
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 40, Number 2, 2014, Pages 107–114

ON APPROXIMATE SOLUTION OF MIXED BOUNDARY

VALUE PROBLEM FOR LAPLACE EQUATION

ELNUR H. KHALILOV AND DASTA G. GASYMOVA

Abstract. In the paper the collocation method to boundary integral
equation of the mixed boundary value problem for the Laplace equation
is justified.

1. Introduction

Numerical problems of mechanics and physics reduce to various boundary in-
tegral equations [BIE]. It is known that integral equations in the closed form are
solved only in very rare cases. Therefore, development of approximate meth-
ods for solving BIE with appropriate theoretical grounding acquires paramount
value. It is known that one of the methods of solving the mixed boundary value
problem for the Laplace equation is its reduction to BIE. Recall that the mixed
boundary value problem for the Laplace equation is as follows: to find the func-
tion u ∈ C2(R3 \ D̄) ∩ C(R3 \D) possessing a normal derivative in the sense of
uniform convergence, satisfying the Laplace equation ∆u = 0 in R3 \D̄, the Som-

merfeld condition at infinity and the boundary condition ∂u(x)
∂~n(x) + λu(x) = f(x)

on S, where D ⊂ R3 is a bounded domain with the boundary S, ~n(x) is a unit
external normal at the point x ∈ S, λ is a given number, f is a given continuous
function on S. Note that in the papers [2,3,5], the sequences of approximate so-
lutions of BIE of exterior boundary value problems of Dirichlet and Neumann for
a wave equation were constructed, while in the papers [1,8], the grounding of the
collocation method of BIE was given just for the same boundary value problems.
However, the grounding of the collocation method for BIE of the mixed boundary
value problem for the Laplace equation has not been given yet, and this paper is
devoted to this problem.

2. Main results

Let S be a Lyapunov surface with the index α ∈ (0, 1], Φ(x, y) = 1/(4π |x− y|)
be a fundamental solution of the Laplace equation,

υ1(x, ρ) = 2

∫
S

∂Φ(x, y)

∂ ~n′(y)
ρ(y)dSy,
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υ2(x, ρ) = 2

∫
S

Φ(x, y)ρ(y)dSy

and ψ(x) = υ20(x, ρ) be a simple layer potential of density ρ for the Laplace
equation, i.e.

υ20(x, ρ) =

∫
S

ρ(y)

|x− y|
dSy = 4π

∫
S

Φ(x, y)ρ(y)dSy,

where ~n′(x) is a unit internal normal at the point x ∈ S, and ρ ∈ C(S) (C(S)is
a space of functions continuous on S and with the norm ‖ρ‖∞ = maxx∈S |ρ(x)|).

In the paper [9] it was shown that the function u(x) = υ2(x, ρ)+µυ1(x, ψ), x ∈
R3 \ D̄, where µ is a complex number, moreover Imµ 6= 0, is the solution of the
mixed problem for the Laplace equation if the density ρ is the solution of the BIE

(µ− 1)ρ(x) +
∂υ̃2(x, ρ)

∂~n(x)
− µ∂υ̃20(x, ψ1)

∂~n(x)
+

+λ [υ̃2(x, ρ)− µυ20(x, ρ) + µυ̃1(x, ψ)] = f(x), x ∈ S, (2.1)

where the sign ” ∼ ” means the direct value, ψ1 is the direct value of the normal
derivative of a simple layer potential of density ρ for the Laplace equation on S.

It is known that equation (2.1) may be rewritten in the form (see [1]):

ρ+Aρ = ϕ, (2.2)

where ϕ = (µ− 1)−1f,A = (µ− 1)−1(2K − 16π2µT + 2λL− 4πµλL+ 8πµλQ) is
a linear compact operator,

(Kρ)(x) =

∫
S

∂Φ(x, y)

∂~n(x)
ρ(y)dSy, x ∈ S;

(Tρ)(x) =

∫
S

∂Φ(x, y)

∂~n(x)

(∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt

)
dSy, x ∈ S;

(Lρ)(x) =

∫
S

Φ(x, y)ρ(y)dSy, x ∈ S;

(Qρ)(x) =

∫
S

∂Φ(x, y)

∂~n(y)

(∫
S

Φ(y, t)ρ(t)dSt

)
, x ∈ S.

