Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 40, Number 2, 2014, Pages 22-33

MULTI-SUBLINEAR FRACTIONAL MAXIMAL OPERATOR
AND MULTILINEAR FRACTIONAL INTEGRAL OPERATORS
ON GENERALIZED MORREY SPACES

VAGIF S. GULIYEV AND AFAG F. ISMAYILOVA

Abstract. In this paper the authors study the boundedness of multi-
sublinear fractional maximal operator M, ,, and multilinear fractional
integral operators I, ,, on product generalized Morrey spaces M,,, o, (R™)x
X My, o, We find the sufficient conditions on (¢1,...,¢m,®)
which ensures the boundedness of the operators M, ,, and I, ., from
Mp, o (R") X ..o X My, o to Mg In all cases, the conditions for
the boundedness of M, ,,, are given in terms of supremal type inequalities

on (¢1,-..,9m,¥) and the conditions for the boundedness of I, are
given in terms of Zygmund-type integral inequalities on (1, ..., ©m, ),
which do not assume any assumption on monotonicity of ¢1,...,om, ¥
in 7.

1. Introduction

Multilinear Calderén-Zygmund theory is a natural generalization of the linear
case. The initial work on the class of multilinear Calderon-Zygmund operators
was done by Coifman and Meyer in [4] and was later systematically studied by
Grafakos and Torres in [8]-[10].

Let R™ be the n-dimensional Euclidean space, and let (R™)" = R" x...xR" be
the m-fold product space (m € N). For x € R" and r > 0, we denote by B(x,r)

the open ball centered at x of radius r, and by ‘B (z,7) denote its complement.
Let |B(x,r)| be the Lebesgue measure of the ball B(x,r). We denote by 7 the
m-tuple (f1, fo,..., fm), Y = (y1,-..,Yyn) and dy = dyi - - dyn.

The multilinear theory has been well developed in the past twenty years. In
1992, Grafakos [6] first study the following multilinear integrals, defined by

(@) = [ e =0 fu (@ = ),

where 0;(i = 1,...,m) are fixed distinct and nonzero real numbers and 0 < 5 < n.
Grafakos proved that the operator I')* is bounded from Ly, (R™) x ... x L, (R")
to Ly(R™) with 0 < 1/¢ =1/p1 + ...+ 1/pm — B/n < 1, which can be regarded
as an extension result for the classical fractional integral on Lebesgue spaces.
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In [14, 15] was proved a certain O’Neil type inequality for dilated multi-linear
convolution operators, including permutations of functions. This inequality was
used to extend Grafakoss result [6] to more general multi-linear operators of
potential type and the relevant maximal operators.

Let f € LJZDOIC(R”) X ... X Léomc (R™). The multi-sublinear fractional maximal
operator My, is defined by

Mam? =sup|B(x,r)|» yi)dy;, 0<a<nm.
(@) = sup| H|erg<m> i)

In 1999, Kenig and Stein [17] studied the following multilinear fractional inte-

gral,
Ia,m(?)(x) = / i (yl) — fm(ym) —dy1dys . . . dym,

(Rm)™ ‘(1" — Y., T ym)|nm @

and showed that I, ,,, is bounded from product Ly, (R™) x Ly, (R™) x...x L, (R™)
to Lg(R™) with 1/¢ = 1/p1+...+1/ppm—B/n > 0foreach p; > 1(: =1,...,m). If
some p; = 1, then I, ,, is bounded Ly, (R™)x Ly, (R™) x...x Ly, (R™) to Lg oo (R™).
Obviously, the multilinear fractional integral I, ,, is a natural generalization of
the classical fractional integral I, = I, 1.

In this work, we prove the boundedness of the multi-sublinear fractional maxi-
mal operator M, ,, and multilinear fractional integral operators Ty, ,, from prod-
uct generalized Morrey space Mp, o X ... XMy o to Mg, if 1 <p1,...,pm <
ocand 1/g=1/p1+--+1/pm—a/n, and from the space My, o, X...xMp o
to the weak space WMM,, ifl1<pi,....,pm<oo,1/g=1/p1+---+ 1/pm —a/n
and at least one p; equals one.

