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SOLVABILITY OF BOUNDARY VALUE PROBLEM FOR

ELLIPTIC OPERATOR-DIFFERENTIAL EQUATIONS OF

FOURTH ORDER WITH OPERATOR BOUNDARY

CONDITIONS

ARAZ R. ALIEV AND ELVIN S. RZAYEV

In memory of M. G. Gasymov on his 75th birthday

Abstract. Sufficient conditions for well-posed and unique solvability of
a boundary value problem for elliptic operator-differential equations of
fourth order with an unbounded operator in boundary conditions are
obtained. Estimates for the norms of intermediate derivatives operators
closely related to the solvability conditions are derived. Note that the
solvability conditions are expressed only in terms of operator coefficients
of the boundary value problem.

1. Introduction

Let H be a separable Hilbert space with a scalar product (x, y), x, y ∈ H, and
A be a positive-definite self-adjoint operator in H (A = A∗ ≥ cE, c > 0, E is a
unit operator). By Hγ (γ ≥ 0) we will mean a scale of Hilbert spaces generated
by the operator A, i.e. Hγ = D(Aγ), (x, y)γ = (Aγx,Aγy), x, y ∈ D (Aγ). In
case γ = 0 we assume that H0 = H, (x, y)0 = (x, y), x, y ∈ H.

Denote by L2 ([a, b] ;H), −∞ ≤ a < b ≤ +∞, the Hilbert space of all vector-
functions defined on [a, b] with values in H and the norm

‖f‖L2([a,b];H) =

(∫ b

a
‖f(t)‖2H dt

)1/2

.

Following [8, Chapter 1], we introduce the Hilbert space

W 4
2 ([a, b] ;H) =

{
u(t) : u(4)(t) ∈ L2 ([a, b] ;H) , A4u(t) ∈ L2 ([a, b] ;H)

}
equipped with the norm

‖u‖W 4
2 ([a,b];H) =

(∥∥∥u(4)∥∥∥2
L2([a,b];H)

+
∥∥A4u

∥∥2
L2([a,b];H)

)1/2

.
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Throughout this paper, the derivatives u(j) ≡ dju
dtj

are understood in the sense of
the theory of distributions in Hilbert space [8]. For a = −∞, b = +∞ we will
assume that L2 ((−∞,+∞) ;H) ≡ L2 (R;H), W 4

2 ((−∞,+∞) ;H) ≡ W 4
2 (R;H),

and for a = 0, b = +∞ – L2 ([0,+∞) ;H) ≡ L2 (R+;H), W 4
2 ([0,+∞) ;H) ≡

W 4
2 (R+;H).
Next, by L (X,Y ) we will mean a set of linear bounded operators from the

Hilbert spaceX to another Hilbert space Y . Fix some operatorK ∈ L(H5/2, H3/2).

Consider the following subspace of W 4
2 (R+;H):

W 4
2,K(R+;H) =

{
u (t) : u (t) ∈W 4

2 (R+;H) , u′′(0) = Ku′(0), u′′′(0) = 0
}
.

The fact that W 4
2,K(R+;H) is a subspace of W 4

2 (R+;H), follows from the trace

theorem (see [8, Chapter 1]).
By σ(·) we denote the spectrum of the operator (·).
Consider in H the following boundary value problem:

u(4)(t) +A4u(t) +

4∑
j=1

Aju
(4−j)(t) = f(t), t ∈ R+, (1.1)

u′′ (0) = Ku′ (0) , u′′′(0) = 0, (1.2)

where A = A∗ ≥ cE, c > 0, Aj , j = 1, 2, 3, 4 are linear and in general unbounded
operators, K ∈ L(H5/2, H3/2), f(t) ∈ L2 (R+;H), u(t) ∈W 4

2 (R+;H).

