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THE GENERAL SOLUTION OF THE HOMOGENEOUS

RIEMANN PROBLEM IN THE WEIGHTED SMIRNOV

CLASSES

SABINA R. SADIGOVA

Abstract. In this work Riemann problem of theory of analytic functions
in weighted Smirnov classes is considered. Under certain conditions on
the coefficients of this problem its Noetherian is proved. In the case of
the solvability the general solution of the homogeneous Riemann prob-
lem is constructed. Sufficient condition on the weight function for the
solvability of the corresponding problem is obtained.

1. Introduction

Faber polynomials in complex domains are well known in the approximation
theory. They are good tools while investigating many problems in the approx-
imation theory and in theory of conformal mappings. More information about
these problems can be found in [8, 11, 12, 13, 14, 15, 16, 23, 24] ( and references
therein ). Faber polynomials are natural generalizations of classical exponential
systems {zn}n∈Z (Z are integers ) for the case of arbitrary domain with boundary
Γ considered inside (or outside) the unit circle on the complex plane. On the unit
circle, the system {zn}n∈Z generates a system of exponents

{
eint
}
n∈Z that plays

an important role in solving many problems for partial differential equations by
Fourier method. Trivial example of this is the Dirichlet problem for the analytic
function u:

∂u
∂z̄ = 0 , z ∈ ω,
u (z) = f (z) , z ∈ ∂ω,

}
(1.1)

where ω ≡ {z : |z| < 1}. If we assume that f belongs to the weighted space
Lp,ρ (∂ω), then the solution u is sought in the Hardy class H+

p,ρ , i.e.

u (z) =
∞∑
n=0

unz
n , z ∈ ω.

Since the system
{
zn/∂ω

}
n∈Z forms a basis for Lp,ρ (∂ω), then

f (z) =
+∞∑

n=−∞
fnz

n , z ∈ ∂ω.

2010 Mathematics Subject Classification. 30E25, 30D55, 32A55.
Key words and phrases. weighted Smirnov classes, Riemann problem.

115



116 SABINA R. SADIGOVA

Thus, if fn = 0 , ∀n < 0, then the Dirichlet problem (1.1) for the analytic
function u ∈ H+

p,ρ is solvable and u (z) =
∑∞

n=0 fnz
n . To solve the similar

problem in an arbitrary simply-connected domain D with boundary Γ

∂u
∂z̄ = 0 , z ∈ D,
u/Γ = f ,

}
by the same method (f ∈ Lp,ρ (Γ) is some given function) we need to study basis
properties of the system of Faber polynomials in Lebesgue or Sobolev spaces of
functions on the curve Γ. In this case, the weighted Smirnov spaces of analytic
functions quite naturally play the role of the weighted Hardy space.

For studying the basicity of the system of generalized Faber polynomials in
weighted Lebesgue spaces, we intend to apply the method of the theory of the
Riemann boundary value problems for analytic functions. Therefore, first, it
should to study the solvability of these problems in weighted Smirnov spaces.
In this paper we consider the homogeneous Riemann problem in the weighted
Smirnov classes. First, we define these weighted classes. Under certain conditions
on the weight function we prove that these spaces are Banach spaces. A sufficient
condition for the solvability of the Riemann problem is obtained and the general
solution of the homogeneous and non-homogeneous problem are constructed. It
should be noted that this method previously used by the authors of [1, 2, 3, 4,
21, 22] for the study of basicity of the perturbed systems of exponents, sines and
cosines. In [5] the basicity of systems of generalized polynomials is proved by the
same method in Lebesgue or Sobolev spaces and in Lp (Γ).

It should be noted that similar problems previously were considered in [18, 19,
20].

2. Auxiliary facts and concepts

In what follows we’ll need some concepts and facts. Denote by Or (z) a circle
with radius r and center in z0 in the complex plane, i.e. Or (z0) ≡ {z ∈ C :
|z − z0| < r } (C is the complex plane). |M | will denote the Lebesgue measure of
(linear) sets M ⊂ Γ, where Γ ⊂ C is some rectifiable curve.