By A < B we mean that A < C'B with some positive constant C' independent
of appropriate quantities. If A < B and B < A, we write A ~ B and say that A
and B are equivalent.

2. Generalized Morrey spaces

In the study of local properties of solutions to of partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces M, x(R") play an im-
portant role, see [5], [18]. Introduced by C. Morrey [20] in 1938, they are defined
by the norm

_a
11,0 = Sup T P fll L, (Br))s

where 0 < A <n, 1 <p < oo.
We also denote by W M), 5 the weak Morrey space of all functions f & WL]lDOC (R™)
for which

2
Ifllwag,, = sup 7 2 [fllwe, (B < oo
A LeRn, 10

where W L,, denotes the weak L,-space.
We find it convenient to define the generalized Morrey spaces in the form as
follows.
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Definition 2.1. Let ¢(z,7) be a positive measurable function on R™ x (0, 00)
and 1 < p < co. We denote by My, , = M,, ,(R") the generalized Morrey space,
the space of all functions f € L;,OC (R™) with finite quasinorm

1
1ty = sup () [Ba, )| 7 | fll L, ()
zeR™,r>0
Also by WM, , = WM, ,(R") we denote the weak generalized Morrey space of
all functions f € WLP¢(R™) for which

_1
Ifllwa,, = sup  @(@,r) " [Bz,r)| 7 | flwe, B < oo
z€R™,r>0

According to this definition, we recover the spaces M,y and WM, \ under
A—n
the choice ¢(x,r) =7r » :

My = My | .

pler)=r 7

WMP7A = WMPv‘P A—n .

e(zr)=r P
In [21], the following condition was imposed on ¢(z,7):
¢ lo(a,r) < p(z,t) < cpla,r) (2.1)
whenever r < t < 2r, where ¢(> 1) does not depend on t, r and z € R", jointly
with the condition:

o dt
| eretwtyt < crr oy, (2.2

for the fractional maximal operator or fractional integral operator, where C'(> 0)
does not depend on r and z € R".
In [21] the following statements were proved.

Theorem 2.1. 21] Let0 < a<n, 1 <p< 2, é = % — % and @(z,r) satisfies

the conditions (2.1)-(2.2). Then for p > 1 the operators M, and I, are bounded
from M, ,(R™) to My ,(R™) and for p =1 from M ,(R"™) to WM, ,(R").

The following statement, containing results obtained in [19], [21] was proved
in [11] (see also [12, 13, 22]).

Theorem 2.2. Let0 <a<n, 1 <p<g, % — % and (¢1,p) satisfies the

condition - o
/ t¢ gol(a:,t)T < Cop(x,r), (2.3)

where C does not depend on x and r. Then the operators M, and I, are bounded
from My, to My, for p>1 and from M, ,, to WM, forp=1.

The following statements, containing results Theorems 2.1 and 2.2 was proved
in [1], see also [16].

Theorem 2.3. Let 0 < a<n, 1 <p< 2z, % = % — % and (p1,9) satisfy the
condition .
et SR
sup 7 < Co(z,r), (2.4)
r<t<oo ta
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where C' does not depend on x and r. Let the operator M, is bounded from M, .,
to My, forp>1 and from M, ,, to WMy, forp=1.

Theorem 2.4. Let 0 < a <n, 1 <p< 2, % = ;1) — % and (p1,¢) satisfy the
condition .
0 §§s<inf v1(x,s)s»
s§<O0
/T e dt < Co(x,r), (2.5)

where C' does not depend on x and r. Let the operator 1, is bounded from M, ,,
to My, for p>1 and from M, ,, to WMy, for p=1.

Remark 2.1. 1t is obvious that if condition (2.3) holds, then condition (3.5) holds
too. In general, condition (3.5) does not imply condition (2.3). For example, the
functions

1 _n n
p1(r) = ———=—5, walr) =7 a(1+77), 0<B <=
X(lm)(r)rp p

satisfy condition (3.5) but do not satisfy condition (2.3) (see [16]).