Definition. If the vector-function u(t) ∈W 4
2 (R+;H) satisfies the equation (1.1)

almost everywhere in R+, and the boundary conditions (1.2) are fulfilled in the
sense

lim
t→0

∥∥ u′′(t)−Ku′(t)
∥∥
H3/2

= 0, lim
t→0

∥∥u′′′(t)∥∥
H1/2

= 0,

then u(t) will be called a regular solution of the boundary value problem (1.1),
(1.2).

The purpose of this paper is to find the conditions for existence and uniqueness
of a regular solution of the boundary value problem (1.1), (1.2) under some
restrictions on its operator coefficients.

Quite a good number of research works have been dedicated to the solvability of
boundary value problems for second order elliptic operator-differential equations
with operator boundary conditions (see, e.g., [3, 4, 7, 12-15] and the references
therein); however, these studies are far from the full completion. The works
dedicated to such boundary value problems for operator-differential equations of
higher order are relatively few. For example, in [1, 2] the conditions for exis-
tence and uniqueness of a regular solution of boundary value problems for third
order operator-differential equations on the semi-axis with an operator in one of
the boundary conditions are obtained. As for the solvability of boundary value
problems for operator-differential equations of higher order in case when the co-
efficients in the boundary conditions are complex numbers only, this matter has
been extensively studied in [5, 6, 9-11, 16] and references therein.

It should be noted that, as the boundary conditions (1.2) include an unbounded
operator, the obtained abstract results are applicable to the solvability of a new
class of boundary value problems for elliptic partial differential equations of fourth
order, which gives another reason to study the boundary value problems like (1.1),
(1.2).
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2. Main results

First, let Aj = 0, j = 1, 2, 3, 4 in (1.1) and consider a simpler equation

u(4) (t) +A4u (t) = f (t) , t ∈ R+. (2.1)

Denote by P0 the operator which acts from W 4
2,K(R+;H) to L2 (R+;H) ac-

cording to the following rule:

P0u(t) = u(4)(t) +A4u(t), u (t) ∈W 4
2,K (R+;H) .

The following lemma is true.
Lemma 1. Let B = A3/2KA−5/2 and − 1√

2
/∈ σ(B). Then the equation P0u (t) =

0 has a unique zero solution in W 4
2,K(R+;H).

Proof. It is not difficult to see that the general solution of the equation P0u (t) = 0
belonging to the space W 4

2 (R+;H) has the following form:

u0 (t) = eω1tAϕ0 + eω2tAϕ1,

where

ω1 = − 1√
2

+
1√
2
i, ω2 = − 1√

2
− 1√

2
i,

and ϕ0, ϕ1 ∈ H7/2. From the conditions (1.2) we have:{
ω2
1A

2ϕ0 + ω2
2A

2ϕ1 = KA (ω1ϕ0 + ω2ϕ1) ,
ω3
1ϕ0 + ω3

2ϕ1 = 0.
(2.2)

From the system (2.2) we obtain:

ϕ1 = −ω
3
1

ω3
2

ϕ0, (2.3)

(
E +

√
2B
)
A7/2ϕ0 = 0. (2.4)

By condition, − 1√
2
/∈ σ(B). Then it follows from the equation (2.4) that ϕ0 = 0.

Hence from (2.3) we have ϕ1 = 0. Consequently, u0(t) = 0. The lemma is proved.
The following theorem is true.

Theorem 1. Let B = A3/2KA−5/2 and − 1√
2
/∈ σ(B). Then for every f (t) ∈

L2(R+;H) the boundary value problem (2.1), (1.2) has a unique regular solution.
Proof. Due to Lemma 1, the problem

u(4) (t) +A4u (t) = 0, t ∈ R+,

u′′ (0) = Ku′ (0) , u′′′(0) = 0

has only zero solution belonging to the space W 4
2,K(R+;H).