Definition 2.1. The Jordan rectifiable curve Γ is said to be Carleson or regular
if

sup
z∈Γ

∣∣∣Γ⋂Or (z)
∣∣∣ ≤ cr , ∀r > 0 ,

where c is a constant independent of r.

We refer the reader to [7, 9, 10, 17] for further information about these and
related results.

Let Γ be a rectifiable Jordan curve and ω be a weight function on Γ, i.e.
ω (z) > 0 a.e. z ∈ Γ.

Definition 2.2. We say that a weight ω belongs to the Muckenhoupt class Ap (Γ)
(p > 1) on the curve Γ, if

sup
z∈Γ

sup
r>0

(
1

r

∫
Γ
⋂
Or(z)

ω (ξ) |dξ|

) (
1

r

∫
Γ
⋂
Or(z)

|ω (ξ)|−
1
p−1 |dξ|

)p−1

< +∞.
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As usual, denote by Lp (Γ; ω) a weighted Lebesgue space of functions with the
norm ‖·‖p,ω:

‖f‖Lp(Γ;ω) =

(∫
Γ
|f (ξ)|p ω (ξ) |dξ|

) 1
p

.

Consider the Cauchy singular operator SΓ:

SΓ (f) =
1

2πi

∫
Γ

f (ξ)

ξ − τ
dξ , τ ∈ Γ.

The key role in obtaining our main results is played by the following theorem
of G. David [7].
Theorem D. The operator SΓ is bounded in Lp (Γ), 1 < p < +∞, if and only if
Γ is a regular curve. Moreover, if Γ is a regular curve, then the singular operator
SΓ is bounded in Lp (Γ; ω), 1 < p < +∞, if and only if ω ∈ Ap (Γ).

More detailed about these and related results can be found in [10].

3. Main assumptions

Let A (ξ) ≡ |A (ξ)| eiα(ξ), B (ξ) ≡ |B (ξ)| eiβ(ξ) be complex-valued functions
given on the curve Γ. We’ll assume that they satisfy the following basic condi-
tions:

i) |A|±1 , |B|±1 ∈ L∞ (Γ);
ii) α (ξ) , β (ξ) are piecewise-continuous on Γ and let

{
ξk , k = 1, r

}
⊂ Γ be

discontinuity points of the function θ (ξ) ≡ β (ξ)− α (ξ).
For the curve Γ we require the following conditions be fulfilled:

iii) Γ is any Lyapunov or Radon curve (i.e. it is a curve of bounded rotation
without cusps). We’ll assume that the direction along Γ is positive, i.e. while
moving in this direction, the domain D remains in the left side. Let a ∈ Γ be a
start point (also an end point) of the curve Γ. We’ll assume that ξ ∈ Γ follows
the point τ ∈ Γ, i.e. τ ≺ ξ, if ξ follows τ while moving in positive direction along
Γ\a, where a ∈ Γ is the junction of two points a+ = a− , a+ is the start point
and a− is the end point of the curve Γ.

By L R we denote a class of curves satisfying condition iii).
So, without loss of generality, we’ll assume that a+ ≺ ξ1 ≺ ... ≺ ξr ≺ b = a−.

By g (ξ0 ± 0) we denote one-sided limits lim
ξ → ξ0 ± 0
ξ ∈ Γ

g (ξ) of the function g (ξ) at

the point ξ0 ∈ Γ generated by the positive direction of Γ, respectively. The jumps
θ (ξ) at the points ξk , k = 1, r, are denoted by hk:hk = θ (ξk + 0) − θ (ξk − 0),
k = 1, r . Let the following condition hold with respect to the jumps:

iv)
{
hk − 2π

p : k = 0, r
}⋂

Z = ∅, where h0 = θ (a+ 0)−θ (a− 0), p ∈ (1,+∞)

is some number.
Let D+ ⊂ C be a bounded domain with the boundary Γ = ∂D+, with respect

to which the condition i) holds. By Ep (D+) , 1 < p < ∞, we denote Smirnov’s
Banach space of analytic functions in D+ with the norm ‖ · ‖Ep(D+):

‖f‖Ep(D+) = :
∥∥f+

∥∥
Lp(Γ)

