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MULTI-SUBLINEAR FRACTIONAL MAXIMAL OPERATOR

AND MULTILINEAR FRACTIONAL INTEGRAL OPERATORS

ON GENERALIZED MORREY SPACES

VAGIF S. GULIYEV AND AFAG F. ISMAYILOVA

Abstract. In this paper the authors study the boundedness of multi-
sublinear fractional maximal operator Mα,m and multilinear fractional
integral operators Iα,m on product generalized Morrey spacesMp1,ϕ1

(Rn)×
. . . × Mpm,ϕm

. We find the sufficient conditions on (ϕ1, . . . , ϕm, ϕ)
which ensures the boundedness of the operators Mα,m and Iα,m from
Mp1,ϕ1(Rn) × . . . ×Mpm,ϕm to Mq,ψ. In all cases, the conditions for
the boundedness ofMα,m are given in terms of supremal type inequalities
on (ϕ1, . . . , ϕm, ψ) and the conditions for the boundedness of Iα,m are
given in terms of Zygmund-type integral inequalities on (ϕ1, . . . , ϕm, ϕ),
which do not assume any assumption on monotonicity of ϕ1, . . . , ϕm, ψ
in r.

1. Introduction

Multilinear Calderón-Zygmund theory is a natural generalization of the linear
case. The initial work on the class of multilinear Calderon-Zygmund operators
was done by Coifman and Meyer in [4] and was later systematically studied by
Grafakos and Torres in [8]-[10].

Let Rn be the n-dimensional Euclidean space, and let (Rn)m = Rn×. . .×Rn be
the m-fold product space (m ∈ N). For x ∈ Rn and r > 0, we denote by B(x, r)

the open ball centered at x of radius r, and by
{
B(x, r) denote its complement.

Let |B(x, r)| be the Lebesgue measure of the ball B(x, r). We denote by
−→
f the

m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , yn) and d−→y = dy1 · · · dyn.
The multilinear theory has been well developed in the past twenty years. In

1992, Grafakos [6] first study the following multilinear integrals, defined by

Imα (
−→
f )(x) =

∫
Rn

1

|y|n−α
f1 (x− θ1y) . . . fm (x− θmy) dy,

where θi(i = 1, . . . ,m) are fixed distinct and nonzero real numbers and 0 < β < n.
Grafakos proved that the operator Imα is bounded from Lp1(Rn)× . . .×Lpm(Rn)
to Lq(Rn) with 0 < 1/q = 1/p1 + . . . + 1/pm − β/n < 1, which can be regarded
as an extension result for the classical fractional integral on Lebesgue spaces.
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In [14, 15] was proved a certain O’Neil type inequality for dilated multi-linear
convolution operators, including permutations of functions. This inequality was
used to extend Grafakoss result [6] to more general multi-linear operators of
potential type and the relevant maximal operators.

Let
−→
f ∈ Llocp1 (Rn) × . . . × Llocpm(Rn). The multi-sublinear fractional maximal

operator Mα,m is defined by

Mα,m(
−→
f )(x) = sup

r>0
|B(x, r)|

α
n

m∏
j=1

1

|B(x, r)|

∫
B(x,r)

fi(yi)dyi, 0 ≤ α < nm.

In 1999, Kenig and Stein [17] studied the following multilinear fractional inte-
gral,

Iα,m(
−→
f )(x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

|(x− y1, . . . , x− ym)|nm−α
dy1dy2 . . . dym,

and showed that Iα,m is bounded from product Lp1(Rn)×Lp2(Rn)×. . .×Lpm(Rn)
to Lq(Rn) with 1/q = 1/p1+. . .+1/pm−β/n > 0 for each pi > 1(i = 1, . . . ,m). If
some pi = 1, then Iα,m is bounded Lp1(Rn)×Lp2(Rn)×. . .×Lpm(Rn) to Lq,∞(Rn).
Obviously, the multilinear fractional integral Iα,m is a natural generalization of
the classical fractional integral Iα ≡ Iα,1.