Let’s show that the equation P0u (t) = f (t) has the solution u (t) ∈W 4
2,K(R+;H)

for every f (t) ∈ L2 (R+;H).
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First, let’s extend the vector-function f (t) by zero for t < 0 and denote the

extended function by F (t). Let F̂ (ξ) be the Fourier transform for the vector-
function F (t), i.e.

F̂ (ξ) =
1√
2π

∫ +∞

−∞
F (t)e−iξtdt,

where the integral on the right-hand side is understood in the sense of mean
convergence in H.

Applying direct and indirect Fourier transforms, we obtain that the vector-
function

υ (t) =
1

2π

∫ +∞

−∞

(
ξ4E +A4

)−1(∫ +∞

0
f (s) e−iξsds

)
eitξdξ, t ∈ R,

satisfies the equation

υ(4)(t) +A4υ (t) = F (t)

almost everywhere in R. Let us prove that υ (t) ∈ W 4
2 (R;H). Let υ̂ (ξ) be

the Fourier transform of the vector-function υ (t). According to the Plancherel
theorem,

‖υ (t)‖2W 4
2 (R;H) =

∥∥∥υ(4) (t)
∥∥∥2
L2(R;H)

+
∥∥A4υ (t)

∥∥2
L2(R;H)

=

∥∥ξ4υ̂ (ξ)
∥∥2
L2(R;H)

+
∥∥A4υ̂ (ξ)

∥∥2
L2(R;H)

=∥∥∥ξ4 (ξ4E +A4
)−1

F̂ (ξ)
∥∥∥2
L2(R;H)

+
∥∥∥A4

(
ξ4E +A4

)−1
F̂ (ξ)

∥∥∥2
L2(R;H)

≤

sup
ξ∈R

∥∥∥ξ4 (ξ4E +A4
)−1∥∥∥2

H→H

∥∥∥F̂ (ξ)
∥∥∥2
L2(R;H)

+

sup
ξ∈R

∥∥∥A4
(
ξ4E +A4

)−1∥∥∥2
H→H

∥∥∥F̂ (ξ)
∥∥∥2
L2(R;H)

=(
sup
ξ∈R

∥∥∥ξ4 (ξ4E +A4
)−1∥∥∥2

H→H
+ sup

ξ∈R

∥∥∥A4
(
ξ4E +A4

)−1∥∥∥2
H→H

)
‖F (t)‖2L2(R;H) .

(2.5)
From the spectral theory of self-adjoint operators it is known that for ξ ∈ R∥∥∥ξ4 (ξ4E +A4

)−1∥∥∥ ≤ sup
σ∈σ(A)

∣∣∣ξ4 (ξ4 + σ4
)−1∣∣∣ < 1,

∥∥∥A4
(
ξ4E +A4

)−1∥∥∥ ≤ sup
σ∈σ(A)

∣∣∣σ4 (ξ4 + σ4
)−1∣∣∣ < 1.

Then from (2.5) we have υ (t) ∈W 4
2 (R;H).

Denote by u1(t) the restriction of the function υ (t) to R+. Then u1 (t) belongs
to W 4

2 (R+;H) and satisfies the equation (2.1) almost everywhere in R+. And the

trace theorem [8, Chapter 1] implies u
(j)
1 (0) ∈ H7/2−j , j = 0, 1, 2, 3.

The solution to the boundary value problem (2.1), (1.2) will be searched for in
the following form:

u(t) = u1 (t) + eω1tAψ0 + eω2tAψ1,
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where ψ0 , ψ1 ∈ H7/2 are subject to be found from the conditions (1.2):{
u′′1(0) + ω2

1A
2ψ0 + ω2

2A
2ψ1 = K (u′1(0) + ω1Aψ0 + ω2Aψ1) ,

u′′′1 (0) + ω3
1A

3ψ0 + ω3
2A

3ψ1 = 0.
(2.6)

Taking into account

ψ1 = −ω
3
1

ω3
2

ψ0 −
1

ω3
2

A−3u′′′1 (0)

in the first equation of system (2.6) and considering the condition − 1√
2
/∈ σ(B),

we uniquely determine

ψ0 = A−7/2
(
E +

√
2B
)−1

A7/2η ∈ H7/2,

where

η = − 1√
2
A−2

[
ω2Ku

′
1(0)− 1

ω2
KA−2u′′′1 (0)− ω2u

′′
1(0) +A−1u′′′1 (0)

]
∈ H7/2.