From the known theorem [6, p. 52] it is easy to prove that A : C(S)→ Hβ(S),
β ∈ (0, α), where Hβ(S) is a space of functions determined on the surface S and
satisfying the Holder condition with the index β.

For grounding the collocation method, at first we construct a cubic formula
for (Aρ)(x), x ∈ S. Take the sequence {h} ⊂ R of values of the discretization

parameter h tending to zero, and partition S into elementary parts S =
⋃N(h)
l=1 Shl ,

satisfying the following conditions:

(1) ∀l ∈ {1, 2, ..., N(h)}Shl is closed and its set of points S internal with

respect to S̊hl is not empty, moreover mes S̊hl = mesShl and for j ∈
{1, 2, ..., N(h)} , j 6= l, S̊hl ∩ S̊hl = �;

(2) ∀l ∈ {1, 2, ..., N(h)}Shl is a connected piece of surface S with continuous
boundary;

(3) ∀l ∈ {1, 2, ..., N(h)} diamShl ≤ h;
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(4) ∀l ∈ {1, 2, ..., N(h)} there exists a so called support point xl ∈ Shl such
that
(a) rl(h) ∼ Rl(h)(rl(h) ∼ Rl(h) ⇔ C1 ≤ rl(h)

Rl(h) ≤ C2, where C1 and C2

are positive constants independent of h), here rl(h) = minx∈∂Shl
|x− xl|

and Rl(h) = maxx∈∂Shl
|x− xl| ;

(b) Rl(h) ≤ d/2, where d is a radius of standard sphere (see [11])
(c) ∀l ∈ {1, 2, ..., N(h)} rj(h) ∼ rl(h).

Obviously, r(h) ∼ R(h), where R(h) = maxl=1,N(h)Rl(h), r(h) =
minl=1,N(h) rl(h).

Note that in the paper [7], the partition of a unit sphere into elementary parts
is given.

Let Sd(x) and Γd(x) be the parts of the surface S and tangential plane Γ(x)
at the point x ∈ S enclosed inside the sphere Bd(x) of radius d centered at the
point x. Furthermore, let ỹ ∈ Γ(x) be the projection of the point y ∈ S. Then

|x− ỹ| ≤ |x− y| ≤ C1(S) |x− ỹ| and mesSd(x) ≤ C2(S) ·mes Γd(x), (2.3)

where C1(S) and C2(S) are positive constants dependent only on S (if S is a
sphere, then C1(S) =

√
2 and C1(S) = 2). The following lemma is valid.

Lemma 2.1. (see [7]). There exist the constants C ′0 > 0 and C ′1 > 0 independent
of h, for which for ∀l, j ∈ {1, 2, ..., N(h)} , j 6= l and ∀y ∈ Shj the following
inequality is valid:

C ′0 |y − xl| ≤ |xj − xl| ≤ C ′1 |y − xl| (2.4)

Let

blj = |sgn(l − j)| ∂Φ(xl, xj)

∂~n(xl)
·mesShj

clj = |sgn(l − j)|Φ(xl, xj) ·mesShj ,

elj = |sgn(l − j)| ∂Φ(xl, xj)

∂~n(xj)
·mesShj

and

alj = (µ−1)−1

2blj − 16π2µ

N(h)∑
m=1

blmbmj + 2λclj − 4πµλclj + 8πµλ ·
N(h)∑
m=1

elm · cmj

 .

Prove the following theorem.

Theorem 2.1. The expression

(AN(h)ρ)(xl) =

N(h)∑
j=1

alj · ρ(xj), (2.5)

at the points xl, l = 1, N(h) is a cubic formulas for (Aρ)(x), moreover the follow-
ing estimation is valid

max
l=1,N(h)

∣∣∣(Aρ)(xl)−
(
AN(h)

)
(xl)

∣∣∣ ≤M [
‖ρ‖∞(R(h))β + ω(ρ,R(h))

]
,
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where β ∈ (0, α) and ω(ρ,R(h)) is a modulus of continuity of the function ρ(x).
Here and in the sequel, M denotes positive constants dependent only on S, k, λ,
and µ different at various inequalities.