, ∀f ∈ Ep
(
D+
)
, (3.1)
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where f+ = f/Γ are non-tangential boundary values of the function f on Γ.
Similarly we define the Smirnov class Ep (D−) in an unbounded domain D− with
the boundary Γ = ∂D− and with the norm

‖f‖Ep(D−) = :
∥∥f−∥∥

Lp(Γ)
, ∀f ∈ Ep

(
D−
)
,

where f− = f/Γ are non-tangential boundary values of f on Γ.
With respect to the norm (3.1) the weighted Smirnov class is defined. Let

ρ ∈ L1 (Γ) be some weight function. Let us define the weighted Smirnov class
Ep,ρ (D+):

Ep,ρ
(
D+
)
≡
{
f ∈ E1

(
D+
)

:
∥∥f+

∥∥
Lp,ρ(Γ)

< +∞
}
,

and let

‖f‖Ep,ρ(D+) =
∥∥f+

∥∥
Lp,ρ(Γ)

. (3.2)

The weighted Smirnov classes are similarly defined in an unbounded domain.
Let D− ⊂ C be an unbounded domain containing the point at infinity (∞).
Denote by mE1 (D−) the class of functions from E1 (D−), which are analytic in
D− with their orders k ≤ m at infinity, i.e. the function f ∈ E1 (D−) in the
neighbourhood of an infinitely remote point z = ∞ has the Laurent expansion
f (z) =

∑m
k=−∞ akz

k, where m is an integer.

If there exits a weight function ρ ∈ L1 (Γ), then the weighted class mEp,ρ (D−)
is defined as

mEp,ρ
(
D−
)
≡
{
f ∈m E1

(
D−
)

:
∥∥f−∥∥

Lp,ρ(Γ)

}
,

and

‖f‖
mEp,ρ(D−) =

∥∥f−∥∥
Lp,ρ(Γ)

,

where f− are non-tangential boundary values of the function f on Γ.
The following lemma is true.

Lemma 3.1. Let ρ
− q
p ∈ L1 (Γ). Then the class Ep,ρ (D+) is a Banach space with

respect to the norm (3.2).

Similarly we prove the following

Lemma 3.2. Let ρ
− q
p ∈ L1 (Γ). Then the weighted class mEp,ρ (D−) is a Banach

space with respect to the norm ‖ · ‖
mEp,ρ(D−) .

4. Riemann’s homogeneous problem in weighted Smirnov classes

Consider the following homogeneous Riemann problem in the weighted classes
Ep,ρ (D+)×m Ep,ρ (D−) :

A (ξ)F+ (ξ) +B (ξ)F− (ξ) = 0, a.e. ξ ∈ Γ. (4.1)

By the solution of problem (4.1) we mean the pair of analytic functions (F+;F−) ∈
Ep,ρ (D+)×mEp,ρ (D−), whose non-tangential boundary values F± (ξ) satisfy re-
lation (4.1) a.e. on Γ. In the case without weight this is a well-studied problem,
and its theory has been elucidated in I.I.Danilyuk’s monograph [6]. In obtaining
our main results we will use the following lemma from [6].
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Lemma 4.1. Let D+ be an arbitrary domain bounded by a rectifiable curve Γ =
∂D+ . Homogeneous problem

F+ (ξ)− F− (ξ) = 0, a.e. ξ ∈ Γ,

has only trivial solutions in the form of polynomials in the classes E1 (D+)×
mE1 (D−), whose degree does not exceed m, and when m < 0, has only the trivial
solution.

We’ll solve the homogeneous problem (4.1) on the scheme proposed in the
I.I.Danilyuk’s monograph [6]. Let S be a length of the curve Γ and z = z (s) , 0 ≤
s ≤ S , be a parametric representation of Γ with respect to the length of the arch
s. Problem (4.1) can be written as

F+ [z (s)]−D (s)F− [z (s)] = 0, a.e. s ∈ [0, S] , (4.2)

where D (s) = −B[z(s)]
A[z(s)] . Put Ω (s) ≡ argD (s) , 0 ≤ s ≤ S, and let hk =

z (sk + 0) − z (sk − 0), k = 1, r ;h0 = Ω (+0) − Ω (S − 0). Consider the piece-
wise holomorphic function

Z(1) (z) = exp

{
1

2πi

∫
Γ

ln |D (s)| dz (s)

z (s)− z

}
,

Z̃ (z) = exp

{
1

2π

∫
Γ

Ω (s)
dz (s)

z (s)− z

}
.