Thus, u(t) belongs to W 4
2 (R+;H), satisfies the equation (2.1) almost every-

where in R+ and the conditions (1.2).
On the other hand, the operator P0 : W 4

2,K(R+;H)→ L2(R+;H) is bounded:

‖P0u‖2L2(R+;H) =
∥∥∥u(4) +A4u

∥∥∥2
L2(R+;H)

≤ 2 ‖u‖2W 4
2 (R+;H) .

As a result, by virtue of Banach inverse operator theorem, there exists the
operator P−10 : L2(R+;H) → W 4

2,K(R+;H) and this operator is bounded. It
follows that

‖u‖W 4
2 (R+;H) ≤ const ‖f‖L2(R+;H) .

The theorem is proved.
Theorem 1, combined with Lemma 1, implies that the operator P0, under

condition − 1√
2
/∈ σ(B) with B = A3/2KA−5/2, performs an isomorphism between

the spaces W 4
2,K(R+;H) and L2 (R+;H). Consequently, the norm ‖P0u‖L2(R+;H)

is equivalent to the original norm ‖u‖W 4
2 (R+;H) in W 4

2,K(R+;H). Then, as the

intermediate derivative operators

Aj
d4−j

dt4−j
: W 4

2,K(R+;H)→ L2(R+;H), j = 1, 2, 3, 4,

are continuous [8], their norms can be estimated by ‖P0u‖L2(R+;H). Estimates for

these norms are required when establishing solvability conditions for the boundary
value problem (1.1), (1.2). But, before we proceed to the estimates for these
norms, we prove the following lemma.
Lemma 2. Let B = A3/2KA−5/2 and ReB ≥ 0. Then for every u (t) ∈
W 4

2,K(R+;H) there holds the inequality

‖P0u‖2L2(R+;H) ≥ ‖u‖
2
W 4

2 (R+;H) + 2
∥∥A2u′′

∥∥2
L2(R+;H)

. (2.7)

Proof. Note that integration by parts for u (t) ∈W 4
2,K(R+;H) yields

Re
(
u(4), A4u

)
L2(R+;H)

= Re
(
BA5/2u′(0), A5/2u′(0)

)
+
∥∥A2u′′

∥∥2
L2(R+;H)

. (2.8)
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Taking into account (2.8), we have:

‖P0u‖2L2(R+;H) =
∥∥∥u(4)∥∥∥2

L2(R+;H)
+
∥∥A4u

∥∥2
L2(R+;H)

+ 2Re
(
u(4), A4u

)
L2(R+;H)

=

‖u‖2W 4
2 (R+;H) + 2Re

(
BA5/2u′(0), A5/2u′(0)

)
+ 2

∥∥A2u′′
∥∥2
L2(R+;H)

. (2.9)

As ReB ≥ 0, the equality (2.9) implies the validity of the lemma. The lemma is
proved.
Theorem 2. Let B = A3/2KA−5/2 and ReB ≥ 0. Then for every u (t) ∈
W 4

2,K(R+;H) there hold the following estimates:∥∥∥Aju(4−j)∥∥∥
L2(R+;H)

≤ cj ‖P0u‖L2(R+;H) , j = 1, 2, 3, 4, (2.10)

where

c1 =
1√
2
, c2 =

1

2
, c3 = c4 = 1.

