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Abstract. We consider the boundary value problem for one-dimensional
Dirac’s canonical system. The general characteristics of the location of
the eigenvalues on the real axis and oscillation properties of eigenvector-
functions of this problem are investigated.

1. Introduction

We consider the following boundary value problem for one-dimensional Dirac’s
canonical system

ϑ′ − {λ+ p(x)}u = 0, u′ + {λ+ r(x)}ϑ = 0, 0 < x < π, (1.1)

ϑ(0) cosα+ u(0) sinα = 0, (1.2)

ϑ(π) cosβ + u (π) sinβ = 0, (1.3)

where λ ∈ C is a spectral parameter, the functions p(x) and r(x) are continuous
on the interval [0, π], α, β are real constans such that 0 ≤ α, β < π.

If the boundary value problem (1.1)-(1.3) has non-trivial solution

U(x, λ) = (u (x, λ), ϑ(x, λ))

for some λ = λ̃, then the number λ̃ is called eigenvalue, and the corresponding
solution U(x, λ̃) is called eigenvector-function.

The Dirac equation is a modern presentation of the relativistic quantum me-
chanics of electrons intended to make new mathematical results accesible to a
wider audience. It treats in some depth relativistic of a quantum theory, self-
adjointness and spectral theory, qualitative features of relativistic bound and
scatering states and the external field problem in quantum electrodynamics, with-
out neglecting the interpretational difficults and limitations of the theory. For
the case in which p(x) = V (x) +m, r(x) = V (x)−m, where V (x) is a potencial
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function, and m is the mass of a particle, the system (1.1) is known in relativistic
quantum theory in a stationary one-dimensional Dirac system or first canonical
form of Dirac system [10].

The basic comprehensive results (except the oscillation properties) about Dirac’s
system (1.1)-(1.3) were given in [10]. Inverse problems for Dirac system had been
investigated by Gasymov and Levitan [4], Panakhov [12] and other. In recent
being considered inverse nodal problems, that lies in constructing operators from
the given zeros of their eigenvector-functions (see. [11] and also references in
this). In [11], deal with an inverse nodal problem of reconstructing the Dirac sys-
tem with the spectral parameter in the boundary conditions and is proved that
a set of nodal points of one of the components of the eigenfunctions uniquely
determines all the parameters of the boundary conditions and the coefficients of
the Dirac equations.

We note that the oscillation properties of the eigenfunctions of the Sturm-
Liouville problem completely studied by various methods (see, e.g. [1, 2, 5, 7,
10]). However, oscillation properties of eigenvector-functions of the Dirac system
is subject to a detailed study. In [8] (see also [11]) studied oscillation proper-
ties of eigenvector-functions of the Dirac system with a spectral parameter in the
boundary conditions. It should be noted that these studies did not specify the ex-
act number of zeros of the components of the eigenvector-function corresponding
nth eigenvalue (although for sufficiently large n).

In the present paper, we study the general characteristics of the location of the
eigenvalues on the real axis and oscillation properties of eigenvector-functions of
the spectral problem (1.1)-(1.3).

2. Comparison theorems

The following theorem is basic in circle of topics.
Theorem 2.1. Suppose that we are given two systems

ϑ′1 − p1(x)u1 = 0, u′1 + r1(x)ϑ1 = 0, (2.1)

ϑ′2 − p2(x)u2 = 0, u′2 + r2(x)ϑ2 = 0, (2.2)

where the functions pν(x) and rν(x), ν = 1, 2, are continuous on the interval
[0, π]. Let (u1(x), ϑ1(x)) and (u2(x), ϑ2(x)) are arbitrary solutions of these sys-
tems respectively. If p2(x) > p1(x) > 0 and r2(x) > r1(x) > 0, or p2(x) <
p1(x) < 0 and r2(x) < r1(x) < 0 over the entire interval [0, π], then between
every two consecutive zeros of function u1(x) (ϑ1(x)) there is at least one zero of
function u2(x) (ϑ2(x)).
Proof. By virtue of Picone formula [7, p. 151] (see, also [5]) we have

d

dx

{
u1
u2

(u1ϑ2 − u2ϑ1)
}

=
r1
r2

(r2 − r1) ϑ21 + (p2 − p1) u21 + r2

(
u1
u2
ϑ2 −

r1
r2
ϑ1

)2

, (2.3)
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where in considering interval should be u2(x) 6= 0.
Let us denote two successive zeros of u1(x) of by x1 and x2, and assume that

u2(x) does not equal zero anywhere in the interval (x1, x2). Note the quotient
u1(x)/u2(x) has a limit at the endpoints. For example the limit at x1 is zero
if u2(x1) 6= 0, and the limit is u′1(x1)/u