Denote by Z : Z (z) ≡ Z(1) (z) Z̃ (z) the product of these functions. As fol-
lows from the Sokhotskii-Plemelj formula, this function satisfies the homogeneous
equation (4.2) a.e. on Γ , i.e.

Z+ [z (s)]−D (s)Z− [z (s)] = 0, a.e. s ∈ [0, S] .

Regarding the first multiplier Z(1) (z) we have the following

Lemma 4.2. [6] Let with respect to the coefficients A (ξ) , B (ξ) and the curve Γ

satisfy the conditions i)-iv). Then the functions Z(1) (z) ;
[
Z(1) (z)

]−1
are bounded

in each of the domains D±.

To conduct further research, we’ll represent the function Ω (s) in the form

Ω (s) = Ω0 (s) + Ω1 (s) , 0 ≤ s ≤ S,

where Ω0 (s) is a continuous part, and Ω1 (s) is a jump function, which is deter-
mined by the expression

Ω1 (0) = 0,

Ω1 (s) = [Ω (+0)− Ω (0)] +
∑

0<sk<s

hk + [Ω (s)− Ω (s− 0)] , 0 < s < S.

Denote

h
(0)
0 = Ω0 (S)− Ω0 (0) , h

(1)
0 = Ω1 (+0)− Ω1 (s− 0) .

Let

Z(2) (z) = exp

{
1

2π

∫
Γ

Ω0 (s)
dz (s)

z (s)− z

}
,
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and

Z(3) (z) = exp

{
1

2π

∫
Γ

Ω1 (s)
dz (s)

z (s)− z

}
.

In [6] it is shown that the following inclusion holds.

Z̃±(2) (s) ≡ |z (s)− z (0)|±
h
(0)
0
2π

∣∣∣Z±(2) [z (s)]
∣∣∣±1
∈ Lq (Γ) , ∀q ∈ (0,+∞) . (4.3)

Modulus of the boundary values of the function Z(3) (z) has the representation
[6]: ∣∣∣Z+

(3) [z (σ)]
∣∣∣ ≡ |z (0)− z (σ)|−

h
(1)
0
2π

∏
0<sk<S

|z (sk)− z (σ)|−
hk
2π . (4.4)

The following lemma is true.

Lemma 4.3. [6] Let the curve Γ satisfy the condition iii) and Ω1 (s)− be an

arbitrary jump function with jumps h
(1)
0 = Ω1 (+0) − Ω1 (S − 0) at point z (0).

Then the modulus of the boundary values of the function Z(3) (z) is representable
by the formula (4.4) a.e. σ ∈ [0, S].

It is clear that

Z± [z (s)] = Z±(1) [z (s)]Z±(2) [z (s)]Z±(3) [z (s)] .

Future Z (z) will be called a canonical solution of the homogeneous problem (4.2).
Assume

Φ (z) ≡ F (z)

Z (z)
. (4.5)

We have

Φ+ (τ) = Φ− (τ) , a.e. τ ∈ Γ.

Let us show that the function Φ satisfy all the conditions of Lemma 4.1. So, Z (z)
has no zeros and no poles at z /∈ Γ. Therefore, the functions Φ (z) and F (z) have
the same order at infinity. By definition of solution, we have F ∈ E1 (D+). From
the results of I.I.Danilyuk’s monograph [6] (see e.g. Lemma 16.5, page 148) it
follows that if the conditions i)-iii) are fulfilled, then the function Z (z) belongs
to classes Eδ (D±) for sufficiently small δ > 0. Then from the relation (4.5)
we obtain that the function Φ (z) belongs to class Eµ (D±) for sufficiently small
µ > 0. Thus, as it follows from Smirnov’s theorem [6], if Φ+ ∈ L1 (Γ) , then it is
clear that Φ ∈ E1 (D+). As, Φ+ (τ) = Φ− (τ), a.e. τ ∈ Γ, then it is sufficient to
show that Φ− (τ) belongs to space L1 (Γ). We have∣∣Φ− (τ)

∣∣ =
∣∣F− (τ)

∣∣ ∣∣Z− (τ)
∣∣−1

, a.e. τ ∈ Γ.