Proof. Scalar multiplication of both sides of (2.1) by A4u(t) in L2 (R+;H) and
integration by parts with consideration of conditions u (t) ∈ W 4

2,K(R+;H) and
ReB ≥ 0 yield:

Re
(
P0u,A

4u
)
L2(R+;H)

= Re
(
u(4) +A4u,A4u

)
L2(R+;H)

=

∥∥A4u
∥∥2
L2(R+;H)

+Re
(
BA5/2u′(0), A5/2u′(0)

)
+
∥∥A2u′′

∥∥2
L2(R+;H)

≥∥∥A4u
∥∥2
L2(R+;H)

+
∥∥A2u′′

∥∥2
L2(R+;H)

. (2.11)

Applying Cauchy-Schwarz inequality to the left-hand side of (2.11), and then
using Young inequality, we have:∥∥A4u

∥∥2
L2(R+;H)

+
∥∥A2u′′

∥∥2
L2(R+;H)

≤ ‖P0u‖L2(R+;H)

∥∥A4u
∥∥
L2(R+;H)

≤

ε

2
‖P0u‖2L2(R+;H) +

1

2ε

∥∥A4u
∥∥2
L2(R+;H)

, ε > 0. (2.12)

Assuming ε = 1
2 in (2.12), we get∥∥A2u′′

∥∥2
L2(R+;H)

≤ 1

4
‖P0u‖2L2(R+;H)

or ∥∥A2u′′
∥∥
L2(R+;H)

≤ 1

2
‖P0u‖L2(R+;H) . (2.13)

On the other hand, from (2.12) we have∥∥A4u
∥∥2
L2(R+;H)

≤ ‖P0u‖L2(R+;H)

∥∥A4u
∥∥
L2(R+;H)

.

Consequently, ∥∥A4u
∥∥
L2(R+;H)

≤ ‖P0u‖L2(R+;H) . (2.14)

The validity of inequality (2.14) can be obtained from (2.7), too. Besides, it
follows from the inequality (2.7) that∥∥∥u(4)∥∥∥

L2(R+;H)
≤ ‖P0u‖L2(R+;H) . (2.15)
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Now let’s estimate
∥∥A3u′

∥∥
L2(R+;H)

. It is shown in [11] that for u (t) ∈W 4
2 (R+;H)

there holds ∥∥A3u′
∥∥2
L2(R+;H)

≤ 2
∥∥A2u′′

∥∥
L2(R+;H)

∥∥A4u
∥∥
L2(R+;H)

. (2.16)

Considering (2.13), (2.14) in (2.16), we have∥∥A3u′
∥∥2
L2(R+;H)

≤ ‖P0u‖2L2(R+;H)

or ∥∥A3u′
∥∥
L2(R+;H)

≤ ‖P0u‖L2(R+;H) .

Finally, we pass on to estimation of ‖Au′′′‖L2(R+;H). Integrating by parts with

the consideration of u (t) ∈ W 4
2,K(R+;H), applying Cauchy-Schwarz inequality

and then using inequalities (2.13), (2.15), we get∥∥Au′′′∥∥2
L2(R+;H)

=

∫ +∞

0
(Au′′′, Au′′′)Hdt = (Au′′, Au′′′)H

∣∣+∞
0
−∫ +∞

0
(A2u′′, u(4))Hdt = −

∫ +∞

0
(A2u′′, u(4))Hdt ≤∥∥A2u′′

∥∥
L2(R+;H)

∥∥∥u(4)∥∥∥
L2(R+;H)

≤ 1

2
‖P0u‖2L2(R+;H) .

Consequently, ∥∥Au′′′∥∥
L2(R+;H)

≤ 1√
2
‖P0u‖L2(R+;H) .

The theorem is proved.
Now we consider the case when Aj 6= 0, j = 1, 2, 3, 4.
Denote by P the operator which acts from W 4

2,K(R+;H) to L2 (R+;H) accord-
ing to the following rule:

Pu(t) = u(4)(t) +A4u(t) +

4∑
j=1

Aju
(4−j)(t), u (t) ∈W 4

2,K (R+;H) .