′
2(x1) = r1(x1)ϑ1(x1)/r2(x1)ϑ2(x1), if

u2(x1) = 0.
Then integrating the identity (2.3) from x1 to x2, we obtain the relation

{(u1/u2) (u1ϑ2 − u2ϑ1)}x2x1 =

=

∫ x2

x1

{(r1/r2) (r2 − r1) ϑ21 + (p2 − p1) u21 + r2 ((u1/u2)ϑ2 − (r1/r2)ϑ1)
2} dx

which implies that the left-hand side integrates to zero while the right-hand side
integrates to a positive number, or negative number. This contradiction proves
that the function u2(x) has at least one zero in the interval (x1, x2). Assertion
of the theorem relating to the function ϑ2(x) is proved similarly. It uses the
following Picone type formula:

d

dx

{
ϑ1
ϑ2

(u1ϑ2 − u2ϑ1)
}

=

=
p1
p2

(p2 − p1) u21 + (r2 − r1) ϑ21 + p2

(
ϑ1
ϑ2
u2 −

p1
p2
u1

)2

. (2.4)

The proof of Theorem 2.1 is complete.
Theorem 2.2. Let (u1(x), ϑ1(x)) be the solution of the system (2.1) satisfying
the initial conditions

u1(0) = cosα, ϑ1(0) = − sinα, (2.5)

and be (u2(x), ϑ2(x)) the solution of system (2.2) satisfying the same initial con-
ditions. Moreover, suppose that p2(x) > p1(x) > 0 and r2(x) > r1(x) > 0, or
p2(x) < p1(x) < 0 and r2(x) < r1(x) < 0 over the entire interval [0, π].

If u1(x) (ϑ1(x)) has m zeros in the interval 0 < x ≤ π, then u2(x) (ϑ2(x))
has not less than m zeros in the same interval, and the kth zero of u2(x) (ϑ2(x))
is less than the kth zero of u1(x) (ϑ1(x)).
Proof. Let x1 denote the zero of u1(x) (ϑ1(x)) closest to ( but different from)
the point 0. On the basis of the preceding theorem it suffices to prove that
u2(x) (ϑ2(x)) has at least one zero in the interval (0, x1). Assume the contrary,
i.e. let u2(x) 6= 0 (ϑ2(x) 6= 0) for x ∈ (0, x1). Integrating the identity (2.3)
((2.4)) from 0 to x1, we obtain

{(u1/u2) (u1ϑ2 − u2ϑ1)}x10 =

=

∫ x1

0
{(r1/r2) (r2 − r1) ϑ21 + (p2 − p1) u21 + r2 ((u1/u2)ϑ2 − (r1/r2)ϑ1)

2} dx,

({(ϑ1/ϑ2) (u1ϑ2 − u2ϑ1)}x10 =

=

∫ x1

0
{(p1/p2) (p2 − p1) u21 + (r2 − r1) ϑ21 + p2 ((ϑ1/ϑ2)u2 − (p1/p2)u1)

2} dx)

which implies by (2.5) the left-hand side integrates to zero while the right-hand
side integrates to a positive number, or negative number. This contradiction
proves the Theorem 2.2.
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One can readily show that there exists a unique solution (u(x, λ), ϑ(x, λ)) of
system (1.1) satisfying the initial condition

u(0, λ) = cosα, ϑ(0, λ) = − sinα, (2.6)

moreover, for each fixed x ∈ [0, π], the functions u(x, λ) and ϑ(x, λ) are entire
functions of the argument λ. The proof of this assertion reproduces that of
Theorem 1.1 in [10, p. 3] with obvious modifications.