By definition of solution, we have |F−| ∈ Lp,ρ (Γ). Therefore, if |Z−|−1 ∈ Lq;ρ̃ (Γ),

then Φ− ∈ L1 (Γ), where ρ̃ = ρ
− q
p . This follows directly from the Hölder’s

inequality∫
Γ

∣∣Φ− (τ)
∣∣ |dτ | ≤ (∫

Γ

∣∣F− (τ)
∣∣p ρ (τ) |dτ |

) 1
p
(∫

Γ

∣∣Z− (τ)
∣∣−q ρ− qp (τ) |dτ |

) 1
q

.
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Then by Smirnov’s theorem [6] we obtain that the function Φ (z) belongs to
E1 (D±). Since, Φ+ (τ) = Φ− (τ), a.e. τ ∈ Γ, then from the uniqueness theorem
(i.e. from Lemma 4.1) follows that Φ (z) is a polynomial of degree k ≤ m, i.e.
Φ (z) ≡ Pm (z), where Pm (z) is a polynomial of degree k ≤ m. As a result, we
obtain the following representation

F (z) ≡ Z (z)Pm (z) . (4.6)

In the subsequent need to find out the belonging of the functions F (z) to the
desired class. Suppose that the inequality

hk
2π

< 1 , k = 0, r, (4.7)

is fulfilled. It is clear that ∃p0 ∈ (1,+∞) :

hk
2π
p0 < 1 , k = 0, r. (4.8)

Let

σ (s) ≡ |z (0)− z (s)|−
h0
2π

∏
0<sk<S

|z (sk)− z (s)|−
hk
2π ,

where h0 = h
(1)
0 − h

(0)
0 . Then the modulus of the boundary values of |Z+ (z (s))|

is representable by the formula∣∣Z+ (z (s))
∣∣ ≡ ∣∣∣Z+

(1) (z (s))
∣∣∣ ∣∣∣Z̃+

(2) (z (s))
∣∣∣σ (s) .

Paying attention to Lemma 4.2, we have∣∣Z+ (z (s))
∣∣ ∼ σ (s)

∣∣∣Z̃+
(2) (z (s))

∣∣∣ , s ∈ [0, S] . (4.9)

Applying Hölder’s inequality, we get∫
Γ

∣∣Z+ (z (s))
∣∣ |dz (s)| ≤

(∫
Γ
|σ (s)|p0 |dz (s)|

) 1
p0

(∫
Γ

∣∣∣Z̃+
(2) (s)

∣∣∣p′0 |dz (s)|
) 1
p′0
,

(4.10)
where 1

p0
+ 1

p′0
= 1. It is known that it holds ( see e.g. [6])∣∣∣∣dzds

∣∣∣∣ = 1, a.e. s ∈ [0, S] ,

moreover, ∃δ0; k0 > 0 :

k0 |s− σ| ≤ |z (s)− z (σ)| ≤ |s− σ| , ∀s, σ : |s− σ| ≤ δ0.

Taking into account these relations, and paying attention to the inclusion (4.3)
and the inequality (4.8), from (4.10) we have Z+ ∈ L1 (Γ), and as a result,
F+ ∈ L1 (Γ). Then from Smirnov’s theorem it follows that the function F (z)
belongs to Smirnov class E1 (D+). It is absolutely clear that the boundary values
F± of function F on Γ satisfy the relation (4.2). From the condition i) follows

|D|±1 ∈ L∞ , therefore it is clear that∣∣Z+ (z (s))
∣∣ ∼ ∣∣Z− (z (s))

∣∣ , s ∈ (0, S) .