Proof. In the paper [4] it is proved that the expressions

(
KN(h)ρ

)
(xl) =

N(h)∑
j=1

bljρ(xj)

and (
LN(h)ρ

)
(xl) =

N(h)∑
j=1

cljρ(xj)

at the points xl, l = 1, N(h) are cubic formulas for the integrals (Kρ)(x) and
(Lρ)(x), respectively, and

max
l=1,N(h)

∣∣∣(Kρ)(xl)−
(
KN(h)ρ

)
(xl)

∣∣∣ ≤M [‖ρ‖∞(R(h))α |lnR(h)|+ ω(ρ,R(h))] ,

max
l=1,N(h)

∣∣∣(Lρ)(xl)−
(
LN(h)ρ

)
(xl)

∣∣∣ ≤M [‖ρ‖∞R(h) |lnR(h)|+ ω(ρ,R(h))] .

Now lets construct a cubic formula for the integral (Tρ)(x). The expression(
TN(h)ρ

)
(xl) =

∑N(h)
j=1

(∑N(h)
m=1 blmbmj

)
ρ(xj) at the points xl, l = 1, N(h) is a

cubic formula for the integral (Tρ)(x). Estimate the error of this cubic formula.
Obviously,

(Tρ)(xl)−
(
TN(h)ρ

)
(xl) = (Tρ)(xl)−

N(h)∑
j=1

blj N(h)∑
m=1

bjmρ(xm)

 =

=

∫
S

∂Φ(xl, y)

∂~n(xl)

(∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt

)
dSy−

−
N(h)∑
j=1
j 6=l

∂Φ(xl, xj)

∂~n(xl)
mesShj

N(h)∑
m=1
m 6=j

∂Φ(xj , xm)

∂~n(xj)
mesShmρ(xm)

 =

=

∫
Shl

∂Φ(xl, y)

∂~n(xl)

(∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt

)
dSy+

+

N(h)∑
j=1
j 6=l

∫
Shj

∂Φ(xl, y)

∂~n(xl)

(∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt −

∫
S

∂Φ(xj , t)

∂~n(xj)
ρ(t)dSt

)
dSy+
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+

N(h)∑
j=1
j 6=l

[∫
Shj

(
∂Φ(xl, y)

∂~n(xl)
− ∂Φ(xl, xj)

∂~n(xl)

)∫
S

∂Φ(xj , t)

∂~n(xj)
ρ(t)dSt

]
dSy+

+

N(h)∑
j=1
j 6=l

∂Φ(xl, xj)

∂~n(xl)

∫
S

∂Φ(xj , t)

∂~n(xj)
ρ(t)dSt −

N(h)∑
m=1
m 6=l

∂Φ(xj , xm)

∂~n(xj)
mesShmρ(xm)

mesShj .

(2.6)

Denote the summands in equality (2.6) by T1(h), T2(h), T3(h) and T4(h), re-

spectively. Since
∣∣∣∂Φ(x,y)
∂~n(x)

∣∣∣ = M
|x−y|2−α we get

|T1(h)| ≤
∣∣∣∣∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt

∣∣∣∣ ∫
Shl

∣∣∣∣∂Φ(xl, y)

∂~n(xl)

∣∣∣∣ dSy ≤M‖ρ‖∞ (R(h))α .

In the paper [6] it was proved that K : C(S)→ Hβ(S), β ∈ (0, α), this means

that ∀y ∈ Shj∣∣∣∣∫
S

∂Φ(y, t)

∂~n(y)
ρ(t)dSt −

∫
S

∂Φ(xj , y)

∂~n(xj)
dSt

∣∣∣∣ ≤M‖ρ‖∞ (R(h))β ,

then we have:

|T2(h)| ≤M‖ρ‖∞ (R(h))β
∫
S

∣∣∣∣∂Φ(xl, y)

∂~n(xl)

∣∣∣∣ dSy ≤M‖ρ‖∞ (R(h))β , β ∈ (0, α).

