the condition of Theorem 2.8.

References

[24] I.A. Kipriyanov and M.I. Klyuchantsev, On singular integrals generated by the

[28] J. L"ofstrom, J. Peetre, Approximation theorems connected with generalized trans-

[29] L.N. Lyakhov, On a class of spherical functions and singular pseudodifferential op-

Vagif S. Guliyev

Department of Mathematics, Ahi Evran University, Kirsehir, Turkey and Institute of Mathematics and Mechanics of NAS of Azerbaijan,
9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: vagif@guliyev.com

Fatai A. Isayev

Institute of Mathematics and Mechanics of NAS of Azerbaijan,
9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: isayevfatai@yahoo.com

Zaman V. Safarov

Institute of Mathematics and Mechanics of NAS of Azerbaijan,
9. F. Agayev str., AZ1141, Baku, Azerbaijan

E-mail address: szaman@rambler.ru

Received: April 4, 2014; Revised: June 8, 2014; Accepted: June 9, 2014