In this work, we prove the boundedness of the multi-sublinear fractional maxi-
mal operator Mα,m and multilinear fractional integral operators Tα,m from prod-
uct generalized Morrey spaceMp1,ϕ1× . . .×Mpm,ϕm toMq,ϕ, if 1 < p1, . . . , pm <
∞ and 1/q = 1/p1+ · · ·+1/pm−α/n, and from the spaceMp1,ϕ1× . . .×Mpm,ϕm

to the weak space WM1,ϕ, if 1 ≤ p1, . . . , pm <∞, 1/q = 1/p1 + · · ·+ 1/pm−α/n
and at least one pi equals one.

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that A
and B are equivalent.

2. Generalized Morrey spaces

In the study of local properties of solutions to of partial differential equations,
together with weighted Lebesgue spaces, Morrey spaces Mp,λ(Rn) play an im-
portant role, see [5], [18]. Introduced by C. Morrey [20] in 1938, they are defined
by the norm

‖f‖Mp,λ
:= sup

x, r>0
r
−λ
p ‖f‖Lp(B(x,r)),

where 0 ≤ λ < n, 1 ≤ p <∞.
We also denote byWMp,λ the weak Morrey space of all functions f ∈WLloc

p (Rn)
for which

‖f‖WMp,λ
= sup

x∈Rn, r>0
r
−λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp denotes the weak Lp-space.
We find it convenient to define the generalized Morrey spaces in the form as

follows.
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Definition 2.1. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞)
and 1 ≤ p <∞. We denote by Mp,ϕ ≡Mp,ϕ(Rn) the generalized Morrey space,

the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of

all functions f ∈WLloc
p (Rn) for which

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.

According to this definition, we recover the spaces Mp,λ and WMp,λ under

the choice ϕ(x, r) = r
λ−n
p :

Mp,λ =Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
,

WMp,λ = WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p
.

In [21], the following condition was imposed on ϕ(x, r):

c−1ϕ(x, r) ≤ ϕ(x, t) ≤ c ϕ(x, r) (2.1)

whenever r ≤ t ≤ 2r, where c(≥ 1) does not depend on t, r and x ∈ Rn, jointly
with the condition: ∫ ∞

r
tαp ϕ(x, t)p

dt

t
≤ C rαp ϕ(x, r)p, (2.2)

for the fractional maximal operator or fractional integral operator, where C(> 0)
does not depend on r and x ∈ Rn.

In [21] the following statements were proved.

Theorem 2.1. [21] Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n and ϕ(x, r) satisfies

the conditions (2.1)-(2.2). Then for p > 1 the operators Mα and Iα are bounded
from Mp,ϕ(Rn) to Mq,ϕ(Rn) and for p = 1 from M1,ϕ(Rn) to WMq,ϕ(Rn).

The following statement, containing results obtained in [19], [21] was proved
in [11] (see also [12, 13, 22]).

Theorem 2.2. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n and (ϕ1, ϕ) satisfies the

condition ∫ ∞
r

tα ϕ1(x, t)
dt

t
≤ C ϕ(x, r), (2.3)

where C does not depend on x and r. Then the operators Mα and Iα are bounded
from Mp,ϕ1 to Mq,ϕ for p > 1 and from Mp,ϕ1 to WMq,ϕ for p = 1.

The following statements, containing results Theorems 2.1 and 2.2 was proved
in [1], see also [16].

Theorem 2.3. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n and (ϕ1, ϕ) satisfy the

condition

sup
r<t<∞

ess inf
t<s<∞

ϕ1(x, s)s
n
p

t
n
q

≤ C ϕ(x, r), (2.4)
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where C does not depend on x and r. Let the operator Mα is bounded from Mp,ϕ1

to Mq,ϕ for p > 1 and from Mp,ϕ1 to WMq,ϕ for p = 1.

Theorem 2.4. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n and (ϕ1, ϕ) satisfy the

condition ∫ ∞
r

ess inf
t<s<∞

ϕ1(x, s)s
n
p

t
n
q
+1

dt ≤ C ϕ(x, r), (2.5)

where C does not depend on x and r. Let the operator Iα is bounded from Mp,ϕ1

to Mq,ϕ for p > 1 and from Mp,ϕ1 to WMq,ϕ for p = 1.