Taking into attention (2.4), it is easy to prove that ∀l, j ∈ {1, 2, ..., N(h)} , j 6= l
and ∀y ∈ Shj ∣∣∣∣∂Φ(xl, y)

∂~n(xl)
− ∂Φ(xl, xj)

∂~n(xl)

∣∣∣∣ ≤M · |xj − y||xl − y|3−α
.

Then for the expression T3(h) we get |T3(h)| ≤M‖ρ‖∞ (R(h))α.
Taking into account inequality (2.4) and error estimation of the constructed

cubic formula for the integral K(x), we have

|T4(h)| ≤M
[
‖ρ‖∞ (R(h))β + ω(ρ,R(h))

]
, β ∈ (0, α).

As a result, summing the obtained estimations for the expressions T1(h), T2(h),
T3(h) and T4(h), we get

max
l=1,N(h)

∣∣∣(Tρ)(xl)−
(
TN(h)ρ

)
(xl)

∣∣∣ ≤M ·[‖ρ‖∞ (R(h))β + ω(ρ,R(h))
]
, β ∈ (0, α).

Behaving in the same way, we can prove that the expression

(
QN(h)ρ

)
(xl) =

N(h)∑
j=1

N(h)∑
m=1

elm · cmj

 ρ(xj)

at the points xl, l = 1, N(h) is a cubic formula for that integral (Qρ)(x), and
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max
l=1,N(h)

∣∣∣(Qρ)(xl)−
(
QN(h)ρ

)
(xl)

∣∣∣ ≤M [
‖ρ‖∞ (R(h))β + ω(ρ,R(h))

]
,

where β ∈ (0, α). This completes the proof of the theorem. �

For zN(h) ∈ CN(h) (CN(h) is the space of N(h)-dimensional vectors

zN(h) =
(
z
N(h)
1 , z

N(h)
2 , ..., z

N(h)
N(h)

)
, z

N(h)
l ∈ C, l = 1, N(h)

with the norm ∥∥∥zN(h)
∥∥∥ = max

l=1,N(h)

∣∣∣zN(h)
l

∣∣∣)
we assume

A
N(h)
l zN(h) =

N(h)∑
j=1

alj · z
N(h)
j , l = 1, N(h);

AN(h)zN(h) =
(
A
N(h)
1 zN(h), A

N(h)
2 zN(h), ..., A

N(h)
N(h)z

N(h)
)
.

Using cubic formula (2.5), we replace BIE (2.2) by the system of algebraic equa-

tions with respect to z
N(h)
l -approximate values ρ(xl), l = 1, N(h) that we write

in the form

zN(h) +AN(h)zN(h) = ϕN(h), (2.7)

where ϕN(h) = pN(h)ϕ =
(
ϕ1, ϕ2, ..., ϕN(h)

)
; ϕl = ϕ (xl) , l = 1, N(h); pN(h) ∈

L
(
C(S),CN(h)

)
is a simple drift operator, and AN(h) : CN(h) → CN(h) is a linear

bounded operator.
We get the justification of the collocation method from the G.M. Vainicco the-

orem on convergence for linear operator equations (see [10]). For its formulation
we give necessary definition and conjecture in the denotation of the paper [10].

Definition 2.1. We call the system P =
{
pN(h)

}
of the operators pN(h) : C(S)→

CN(h) connecting for C(S) and CN(h) if

‖pN(h)ϕ‖ → ‖ϕ‖∞
as

h→ 0,∀ϕ ∈ C(S)∥∥∥pN(h)(aϕ+ a′ϕ′)−
(
apN(h)ϕ+ a′pN(h)ϕ′

)∥∥∥→ 0

as

h→ 0, ∀ϕ,ϕ′ ∈ C(S), a, a′ ∈ C.

Definition 2.2. The sequence
{
ϕN(h)

}
of the elements ϕN(h) ∈ CN(h) P -converges

to ϕ ∈ C(S) if

‖ϕN(h) − pN(h)‖ϕ→ 0

as h→ 0. Herewith well write ϕN(h)
p−→ ϕ.