3. The multi-sublinear fractional maximal operator in the
product spaces M, , (R") x ... x M, ., (R")

Let v be a weight. We denote by L ,(0,00) the space of all functions g(¢),
t > 0 with finite norm

1911 L. (0,00) = sup v(£)]g(t)]
>0

and Lo (0,00) = Loo,1(0,00). Let M(0, 00) be the set of all Lebesgue-measurable
functions on (0,00) and 9T (0,00) its subset of all nonnegative functions on
(0,00). We denote by 97(0, 0o0;1) the cone of all functions in M (0, 00) which

are non-decreasing on (0, c0) and

A= {go € Mt (0,00; 1) : t£%1+@(t) = 0} .

Let u be a continuous and non-negative function on (0, c0). We define the supre-
mal operator S, on g € M(0,00) by

(Sug)(t) = lu gl Loy (t,00)» T € (0,00).
The following theorem was proved in [2].

Theorem 3.1. Let vy, vo be non-negative measurable functions satisfying 0 <
V1] Lo (,00) < 00 for any t > 0 and let u be a continuous non-negative function

on (0,00). Then the operator Sy is bounded from Lo, (0,00) t0 Loo1,(0,00) on
the cone A if and only if

Hw?u (||U1||Z;(‘7OO)) HLOO(O,oo) < 00. (3.1)

In this section, we will prove the boundedness of multi-sublinear maximal oper-
ators on product generalized Morrey space, first we prove the following theorem.
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Theorem 3.2. Let 1 < p1,...,pm < 00 and 0 < a < mn with 1/q = 1/p1 +
+1/pm — a/n and o = 37" a; where each «; satisfies 0 < a; < z%' Then,
for 1 <pi,...,pm < 0o the inequality

| Mam(F)lly(eory S 70 [Tzup e N ill o (3.2)
holds for any ball B(xo,r) and for all 7 € Ll"C (R™) x ... x Lé‘: (R™).
Moreover, if at least one p; equals one, the mequalzty
M ryote0rn S5 [T F Uil oty 39
=1

holds for any ball B(xo,r) and for all ? € LI(R™) x ... x Lle¢(R™).

Proof. 1 <pi1,...,pm <ocand 1/p=1/p; +---+ 1/py,. For arbitrary xg € R,
set B = B(xo,r) for the ball centered at xg and of radius r, 2B = B(xo, 2r). We

represent f as
=8+ f)="fixes, [°= fixegpy J=1L...,m. (3.4)

Thus for y € B(xzg,r) we get
1
[ 1)+ 12l
O Sy,

Moum(} )(y) :St1>lg)|B(l’,t)‘ﬁ lel <|B

. 1 . 1

n || S Y(z)|dz + ——— > (2;)|dz;
Sigl{j)'B(m’t)‘ P <|B(y>t)| /B@,t)'fZ ()ldz: + |B(y, )| JB(y.t) £zl Z)

< sup|B(z, )| (HAB(y, > + sup |B(z, )| (Z Apyn fi "'AB(yJ)fE{")
>0 >0
= Li(y) + I2(y),
where f£1,...,8n € {0,00} and each term in the sum )’ contains at least one
Bi; = 1, and where we denote
1

B(yvt)fl |B(y,t)’ B(y’t) ’fz ( )|

By the boundedness of My, @ Ly, (R™) x ... x L, (R"™) = Ly,(R™) we have

1531 50wy < 1 Mam(FO (5o

< CH 1£20 L, @) = C T fillz,, (B2
j =1

< Cra HSUpt ”Z||fz\|Lp B(wo,t)
i=1 t>2

To treat the term Iz(y), we first consider the case 1 = ffa = ... = B, = 0

Let y be an arbitrary point from B. If B(y,t)N C(ZB) # (), then t > r. Indeed,
if z; € B(y, t)N U(ZB), then t > |y — 2| > | — 2| — |z —y| > 2r —r = r for
t=1,.
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On the other hand, B(y,t) N C(2B) C B(z,2t). Indeed, z; € B(y,t) N E(QB),
then we get |zo — 2| < |y — zi| + |zo —yi| <t+r <2tfori=1,...,m.