Remark 2.1. It is obvious that if condition (2.3) holds, then condition (3.5) holds
too. In general, condition (3.5) does not imply condition (2.3). For example, the
functions

ϕ1(r) =
1

χ
(1,∞)

(r)r
n
p
−β , ϕ2(r) = r

−n
q
(
1 + rβ

)
, 0 < β <

n

p

satisfy condition (3.5) but do not satisfy condition (2.3) (see [16]).

3. The multi-sublinear fractional maximal operator in the
product spaces Mp1,ϕ1(Rn)× . . .×Mpm,ϕm(Rn)

Let v be a weight. We denote by L∞,v(0,∞) the space of all functions g(t),
t > 0 with finite norm

‖g‖L∞,v(0,∞) = sup
t>0

v(t)|g(t)|

and L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable
functions on (0,∞) and M+(0,∞) its subset of all nonnegative functions on
(0,∞). We denote by M+(0,∞;↑) the cone of all functions in M+(0,∞) which
are non-decreasing on (0,∞) and

A =

{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞). We define the supre-
mal operator Su on g ∈M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [2].

Theorem 3.1. Let v1, v2 be non-negative measurable functions satisfying 0 <
‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative function

on (0,∞). Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on
the cone A if and only if∥∥∥v2Su (‖v1‖−1L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞. (3.1)

In this section, we will prove the boundedness of multi-sublinear maximal oper-
ators on product generalized Morrey space, first we prove the following theorem.
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Theorem 3.2. Let 1 ≤ p1, . . . , pm < ∞ and 0 < α < mn with 1/q = 1/p1 +
. . . + 1/pm − α/n and α =

∑m
i=1 αi where each αi satisfies 0 < αi <

n
pi

. Then,

for 1 < p1, . . . , pm <∞ the inequality

‖Mα,m(
−→
f )‖Lq(B(x0,r)) . r

n
q

m∏
i=1

sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,t)) (3.2)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (Rn)× . . .× Llocpm(Rn).

Moreover, if at least one pi equals one, the inequality

‖Mα,m(
−→
f )‖WLq(B(x0,r)) . r

n
q

m∏
i=1

sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,t)) (3.3)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (Rn)× . . .× Llocpm(Rn).

Proof. 1 < p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm. For arbitrary x0 ∈ Rn,
set B = B(x0, r) for the ball centered at x0 and of radius r, 2B = B(x0, 2r). We
represent f as

fj = f0j + f∞j , f0j = fjχ2B, f∞j = fjχ {
(2B)

, j = 1, . . . ,m. (3.4)

Thus for y ∈ B(x0, r) we get

Mα,m(
−→
f )(y) = sup

t>0
|B(x, t)|

α
n

m∏
i=1

(
1

|B(y, t)|

∫
B(y,t)

|f0i (zi) + f∞i (zi)|dzi

)

≤ sup
t>0
|B(x, t)|

α
n

m∏
i=1

(
1

|B(y, t)|

∫
B(y,t)

|f0i (zi)|dzi +
1

|B(y, t)|

∫
B(y,t)

|f∞i (zi)|dzi

)

≤ sup
t>0
|B(x, t)|

α
n

(
m∏
i=1

AB(y,t)f
0
i

)
+ sup

t>0
|B(x, r)|

α
n

(∑
′AB(y,t)f

β1
1 · · ·AB(y,t)f

βm
m

)
= I1(y) + I2(y),

where β1, . . . , βm ∈ {0,∞} and each term in the sum
∑ ′ contains at least one

βi = 1, and where we denote

AB(y,t)f
βi
i =

1

|B(y, t)|

∫
B(y,t)

|fβii (zi)|dzi.

By the boundedness of Mα,m : Lp1(Rn)× . . .× Lpm(Rn)→ Lq(Rn) we have

‖I1‖Lq(B(x0,r)) ≤ ‖Mα,m(
−→
f 0)‖Lq(B(x0,r))

≤ C
m∏
i=1

‖f0i ‖Lpi (Rn) = C

m∏
i=1

‖fi‖Lpi (B(x0,2r))

≤ Cr
n
q

m∏
i=1

sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).