Definition 2.3. The sequence
{
ϕN(h)

}
of the elements ϕN(h) ∈ CN(h) is P -

compact if its any subsequence contains P -convergent subsequence.
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Definition 2.4. The sequence of the operators BN(h) : CN(h) → CN(h) PP -
converges to the operator B : C(S) → C(S) if for any P -convergent sequence{
ϕN(h)

}
we have ϕN(h)

p−→ ϕ ⇒ BN(h)ϕN(h)
p−→ Bϕ. Herewith well write

BN(h) pp−→ B.

Definition 2.5. The sequence of operators BN(h) ∈ L
(
CN(h),CN(h)

)
regularly

converges to the operator B ∈ L(C(S), C(S)) if BN(h) pp−→ B and the following

regularity condition is fulfilled: ϕN(h) ∈ CN(h), ‖ϕN(h)‖ ≤ M,
{
BN(h)ϕN(h)

}
P -

compact ⇒
{
ϕN(h)

}
P -compact.

Theorem 2.2. Let BN(h) → B regularly, BN(h)(N(h) ≥ N0) be Fredholm with a

zero index, KerB = {0} and ψN(h)
p−→ ψ, ψ ∈ C(S). Then the equation Bϕ = ψ

has a unique solution ϕ̃ ∈ C(S), the equation BN(h)ϕN(h) = ψN (h) (N(h) ≥ N0)

has a unique solution ϕ̃N(h) ∈ CN(h), and ϕ̃N(h)
p−→ ϕ̃ with the estimation

c1‖BN(h)pN(h)ϕ̃− ψN(h)‖ ≤ ‖ϕ̃N (h)− pN(h)ϕ̃‖ ≤ c2‖BN(h)pN(h)ϕ̃− ψN(h)‖,
where

c1 = 1/ sup
N(h)≥N0

‖BN(h)‖ > 0,

c2 = sup
N(h)≥N0

‖
(
BN(h)

)−1
‖ < +∞.

Now we formulate the main result of this paper.

Theorem 2.3. Equations (2.2) and (2.7) have unique solutions ρ∗ ∈ C(S) and

z
N(h)
∗ ∈ CN(h)(N(h) ≥ N0) and ‖zN(h)

∗ − pN(h)ρ∗‖ → 0 as h → 0 with the

estimation ‖zN(h)
∗ − pN(h)ρ∗‖ ≤M ·

[
(R(h))β + ω(ϕ,R(h))

]
where β ∈ (0, α).

Proof. Applying Theorem 2.2, we get that equations (2.2) and (2.7) have unique

solutions ρ∗ ∈ C(S) and z
N(h)
∗ ∈ CN(h)(N(h) ≥ N0), moreover

c1 · δN(h) ≤ ‖z
N(h)
∗ − pN(h)ρ∗‖ ≤ c2 · δN(h),

where

c1 = 1/ sup
N(h)≥N0

‖IN(h) +AN(h)‖ > 0,

c2 = sup
N(h)≥N0

∣∣∣∣(IN(h) +AN(h)
)−1

∣∣∣∣ < +∞,

δN(h) = max
l=1,N(h)

∣∣∣AN(h)
l (pN(h)ρ∗)− (Aρ∗)(xl)

∣∣∣ .
Since ρ∗ = (I +A)−1ϕ, then ‖ρ∗‖ ≤ ‖(I +A)−1‖ · ‖ϕ‖∞. Furthermore, taking

into account ω(Aρ∗, R(h)) ≤M · ‖ρ∗‖ · (R(h))β, we have:

ω(ρ∗, R(h)) = ω(ϕ−Aρ∗, R(h)) ≤ ω(ϕ,R(h)) + ω(Aρ∗, R(h)) ≤

≤ ω(ϕ,R(h)) +M · (R(h))β, β ∈ (0, α).

As a result, from the obtained estimations and from Theorem 2.1 we get δN(h) ≤
≤M ·

[
(R(h))β + ω(ϕ,R(h))

]
, where β ∈ (0, α). �
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Note that in particular for λ = 0 we get exterior Neumann boundary value
problem. The justification of the collocation method for BIE corresponding to
the exterior Neumann boundary value problem is given in the paper [1]. But in
the paper [1], for constructing a cubic formula in addition to support points the
additional points on the boundary of elementary parts were taken. One of the
advantages of this paper is that these additional points were not used in it and
this in its turn shortens much the finding of approximate values of corresponding
integrals.
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