The following lemma is true.
Lemma 3. Let AjA

−j ∈ L(H,H), j = 1, 2, 3, 4. Then the operator P is a
bounded operator from W 4

2,K (R+;H) to L2 (R+;H).

Proof. For every u (t) ∈W 4
2,K(R+;H) there holds

‖Pu‖L2(R+;H) ≤ ‖P0u‖L2(R+;H) +

∥∥∥∥∥∥
4∑
j=1

Aju
(4−j)

∥∥∥∥∥∥
L2(R+;H)

≤

√
2 ‖u‖W 4

2 (R+;H) +

4∑
j=1

∥∥∥Aju(4−j)∥∥∥
L2(R+;H)

≤

√
2 ‖u‖W 4

2 (R+;H) +
4∑
j=1

∥∥AjA−j∥∥H→H ∥∥∥Aju(4−j)∥∥∥L2(R+;H)
. (2.17)

Then, by virtue of the theorem for intermediate derivatives [8, Chapter 1], from
the inequality (2.17) we obtain

‖Pu‖L2(R+;H) ≤ const ‖u‖W 4
2 (R+;H) .
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The lemma is proved.
Based on the above discussion, we are now able to state our main result.
The following main theorem is true.

Theorem 3. Let ReB ≥ 0, AjA
−j ∈ L(H,H), j = 1, 2, 3, 4, and the inequality

α =
4∑
j=1

cj
∥∥AjA−j∥∥H→H < 1

hold, where the numbers cj, j = 1, 2, 3, 4, are defined by Theorem 2, i.e.

c1 =
1√
2
, c2 =

1

2
, c3 = c4 = 1.

Then the boundary value problem (1.1), (1.2) has a unique regular solution for
every f(t) ∈ L2 (R+;H).
Proof. Let’s rewrite the boundary value problem (1.1), (1.2) in the form of
operator equation

P0u(t) + (P − P0)u(t) = f(t),

where f(t) ∈ L2 (R+;H), u(t) ∈W 4
2,K (R+;H).

The conditions B = A3/2KA−5/2, ReB ≥ 0 guarantee the existence of a
bounded inverse operator P−10 from L2 (R+;H) to W 4

2,K(R+;H). Substituting

u(t) = P−10 v(t), where v(t) ∈ L2 (R+;H), we obtain the following equation in the
space L2 (R+;H):

v(t) + (P − P0)P
−1
0 v(t) = f(t).

Then for every v(t) ∈ L2 (R+;H), in view of estimates (2.10), we have:∥∥(P − P0)P
−1
0 v

∥∥
L2(R+;H)

= ‖(P − P0)u‖L2(R+;H) ≤

4∑
j=1

∥∥AjA−j∥∥H→H ∥∥∥Aju(4−j)∥∥∥L2(R+;H)
≤

4∑
j=1

cj
∥∥AjA−j∥∥H→H ‖P0u‖L2(R+;H) = α ‖v‖L2(R+;H) .

As, by condition, α < 1, the operator E + (P − P0)P
−1
0 has an inverse in

L2 (R+;H). Consequently,

u(t) = P−10

(
E + (P − P0)P

−1
0

)−1
f(t),

with

‖u‖W 4
2 (R+;H) ≤∥∥P−10

∥∥
L2(R+;H)→W 4

2 (R+;H)

∥∥∥(E + (P − P0)P
−1
0

)−1∥∥∥
L2(R+;H)→L2(R+;H)

‖f‖L2(R+;H)

≤ const ‖f‖L2(R+;H) .

The theorem is proved.
Remark 1. In Theorem 3, the condition ReB ≥ 0, where B = A3/2KA−5/2,
allows the omission of condition − 1√

2
/∈ σ(B).

Remark 2. Separate consideration is required for the case when the operator ReB
is not non-negative.
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