To treat the term I2(y), we first consider the case β1 = β2 = . . . = βm =∞.

Let y be an arbitrary point from B. If B(y, t)∩ {
(2B) 6= ∅, then t > r. Indeed,

if zi ∈ B(y, t) ∩ {
(2B), then t > |y − zi| ≥ |x − zi| − |x − y| > 2r − r = r for

i = 1, . . . ,m.
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On the other hand, B(y, t) ∩ {
(2B) ⊂ B(x0, 2t). Indeed, zi ∈ B(y, t) ∩ {

(2B),
then we get |x0 − zi| ≤ |y − zi|+ |x0 − yi| < t+ r < 2t for i = 1, . . . ,m.

sup
t>0
|B(x, t)|

α
n AB(y,t)f

∞
1 . . . AB(y,t)f

∞
m

= sup
t>0
|B(x, t)|

α
n

m∏
i=1

1

|B(y, t)|

∫
B(y,t)∩ {B(x0,2r)

|fi(zi)|dzi

≤ 2nm−α sup
t>r
|B(x0, 2t)|

α
n

m∏
i=1

1

|B(x0, 2t)|

∫
B(x0,2t)

|fi(zi)|dzi

≤ 2nm−α sup
t>2r
|B(x0, t)|

α
n

m∏
i=1

1

|B(x0, t)|

∫
B(x0,t)

|fi(zi)|dzi

. sup
t>2r

m∏
i=1

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).

Therefore, for all y ∈ B we have

sup
t>0
|B(x, t)|

α
n AB(y,t)f

∞
1 . . . AB(y,t)f

∞
m . sup

t>2r

m∏
i=1

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).

Then

‖ sup
t>0
|B(x, t)|

α
n AB(y,t)f

∞
1 . . . AB(y,t)f

∞
m ‖Lq(B) . r

n
q sup
t>2r

m∏
i=1

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).

For the case that βj1 = · · · = βjl = 0 for some {j1, . . . , jl} ⊂ {1, . . . ,m} where
1 ≤ l < m, we only consider the case β1 = ∞ since the other ones follow in
analogous way. Note that

sup
t>0
|B(x, t)|

α
n AB(y,t)f

∞
1 . . . AB(y,t)f

∞
m

. r
n
q1 sup

t>2r
t
α1− n

p1 ‖f1‖Lp1 (B(x0,t))Mα2f
0
2 (x0) . . .Mαmf

0
m(x0).

Then combine the estimates above we can easily get that

‖ sup
t>0
|B(x, t)|

α
n AB(y,t)f

∞
1 AB(y,t)f

0
2 . . . AB(y,t)f

0
m‖Lq(B)

. r
n
q1 sup

t>2r
t
α1− n

p1 ‖f1‖Lp1 (B(x0,t))

m∏
i=2

‖Mαif
0
i ‖Lpi (B)

≤ r
n
q1 sup

t>2r
t
α1− n

p1 ‖f1‖Lp1 (B(x0,t))

m∏
i=2

(
|B|

1
qi sup
t>2r

t
αi− n

pi ‖f0i ‖Lpi (B(x0,t))

)

≈ r
n
q1 sup

t>2r
t
α1− n

p1 ‖f1‖Lp1 (B(x0,t))

m∏
i=2

r
n
qi sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,2r))

. r
n
q

m∏
i=1

sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).
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Hence we have obtained

‖Mα,m(
−→
f )‖Lp(B) ≤ ‖I1‖Lp(B) + ‖I2‖Lp(B)

. r
n
q

m∏
i=1

sup
t>2r

t
αi− n

pi ‖fi‖Lpi (B(x0,t)).