Beginning from this relation it is easy to enclose that F− ∈ L1 (Γ), and as a
result, F ∈m E1 (D−). We’ll find conditions under which the boundary values F±
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belong to the space Lp,ρ (Γ). It is clear that if Z+ ∈ Lp,ρ (Γ), then F± ∈ Lp,ρ (Γ).
Assume that ∃p1 ∈ (1,+∞) :∫ S

0
σpp1 (s) ρp1 (z (s)) ds < +∞. (4.11)

Then taking into account the expression (4.9) we have∫ S

0

∣∣Z+ (z (s))
∣∣p ρ (z (s)) ds ≤

M

(∫ S

0
σpp1 (s) ρp1 (z (s)) ds

) 1
p1
(∫ S

0

∣∣∣Z̃+
(2) (s)

∣∣∣q1 ds) 1
q1

,

where M is some constant and 1
p1

+ 1
q1

= 1. Paying attention to the relation

(4.3) we obtain from this Z+ ∈ Lp,ρ (Γ). It remains to verify the fulfillment of

the condition |Z−|−1 ∈ Lp;ρ̃ (Γ). Similarly we establish that if ∃p2 ∈ (1,+∞) :∫ S

0
σ−qp2 (s) ρ

− q
p
p2 (z (s)) ds < +∞, (4.12)

then again from the relation (4.3) follows immediately |Z−|−1 ∈ Lp;ρ̃. Summing
up the obtained results we arrive at the following conclusion.

Theorem 4.1. Let the conditions i)-iii) be fulfilled with respect to the complex-
valued functions A (ξ) , B (ξ) and the curve Γ. Assume that with respect to jumps
{hk} and the weight function ρ (ξ) the conditions (4.7), (4.11), and (4.12) are
fulfilled. Then the general solution of the homogenous problem (4.1) has a repre-
sentation

F (z) ≡ Z (z)Pm (z) ,

in classes Ep,ρ (D+)×mEp,ρ (D−), where Z (z) is a canonical solution, and Pm (z)
is an arbitrary polynomial of order k ≤ m.

From this theorem follows immediately following

Corollary 4.1. Suppose that all the conditions of Theorem 4.1 are fulfilled. Then
under the condition F (∞) = 0 the problem (4.1) has only a trivial, i.e. zero
solution in classes Ep,ρ (D+)×m Ep,ρ (D−).

Let us consider some special cases concerning the weight function ρ .

Example 4.1. Let ρ be of the following form

ρ (z (s)) =
m∏
k=1

|s− tk|αk , (4.13)

where {tk}m1 ⊂ (0, S) are different points, {αk}m1 ⊂ R is some number. The union

of the sets {sk}r0 and {tk}m1 denote by {τk}l1 : {τk}l1 ≡ {sk}
r
0 ∪ {tk}

m
1 . Let χA ( · )

be the characteristic function of the set A. Denote by Tk : Tk ≡ {τk} , k = 1, l
the singleton {τk} , k = 1, l. Assume

βk = − p

2π

r∑
i=1

hiχTk (si) +

m∑
i=1

αiχTk (ti) , k = 1, l. (4.14)



THE GENERAL SOLUTION OF THE HOMOGENEOUS RIEMANN PROBLEM . . . 123

Let us assume that the following inequality hold

−1 < βk <
p

q
, k = 1, l. (4.15)

It is easy to show that when the inequalities (4.15) are fulfilled, the relations
(4.11), (4.12) hold and as a result, the assertion of Theorem 4.1 is true, i.e. we
have

Corollary 4.2. Let the functions A (ξ) , B (ξ) and the curve Γ satisfy the con-
ditions i)-iii), and the weight function is of the form (4.13). Assume that the
inequalities (4.15) are fulfilled , where the quantities βk are defined by the expres-
sions (4.14). Then the general solution of the problem (4.1) in classes Ep,ρ (D+)×m
Ep,ρ (D−) has the representation (4.6).

Example 4.2. As a weight function ρ we again take (4.13), but this time we
assume that {sk}r1 ∩ {tk}

m
1 = ∅. In this case the following corollary is true.

Corollary 4.3. Let all the conditions of Corollary 4.2 be fulfilled and {sk}r1 ∩
{tk}m1 = ∅.

If the inequalities

−1

q
<
hk
2π

<
1

p
, k = 1, r ;

−1 < αi <
q

p
, i = 1,m ,

hold, then the general solution of the problem (4.1) has a representation (4.6) in
classes Ep,ρ (D+)×m Ep,ρ (D−).
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