sup|B(z,t)|n Apyn [ Apya 32

t>0
m
—sup | B(, |3 / i)l
t>0 ;l_llz |B CB (z0,27) o '

m

< 2"M=%gqup | B(zg, 2t)| d
<2 e B 20 ] Mt‘/mt (el

< 2" sup | B(xo, t)|» H / | fi(zi)|dz;
.'130, | xot

t>2r
m
< fgﬁ[[t b il (Beos)-
Therefore, for all y € B we have

m
sup | B(z, t)|» Ap(y [7° - Apafo S sup Htai_’; 1fill 2, (B(zo.t))-
t>0 t>2r i1

Then

m
[sup |B(x,t)|» Apn fi°- . Apga fosllr,m Sreosup [t T 1 fill,, (B(o.t)
t>0 t>2ri:1

For the case that ;1 = --- = j = 0 for some {j1,...,jl} C {1,...,m} where
1 <1 < m, we only consider the case 1 = oo since the other ones follow in

analogous way. Note that

Sup |B(x,t)|» Ay f7° - Apa o

< sup A il (5o ) M S3(0) - Moy f3,0)
Then combine the estimates above we can easily get that

| sup 1Bz, t)|" Apgyn [T Ay f5 - A follL.(B)

m

S sup TP fill L, (Blaow) H 1Mo, |z, (B)
t>2r i—2
m

< ra 158;121) tal_HHflanl(B(;ro,t H <‘B|qz tsupt T ||fZQ||Lpi(B(xo,t)))
r =2

- Lot
~ tS;lI;t o Hfl\\Lpl(B(xo,t))gm tsilgt " fillz,, (B(xo.2r))

< rq H supt i Hfz”Lp B(zo,t))"
=12
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Hence we have obtained
||Ma,m(7)”Lp(B) < |llz, ) + 2/l B)

m
n
Sra [ supt™ ”lelelL,, B(zo.t)
im t>2r

Thus we obtain (3.2).

For the case that at least one p; equals one, repeat the estimates above and note
that ? — Mam(?) is boundedness from LP'(R™) x --- x LPm(R"™) to LP>°(R"),
the proof of (3.3) can be treated similarly and we omit the details here.

O

Next we give the boundedness of multilinear fractional maximal operator ? —
My ( f) on product generalized Morrey space.

Theorem 3.3. Let 1 < p1,...,pym <00 and 0 < o < mn with 1/g=1/p1+...+
1/pm —a/n and a = > o where each o; satisfies 0 < oy < z%' Suppose that
(p1,p2) satisfies the condition

m ess inf p;(z ,s)s?ﬁi
sup =S < OY(a,7), (3.5)
q

i1 r<t<oo tai

where C' does not depend on x and r. Then, if all p; > 1, it follows

1M (Pt < ClA I 1 Ll Ay
and if at least one p; = 1, it follows

IIMa,m(%HWMq,w < COllfillamy, or - 1 fml My, om
with the constant C independent of 7

Proof. Let 1 <pi1,...,pm <ocowith 1/p=1/p1+...+1/p,, and ? € My, o1 X
. X Mp,. o1~ By Theorems 3.1 and 3.2 we obtain

Mo Dty s = sup @) [ Mam( Pl (Br)

z€R™, r>0
m

_1
sup [ (@) sup % | fills, peon
zeR™, r>0- 1 t>2r

N

5 sup HSOZ €z T)rlefl”Lpl B(z,r))
zeR" »m>05_7

= s HHflllMpl,m"'Hfm||Mpm,gom
zeR™,

by (3.5), which completes the proof for 1 <pi,...,pm <ocand 0 < a < mn
with 1/g=1/p1+ ...+ 1/pm — a/n.