Thus we obtain (3.2).
For the case that at least one pi equals one, repeat the estimates above and note

that
−→
f →Mα,m(

−→
f ) is boundedness from Lp1(Rn)× · · · ×Lpm(Rn) to Lp,∞(Rn),

the proof of (3.3) can be treated similarly and we omit the details here.
�

Next we give the boundedness of multilinear fractional maximal operator
−→
f →

Mα,m(
−→
f ) on product generalized Morrey space.

Theorem 3.3. Let 1 ≤ p1, . . . , pm <∞ and 0 < α < mn with 1/q = 1/p1 + . . .+
1/pm − α/n and α =

∑m
i=1 αi where each αi satisfies 0 < αi <

n
pi

. Suppose that

(ϕ1, ϕ2) satisfies the condition

m∏
i=1

sup
r<t<∞

ess inf
t<s<∞

ϕi(x, s)s
n
pi

t
n
qi

≤ Cψ(x, r), (3.5)

where C does not depend on x and r. Then, if all pi > 1, it follows

‖Mα,m(
−→
f )‖Mq,ψ

≤ C‖f1‖Mp1 ,ϕ1 · · · ‖fm‖Mpm ,ϕm ,

and if at least one pi = 1, it follows

‖Mα,m(
−→
f )‖WMq,ψ

≤ C‖f1‖Mp1 ,ϕ1 . . . ‖fm‖Mpm ,ϕm ,

with the constant C independent of
−→
f .

Proof. Let 1 ≤ p1, . . . , pm <∞ with 1/p = 1/p1 + . . .+ 1/pm and
−→
f ∈Mp1,ϕ1 ×

. . .×Mpm,ϕ1 . By Theorems 3.1 and 3.2 we obtain

‖Mα,m(
−→
f )‖Mq,ψ

= sup
x∈Rn, r>0

ψ−1(x, r)r
−n
q ‖Mα,m(

−→
f )‖Lp(B(x,r))

. sup
x∈Rn, r>0

m∏
i=1

ψ−
1
m (x, r) sup

t>2r
t
αi− n

pi ‖fi‖Lpi (B(x0,t))

. sup
x∈Rn, r>0

m∏
i=1

ϕ−1i (x, r)r
n
pi ‖fi‖Lpi (B(x,r))

= sup
x∈Rn, r>0

m∏
i=1

‖f1‖Mp1 ,ϕ1 · · · ‖fm‖Mpm ,ϕm

by (3.5), which completes the proof for 1 < p1, . . . , pm < ∞ and 0 < α < mn
with 1/q = 1/p1 + . . .+ 1/pm − α/n.

For pi = 1 and fi ∈ M1,ϕ1(i = 1, . . . ,m), by the definition of M1,ϕ and a
similar argument as before we can get

‖Mα,m(
−→
f )‖WMq,ψ

≤ C‖f1‖Mp1 ,ϕ1 . . . ‖fm‖Mpm ,ϕm .
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The theorem has been proved. �

Remark 3.1. Note that in the case m = 1 Theorems 3.2 and 3.3 were proved in
[1] (see also [16]). Theorem 3.3 do not impose the pointwise doubling condition
(2.1) and (2.2). In the case ϕ1(x, r) = ϕ2(x, r) = ϕ(x, r) Theorem 3.3 containing
the results Theorem 2.1.

4. The multilinear fractional integral operators in the product
spaces Mp1,ϕ1(Rn)× . . .×Mpm,ϕm(Rn)

In this section we are going to use the following statement on the boundedness
of the Hardy operator

(Hg)(t) :=
1

t

∫ t

0
g(r)dr, 0 < t <∞.

Theorem 4.1. ([3]) The inequality

ess sup
t>0

w(t)Hg(t) ≤ c ess sup
t>0

v(t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A := sup
t>0

w(t)

t

∫ t

0

dr

ess sup
0<s<r

v(s)
<∞,

and c ≈ A.

In this section, we will prove the boundedness of multilinear singular inte-
gral operators on product generalized Morrey space, first we prove the following
theorem.

