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LOCAL AND GLOBAL BIFURCATION FOR SOME
NONLINEARIZABLE EIGENVALUE PROBLEMS

GUNAY M. MAMEDOVA

Abstract. In this paper we investigate the structure of the set of solu-
tions for a wide class of nonlinear eigenvalue problems in Banach space
with non differentiable by Frechet nonlinearities. We give a generaliza-
tion of the classical theorem on the global bifurcation of the eigenvalues
of odd multiplicity and prove the existence of global continua bifurcating
from intervals of the line of trivial solutions.

1. Introduction

Let E be an real Banach space with norm denoted by || ||, and L : D(L) — E
be linear operator with compact resolvent, i.e. (L — AI)~! is compact for some
(and hence for all) A not belonging to the spectrum o (L) of L, and D(L) is dense
ink.

We consider the nonlinear eigenvalue problem

Lu = u+ F(\u) + G\ u), (1.1)

where F' : R x E — FE is a continuous operator mapping bounded sets onto
bounded sets and F'(A,0) =0 for any A € R, and G : R x £ — FE is a continuous
operator satisfying the following condition: G(A, u) = o(||u||) as v — 0 uniformly
with respect to A € A, where A is a finite interval of the real axis R. As norm in
R x E, we take ||(\,u)|| = {|\2 + [Jul|2}"/%.

Note that, due to the assumption on L, every eigenvalue of L is necessarily
isolated and of finite multiplicity, and the whole spectrum o (L) consists of only
such points.

It is well known (see [4, Ch. 4]) that in the case when F' = 0 each point of the
form (u,0), where p is a eigenvalue of of odd algebraic multiplicity of operator L,
is a bifurcation point of the nonlinear problem (1.1). In addition, this bifurcation
point corresponds to a continuous branch of nontrivial solutions. In [9] shows that
there exists a maximal connected set (continua) of nontrivial solutions of (1.1)
bifurcating from (u,0) which either is unbounded in R x E or must also bifurcate
from another point (f,0), where i # u is a eigenvalue of L. This shows that
bifurcation from eigenvalues of odd multiplicity is a global rather than a local
phenomenon. He also obtains stronger results for bifurcation from a eigenvalue of
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multiplicity 1. These results are strengthened in [2], where it was established that
this continuum decomposes into two subcontinua which either are unbounded in
R x E or are not intersect outside of the point (u,0).

In the present paper, we give generalization of the result in [8] to the case
where F' is not necessarily differentiable, but is merely assumed to be sublinear
in a neighborhood of (X,0), A € R.

Because of the presence of the term F' problem (1.1) do not in general have
a linearization about (A,0). For this reason, the set of bifurcation points for
these problems with respect to the line of trivial solutions need not be discrete.
Therefore, for investigating the question of bifurcation of nontrivial solutions of
problem (1.1) it is natural, as in the cases of bifurcations of a solutions of problems
considered in [1, 6, 7, 8], to study bifurcation from intervals.

2. Local bifurcation of solutions of problem (1.1)

Let B:(A) and B, denote respectively open balls in R x E and E of radius ¢
centered at (\,0) and 0.
According to [1] for r > 0 we set

E(F;r)= sup

I, wll (2.1)
lull<r aer U]l

suppose that it is finite at least for small values of r. Since k = k(F;r) is a
nondecreasing function of parameter r, we also set

Ko(F) = lim k(F: 7). (2.2)

For r > 0, we let B, = {u € D(L) : ||u|| < r}; 9B, will denote the boundary of
B,.. The coincidence degree of the pair of operators (L, N) with respect to B,
denoted d[(L, N), B,], will be defined for any continuous operator N : E — E
which mapping bounded sets onto bounded sets, provided Lu # N(u) for u €
0B, (Gaines-Mawhin [3], Chapter iii). For convenience we shall introduce the
following notation
d(L — N, B,) =d[(L,N), B,].

Moreover, for A € (L) we set

c(\) =inf{||Lu — Mu|| : we D(L), |ju|| =1} = |[(L =AD"~ (2.3)

Throughout what follows we shall assume that y is a eigenvalue of the operator
L of odd multiplicity. _
Theorem 2.1. Suppose there exists A, A such that:

A<pu<Xand o(L)N [N, A = {u}; (2.4)

min{c(}), c(\)} > ko(F), (2.5)

where ¢(\) and ko(F') are defined by (2.3) and (2.2) respectively. Then, for any
sufficiently small r > 0 problem (1.1) has an solution (Ar,u,) with ||u,|| =r and

Ar €A, AL
Proof . Assume the contrary, i.e. suppose that there exists r1 > 0 such that the

problem (1.1) has no solution (A, u) € [A, A] x (0B, N D(L)) for all 0 < r < ry.
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We define ¢y and dg by the following equalities
co — k‘o(F )
—