For p; = 1 and f; € My, (i = 1,...,m), by the definition of M;, and a
similar argument as before we can get

| Mam( )Wty < ClE My 01 - [ Fonll My o



MULTI-SUBLINEAR FRACTIONAL MAXIMAL OPERATOR ... 29

The theorem has been proved. ]

Remark 3.1. Note that in the case m = 1 Theorems 3.2 and 3.3 were proved in
[1] (see also [16]). Theorem 3.3 do not impose the pointwise doubling condition
(2.1) and (2.2). In the case ¢i(x,7) = pa(z,7) = @(z, ) Theorem 3.3 containing
the results Theorem 2.1.

4. The multilinear fractional integral operators in the product
spaces M, ., (R") x ... x M, . (R")

In this section we are going to use the following statement on the boundedness
of the Hardy operator

(Hg)(t) := 1/0 g(r)dr, 0 <t < oo.

Theorem 4.1. ([3]) The inequality

ess supw(t)Hg(t) < cess supv(t)g(t)
t>0 >0

holds for all non-negative and non-increasing g on (0,00) if and only if

t)y [t d
A :=sup w(t) / r < 00,
>0 t Jo esssupuv(s)

0<s<r

and c = A.

In this section, we will prove the boundedness of multilinear singular inte-
gral operators on product generalized Morrey space, first we prove the following
theorem.

Theorem 4.2. Let 1 < py1,...,pm < 00 and 0 < a < mn with 1/qg = 1/p1 +
+1/pm —a/n and o = )", a; where each o satisfies 0 < a; < [%. Then,
for 1 <pi,...,pm < oo the inequality

0 1 Ooai—l—l
|ua,m<7>||Lq(B(m,r>)srqH / TR Bl saomdt (A1)

holds for any ball B(xo,r) and for all 7 € Lloc (R™) x ... x Lé‘ig (R™).

Moreover, if at least one p; equals one, the mequalzty
Maim (Pl oGz S 75 H / O il ot (42)

holds for any ball B(xo,r) and for all ? € Ll"c (R™) x ... x Lé‘iz (R™).

Proof. We just consider the case p; > 1 for i = 1,...,m and write f; = f° + f.
Then we split I%m(?) as follows

Lo (F)@) = Tagn(f0 o 2@ + S0 a2, fom) (@),
B1sesBm
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where (1,...,m € {0,00} and each term of Z, contains at least 3; # 0. Then,

Mam(F ey 5y < Ham (e eos M s + 11 3 Tam (oo £ By

/817--'76771
<I+1II

For I, by the boundedness of I, from product L, (R") x ... x L, (R") to
Ly(R™), 0 < o < mn with 1/g = 1/p1 + ...+ 1/ppm — a/n for each p; > 1(i =
1,...,m), we have,

Mo Oz 5wy < om0 2@

SHHinHLpl R™) /\JHHfZHLpZ B(z,2r))*
=1

Taking into account that

oo
PR | .
1 fill L, B2y S 7% /27« T | fillz,, (Beapdt, i =1,...,m (4.3)
we get
% < = - > a;—7-—1
o (PO, @y S]] , e i fillz, (B dt (4.4)
i=17°"
For I1, first we consider the case 51 =--- = B, = ©

When |z — y;| <7, |z — y;| > 2r, we have 1|z — y;| < |z — g < 3|2 — y;|, and
so we get

res / |f1(w1) - o (ym)]
Iam SJ m — d
[Lam (f7)(2)] (CB(xQT)) (x—y1,..., o — )| 7
| fi(yi)]
< ——= _dy;
H/B(w2r ’1‘7 |n i Y
and
Moo () 25 H / e T DXl

5r’3H/ A
. |3B(ac,2r) |‘T - yl| !