Theorem 4.2. Let 1 ≤ p1, . . . , pm < ∞ and 0 < α < mn with 1/q = 1/p1 +
. . . + 1/pm − α/n and α =

∑m
i=1 αi where each αi satisfies 0 < αi <

n
pi

. Then,

for 1 < p1, . . . , pm <∞ the inequality

‖Iα,m(
−→
f )‖Lq(B(x0,r)) . r

n
q

m∏
i=1

∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x0,t))dt (4.1)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (Rn)× . . .× Llocpm(Rn).

Moreover, if at least one pi equals one, the inequality

‖Iα,m(
−→
f )‖WLq(B(x0,r)) . r

n
q

m∏
i=1

∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x0,t))dt (4.2)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (Rn)× . . .× Llocpm(Rn).

Proof. We just consider the case pi > 1 for i = 1, . . . ,m and write fi = f0i + f∞i .

Then we split Iα,m(
−→
f ) as follows

Iα,m(
−→
f )(x) = Iα,m(f01 , . . . , f

0
m)(x) +

∑
β1,...,βm

′Iα,m(fβ11 , . . . , fβmm )(x),
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where β1, . . . , βm ∈ {0,∞} and each term of
∑′

contains at least βi 6= 0. Then,

‖Iα,m(
−→
f )‖Lp(B(x,r)) ≤ ‖Iα,m(f01 , . . . , f

0
m)‖Lp(B(x,r)) + ‖

∑
β1,...,βm

′Iα,m(fβ11 , . . . , fβmm )‖Lp(B(x,r))

≤ I + II.

For I, by the boundedness of Iα,m from product Lp1(Rn) × . . . × Lpm(Rn) to
Lq(Rn), 0 < α < mn with 1/q = 1/p1 + . . . + 1/pm − α/n for each pi > 1(i =
1, . . . ,m), we have,

‖Iα,m(
−→
f0)‖Lq(B(x,r)) ≤ ‖Iα,m(

−→
f0)‖Lq(Rn)

.
m∏
i=1

‖f0i ‖Lpi (Rn) .
m∏
i=1

‖fi‖Lpi (B(x,2r)).

Taking into account that

‖fi‖Lpi (B(x,2r)) . r
n
qi

∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt, i = 1, . . . ,m (4.3)

we get

‖Iα,m(
−→
f0)‖Lp(B(x,r)) . r

n
q

m∏
i=1

∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt. (4.4)

For II, first we consider the case β1 = · · · = βm =∞.
When |x− yi| ≤ r, |z − yi| ≥ 2r, we have 1

2 |z − yi| ≤ |x− yi| ≤
3
2 |z − yi|, and

so we get

|Iα,m(
−→
f∞)(z)| .

∫(
{B(x,2r)

)m |f1(y1) · · · fm(ym)|
|(x− y1, . . . , x− ym)|mn−α

d−→y

.
m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n−αi

dyi

and

‖Iα,m(
−→
f∞)‖Lq(B(x,r)) ≤

m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n−αi

dyi ‖χB(x,r)‖Lp(Rn)

. r
n
q

m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n−αi

dyi.

By Fubini’s theorem we have∫
{B(x,2r)

|fi(yi)|
|x− yi|n−αi

dyi ≈
∫

{B(x,2r)
|fi(yi)|

∫ ∞
|x0−yi|

dt

tn−αi+1
dyi

≈
∫ ∞
2r

∫
2r≤|x0−yi|<t

|fi(yi)|dyi
dt

tn−αi+1

.
∫ ∞
2r

∫
B(x0,t)

|fi(yi)|dyi
dt

tn−αi+1
.

Applying Hölder’s inequality, we get∫
{B(x,2r)

|fi(yi)|
|x− yi|n−αi

dyi .
∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt. (4.5)
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Moreover, for all pi ∈ [1,∞), i = 1, . . . ,m the inequality

‖Iα,m(
−→
f∞)‖Lq(B(x,r)) . r

n
q

m∏
i=1

∫ ∞
2r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt (4.6)

is valid.
Next we consider the case that some βi = 0 and other βj = ∞. To this end

we may assume that β1 = β2 = ∞ and β3 = · · · = βm = 0. Recall the fact that

|x− yi| ≈ |z − yi| for z ∈ B(x, r) and yi ∈
{
B(x, 2r), we have that

Iα,m(f∞1 , f∞2 , f03 , . . . , f
0
m)(z)