It follows by condition (2.5) and definition (2.2) that there exists ro > 0 such
that

co = min{c(A),c(N\)}, d =

k(F, 1“) < ¢g— 0 (26)

for any 0 < r < ro.
Since G(A,u) = o(||ul|) as u — 0 uniformly with respect to A € A, then there
exists 73 > 0 such that for any A € [A,A] and any v € D(L) with ||u|| < rs we

have

o)) < 20l (2.1

Denote rg = min{ry,re,73}. Hence we have the following relation
Lu # M+ F(\u) + G\ u)
for any A € [A, A] and for any u € B, N D(L), where r € (0,79). Then, by
homotopy invariance of the coincide degree we obtain
d(Lu—Au—F(\,u)—G()\,u), B,) = d(Lu— Au—F(\,u)—G(\,u), B,). (2.8)

On the other hand, by (2.1), (2.3), (2.6) and (2.7) for any ¢ € [0,1] and any
u € 0B, N D(L), we have

1Zu—Au— tF(A, w) — tG(A, w)l] > [|Lu—Aul| - {[F(A, )]

—t[|GA, W)l = c)[[ull = [[FQA, w)|| = |G, w)l| = collul|—

0, 0, dor
(co = So)l[ul] — 5 llull = Fl[ul] = = > 0.

It follows that for any u € D(L) with 0 < r < rg and for any ¢ € [0, 1] we get
Lu# Au+tF(A, u) —tG(A, u).
So, using the homotopy invariance of the coincide degree again, we obtain that
d(L —XI— F\, ) — G\, ), B,) =d(L — \I,B,) = i()\).
The some argument can be used for A\. Hence, by (2.8) we have i(}) = i()).

Since p is the only eigenvalue of L in [\, \] and has odd multiplicity, then by
Leray-Schauder formula [3, p. 501] i(A) = —i(\). This contradiction proves the
Theorem 2.1.

We denote by B the set of bifurcation points of the problem (1.1) respect to
the line of trivial solutions.
Corollary 2.1. ([A, ] x {0}) "B # O.

Now suppose that F is a real Hilbert space H and L : D(L) C H — H is
selfadjoint. Then we have
Theorem 2.2. Let u € o(L) is of odd multiplicity and suppose that its distance

to the spectrum is greater than 2ko(F'), i.e.
dist (1, o(L)\{}) > 2ho(F). (2.9
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Then, there exists are small ro and ey such that for all 0 < r < 19, (1.1) has a
solution (Ap,u,) with ||uy|| = r and X € [u — k(r) — eo, pp + k(r) + €0, where
k(r) =k(F,r).

Proof . Let

Cdist{p oD\ . e holF)
“a= 2 C =T
By the definition (2.2) from (2.9) it follows that there exists r; > 0 such that
for any 0 < r < r; we have

1)
ko(F) < k(F;r) < ¢ — 51 (2.10)
We will choose the g9 > 0 so that the following inclusions are valid
J=[u — k() — 260, — k(r) — 0] € [ — k() — 61/2, p — k()]
J=1[u +k(r)+eo, p +k(r)+2e0] C[u+ k(r), u + k(r)+ 51/2].
Note that there exists 1o > 0 such that for any A € [p—c1+61/2, p+c1—061/2 ]
and any u € D(L) with ||u|| < re we have

Eol|lu
e < 2l (211)
Denote rg = min{ry,72}. Let 0 < 7 < 7. Obviously, if A € J U J, then
dist{\, o(L)} > k(r). (2.12)

Now take A € J and XA € J. Since by (2.10), [ — k(r), u + k(r)] N o(L) = {u},
the inequality (2.12) shows that A, X satisfy the condition (2.4) from Theorem
2.1 as well as the inequality (2.6) because, in connection with selfadjointness of
L, ¢(X\) = dist(\, o(L)). Consequently, arguing as above, we obtain the existence
of a solution (A, u,) of problem (1.1) with A, € [A, A] and |[u,|| = 7. On the
other hand, if X € [J, J] and 0 < ||u|| < r, then by (2.10)-(2.12) we have

[[Lu = du = F(Au) = GO )| = [[Lu = Aul| = [[F(A, w)|| =

NG )] = e(Mul] = k() ful| = 85()HUH = (dist(A,o(L)) =

€0 €0
B = 2) hull = () + 20— k() — 2) flull = 2
Hence, it follows that the problem (1.1) has no nontrivial solution in [A, X] x B,.

Corollary 2.2. (BN [g—c1, p+c1]) C[p — ko(F), pu + ko(F)].

3. Global bifurcation of solutions of problem (1.1)

The closure of the set of nontrivial solutions of (1.1) will be denoted by . By
a subcontinuum of A we mean a subset of A which is closed and connected in
R x F.