=1
By Fubini’s theorem we have

| fi(yi)| / o0 dt
T —dy; = | fi(yi)] —dy;
/”Bu,zr) & — il Bz, 2r) fwo—ys| 1"

> dt
~ | fi(yi)|dyi ——
Lr Lr<|xoyi|<t o Ztn @itl

o0 dt
S filyi)|dy; ———.
I /Bm,ﬂ’ (w0l

Applying Hélder’s inequality, we get
Ji(yi R |
/DB( |(|3|adyz St | fille,, (Bey)dt- (4.5)

x,2r) |l’ —Yi 2r



MULTI-SUBLINEAR FRACTIONAL MAXIMAL OPERATOR ... 31

Moreover, for all p; € [1,00), i = 1,...,m the inequality

nrr [ e
\\Ia,m(ﬁ)!!Lq(B(x,r)) Sre H/2 e | fillz,, (Bay)dt (4.6)
i=174"

is valid.
Next we consider the case that some 3; = 0 and other 3; = oo. To this end
we may assume that f; = o = 0o and 3 = --- = B, = 0. Recall the fact that

|z — yi| = |z — y;| for z € B(x,r) and y; € EB(:zc,27“), we have that
Lo (f7%, 15°, £3, - f) (2)

|J1(y1)|‘f2(92) /
< B x,2r — —|— — « f d
~ y ayQ i yl yl
/ ( )X B127 {‘$ yl| |{E y2|}mn H ‘ |

B(z,2r)

|f1(y1)l / )l /
S diy reer fi(yi)|dyi-
ﬁB(a},Zr) ’33 - yl’n_al CB(x 2r) ‘x - yQ‘n a2 H B(x,2r) ’ ( )‘

By the inequalities (4.3), (4.5) and use the Holder’s inequality for integrals,
[ Tam(f22, 52, 15 - ol Ly (B )

- |f1(y1)] / | f2(12)] noo
N TR TS | T
|l‘—y1|nfa1 Y1 |m—y2|"*°‘2 y2iH3 HfHLp 2r))
Ba2r) *B(a.2r)
n f1(y1)] / ) / -
= / To -y TE £ oyt
o — oo ! AT H N fille,, 2
‘p B(x,2r) EB(x,Qr)

<rqH/ T il syt

For the proof of the inequality (4.2), by a similar argument as in the proof of

(4.1) and pay attention to the fact that 7 — Iam(?) is bounded from Ly, (R™) x
- x Ly, (R™) to WL4(R™), we can similarly prove (4.2) and we omit the details
here. O

Now we give the boundedness of multilinear fractional integral operators on
product generalized Morrey space.

Theorem 4.3. Let 1 <pi,...,pm <00 and 0 < o < mn with 1/g=1/p1+...+
1/pm —a/n and a = > | o where each o; satisfies 0 < o < p%. Suppose that
(@15, Pm, ) satisfies the condition

oo €88 1 inf p;(x s)spz
H / e S (). (4.7)

Then the operator 1o m, is bounded from product space My, o (R™)x. .. XM o, (R"™)
to My (R™) forp; > 1,i=1,...,m, and from product space My, , (R™) x ... x
My, om(R") to WMy (R™) forp; >1,i=1,...,m
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Proof. Let 1 < p1,...,pm < 0o and ? € My, o(R") x ... x M, ».(R"). By
Theorems 4.1 and 4.2 we have

- 1 [ e
p [ ’"/ e r | fillny, (Bay)dt

su
z€R™,r>0 i—1 r

oo (F)llnt, S

m
< sup gpfl T, T rpﬂi fill .
xeRn,r>og i (w,r) 1 fill L, (B@)

m
LTI 1 - 1l Ay e
i=1

When p; = 1,7 =1,...,m, the proof is similar and we omit the details here. [

Remark 4.1. As shown in [16], the condition (3.5) is weaker than (4.7): the latter
implies the former, in particular, the functions

1 _n
Spl(r)_ £,5.7i:17-~~7m7 ¢<T):T q(1+7aﬁ)70<ﬂ<%

X (1,00 (T)TP8

satisfy condition (3.5) but do not satisfy condition (4.7).
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