.
∫

{B(x,2r)× {B(x,2r)

|f1(y1)||f2(y2)|
{|x− y1|+ |x− y2|}mn−α

dy1dy2

m∏
i=3

∫
B(x,2r)

|fi(yi)|dyi

.
∫

{B(x,2r)

|f1(y1)|
|x− y1|n−α1

dy1

∫
{B(x,2r)

|f2(y2)|
|x− y2|n−α2

dy2

m∏
i=3

rαi−n
∫
B(x,2r)

|fi(yi)|dyi.

By the inequalities (4.3), (4.5) and use the Hölder’s inequality for integrals,

‖Iα,m(f∞1 , f∞2 , f03 , . . . , f
0
m)‖Lq(B(x,r))

. r
n
q

∫
{B(x,2r)

|f1(y1)|
|x− y1|n−α1

dy1

∫
{B(x,2r)

|f2(y2)|
|x− y2|n−α2

dy2

m∏
i=3

r
αi− n

pi ‖fi‖Lpi (B(x,2r))

. r
n
q

∫
{B(x,2r)

|f1(y1)|
|x− y1|n−α1

dy1

∫
{B(x,2r)

|f2(y2)|
|x− y2|n−α2

dy2

m∏
i=3

∫ ∞
r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt

≤ r
n
q

m∏
i=1

∫ ∞
r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt.

For the proof of the inequality (4.2), by a similar argument as in the proof of

(4.1) and pay attention to the fact that
−→
f → Iα,m(

−→
f ) is bounded from Lp1(Rn)×

· · · ×Lpm(Rn) to WLq(Rn), we can similarly prove (4.2) and we omit the details
here. �

Now we give the boundedness of multilinear fractional integral operators on
product generalized Morrey space.

Theorem 4.3. Let 1 ≤ p1, . . . , pm <∞ and 0 < α < mn with 1/q = 1/p1 + . . .+
1/pm − α/n and α =

∑m
i=1 αi where each αi satisfies 0 < αi <

n
pi

. Suppose that

(ϕ1, . . . , ϕm, ψ) satisfies the condition

m∏
i=1

∫ ∞
r

ess inf
t<s<∞

ϕi(x, s)s
n
pi

t
n
qi
+1

dt . ψ(x, r). (4.7)

Then the operator Iα,m is bounded from product space Mp1,ϕ1(Rn)×. . .×Mpm,ϕm(Rn)
to Mq,ψ(Rn) for pi > 1, i = 1, . . . ,m, and from product space Mp1,ϕ1(Rn)× . . .×
Mpm,ϕm(Rn) to WMq,ψ(Rn) for pi ≥ 1, i = 1, . . . ,m.
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Proof. Let 1 < p1, . . . , pm < ∞ and
−→
f ∈ Mp1,ϕ1(Rn) × . . . ×Mpm,ϕm(Rn). By

Theorems 4.1 and 4.2 we have

‖Iα,m(
−→
f )‖Mq,ψ

. sup
x∈Rn, r>0

m∏
i=1

ϕ(x, r)−
1
m

∫ ∞
r

t
αi− n

pi
−1‖fi‖Lpi (B(x,t))dt

. sup
x∈Rn, r>0

m∏
i=1

ϕ−1i (x, r) r
n
pi ‖fi‖Lpi (B(x,r))

=
m∏
i=1

‖f1‖Mp1 ,ϕ1 . . . ‖fm‖Mpm ,ϕm .

When pi = 1, i = 1, . . . ,m, the proof is similar and we omit the details here. �

Remark 4.1. As shown in [16], the condition (3.5) is weaker than (4.7): the latter
implies the former, in particular, the functions

ϕi(r) =
1

χ
(1,∞)

(r)r
n
pi
−βi

, i = 1, . . . ,m, ψ(r) = r
−n
q
(
1 + rβ

)
, 0 < β <

n

p

satisfy condition (3.5) but do not satisfy condition (4.7).
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