Let denote by \7# the union of all components of & bifurcating from the points
(A\,0) € BN I, where I, = [t — ko(F), t + ko(F). Let Y, = Y, U (I, x 0). Note
that the set Y, is connected in R x E, but ?u my not be connected.
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We give a global bifurcation result which generalizes Theorem 2.3 [9]
Theorem 3.1. Let u € o(L) is of odd multiplicity and assume that executed
the condition (2.9). Then the connected component Y,, of the set I either (i) is
unbounded in R x E, or (ii) contains the set I, x {0}, where p # v € o(L).
Proof . Assume the contrary, i.e. let the assertion of Theorem 2.1 is not true.
Then Y, is a bounded subset of R x E and, therefore, is compact due to the fact
that the operator L has a compact resolvent. Thus, similarly to Lemma 1.2 from
[8] we can prove that, there exists a bounded open set A and number 5 <& /2
such that

(I, x0)CA, AN =10 (3.1)

and A contains no trivial solutions (\,0) of problem (1.1) for dist(), ) > 4.
Obviously, if 0 < dist(A, 1,) < J then there exists p(A) such that (A,0) is the
only solution of (1.1) in {A} x B,y). We define the

p(N) = p(p + ko(F) +6) for X\ > p+ ko(F) +6

and

p(N) = pli — ko(F) — ) for A< ju— ko(F) — 3.
Let
Ay={ueE|(\u)ecA}.
Choosing p(u = (ko(F) + 9)) is sufficiently small, we can assume that
We define
A=pu—ko(F)—¢e2 and A= p+ ko(F) + e2,
where § < g9 < 91/2. Note that
dist(\, o(L)) = dist(\, 0 (L)) = ko(F) + e2. (3.3)

By (3.1) and (3.2) it is clear that the coincidence degree d[(L,\ + F(),-) +
G(A,+)), Ax] of the couple (L, Al + F(A,-) + G(A,-)) with respect to Ay is well
defined for all A € [A, A]. Then, by the homotopy invariance of the degree we
have

d[(L,X+ F()\,-) +G(),-)), Ay] = const, for A € [\, ] (3.4)
Using similar arguments in the proof of Theorems 2.1 and 2.2 we obtain
dl(L, AT+ F(A, ) +G(A, ), Ax] =i(Q), (3.5)
dl(L, X+ F(\, ) + G(X, ), A5] = i(N). (3.6)
Hence, in view of (3.5) and (3.6), by (3.4) we have
i(A) = i(N).

But on the other hand

Z(A) = —i(X),
since 1 is the only eigenvalue of odd multiplicity of the operator L in [\, A]. This
contradiction completes the proof of Theorem 3.1.
Now we give one application to a nonlinear eigenvalue problem for ordinary
differential equations of second order.
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Consider the following problem

-y +q(@)y = y+ f(z,y, v, A) +9(z,y,9, ), 0 <z <, (3.7)
aoy(0) + boy' (0) = 0, (3.8)
ary(m) + by’ (m) = 0, (3.9)

where A € R, ¢(x) is a real-valued continuous function on [0, 7], the function
a;i, b; are real numbers such that |a;| + |b;| > 0, i =0, 1, f and g are continuous
functions on [0, 7] x R3, and g satisfied the conditions: there exists a finite number
of

M = inf sup ‘f(x,y,s,/\) ; (3.10)
n>0 z€(0, 7] Y
0<|ul+|s|<n, Ae R
and
9(@,y,5,A) = o(|ly| + [s]) near (y,s) = (0,0), (3.11)

uniformly for = € [0, 7] and in A € A, for every bounded interval A C R.
Let H = Ly(0, 7). Define the operators L : D(L) C H — H, F : D(L) — H
and G : D(L) — H as follows:

D(L)={ye H|yeW;(0,7), —y" +qy € Ls(0,7), y € B.C.},

Ly = _y”7 F(Avy) = f((L',y,y/,A), G(Aay) = g(xaya ylvA)

where by B.C denotes the set of functions satisfying the boundary conditions
(3.8)-(3.9). Then the problem (3.7)-(3.9) can be written as an operator equation
in the form of (1.1), i.e.

Ly = y+ F(\y) + G\ y).

It is known that (see [5]) L is a semi-bounded from below self-adjoint operator
in H with compact resolvent. The corresponding linear problem

Ly =Xy

possesses infinitely many eigenvalues p; < p1 < po < ... < pg < ..., all of which
are simple, and A\, = k> +C + O (%), where C' is a some constant [5, Ch 1].
By (3.10) for this problem we have ko(F') = M, and by (3.10) we obtain

G\ y) =o(llyll) as lyll =0 in H

uniformly with respect to A € A. Accordingly, I}, = I,, = [pwr — M, p, + M]
for our problem. From the asymptotic formula for the eigenvalues uy, k € N, it
follows that there exists a natural number k such that dist(uy, o(L)\{u}) > 2M
for k > k. Then by Theorem 3.1 for each k > k connected component Yy =Y,
of solutions of the problem (3.7)-(3.9), containing Iy x {0} is either (i) unbounded
in R x H, or (ii) contains the interval I,,,, x {0}, where pj # pn € o(L). Notice
that, using the nodal properties of eigenfunction can be shown that alternative
(ii) is not possible (see [10]). Hence, the component Y}, for k > k is unbounded
in R x H.
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