Since the functions u(x, λ) and ϑ(x, λ) satisfy the boundary condition (1.2), to
find the eigenvalues of the boundary value problem (1.1)-(1.3) we have to insert
the functions u(x, λ) and ϑ(x, λ) in the boundary condition (1.3) and find the
roots of this equation. So, the eigenvalues of problem (1.1)-(1.3) are the roots of
the following equation

ϑ(π, λ) cosβ + u (π, λ) sinβ = 0. (2.7)

Let

M = inf {λ ∈ R : λ+ p(x) > 0, λ+ r(x) > 0, x ∈ [0, π]}
and

m = sup {λ ∈ R : λ+ p(x) < 0, λ+ r(x) < 0, x ∈ [0, π]}.
From Theorems 2.1 and 2.2 imply

Corollary 2.1. If λ′′ > λ′ > M, or λ′′ < λ′ < m, then the function u(x, λ′′)
(ϑ(x, λ′′)) in the interval 0 < x ≤ π has at least the same number of zeros, how
many and function u(x, λ′) (ϑ(x, λ′)), and the kth zero of u(x, λ′′) (ϑ(x, λ′′)) is
less than the kth zero of u(x, λ′)(ϑ(x, λ′)).

Consider the equation

u(x, λ) = 0 (ϑ(x, λ) = 0), 0 ≤ x ≤ π. (2.8)

The zeros of this equation are obviously functions of λ.
In the following two statements, we assume that λ /∈ (m,M).

Lemma 2.1. If x0 (0 < x0 < π) is a zero of function u(x, λ0) (ϑ(x, λ0)), then
for any sufficiently small ε > 0 there exists δ > 0 such that for |λ− λ0| < δ the
function u(x, λ) (ϑ(x, λ)) has exastly one zero in the interval |x− x0| < ε.

The proof of this fact is similar to the proof of Lemma 3.1 [10, p. 16].
From the Lemma 2.1 there follows an important corollary.

Corollary 2.2. As λ varies, the function u(x, λ) (ϑ(x, λ))can lose zeros or gain
zeros only by these zeros leasving or entering the interval [0, π] through its end-
points 0 and π.

3. Oscillation properties of the eigenvector-functions of the
problem (1.1)-(1.3)

Now consider the problem (1.1)-(1.3) for p(x) ≡ r(x) ≡ 0, i.e. consider the
problem

ϑ′ − λu = 0, u′ + λϑ = 0, 0 < x < π, (3.1)

ϑ(0) cosα+ u(0) sinα = 0,

ϑ(π) cosβ + u (π) sinβ = 0.



40 ZIYATKHAN S. ALIYEV AND HUMAY SH. RZAYEVA

As is difficult to see, in this case

u(x, λ) = cos(λx− α), ϑ(x, λ) = sin(λx− α). (3.2)

As was already mentioned above, the eigenvalues of the boundary value problem
(1.1)-(1.3) coincide with the roots of the equation (2.7). Then, by (3.2), we have

sin (λπ − α) cosβ + cos (λπ − α) sinβ = 0

which implies that
sin (λπ − α+ β) = 0 .

Consequently, the eigenvalues of problem (3.1), (1.2), (1.3) are

λn = n+ (α− β)/π, n = 0, ±1, ±2, ... ,

and the corresponding eigenvector-functions are

(un(x), ϑn(x)) = (cos(λnx− α), sin(λnx− α)) =

= (cos (n+ ((α− β)/π)x− α), sin (n+ ((α− β)/π)x− α)), n = 0, ±1, ±2, ... .

Remark 3.1. We have: λ0 > 0 for α > β, λ0 = 0 for α = β, λ0 < 0 for α < β.

It is known (e.g. [10, p. 57]) that eigenvalues of the boundary value problem
(1.1)-(1.3) are real and simple and the values range from −∞ to +∞ and can be
numerated in increasing order:

... < λ−n < ... < λ−1 < λ0 < λ1 < .... < λn < ... .

Denote by µn and νn, n = 0, ±1, ±2, ... the eigenvalues of the problem (1.1)-
(1.3) for β = 0 and β = π/2, respectively. Note that the function

G(λ) =
u (π, λ)

ϑ(π, λ)

is defined for

λ ∈ B ≡ (C\R)
⋃(

n=+∞⋃
n=−∞

(µn−1, µn

)
and is meromorphic function finite order, and µn and νn, n = 0, ±1, ±2, ..., are
poles and zeros of this function respectively.
Lemma 3.1. The following formula holds:

∂

∂λ

(
u (π, λ)

ϑ(π, λ)

)
= −

∫ π
0 {u

2(x, λ) + ϑ2(x, λ)} dx
ϑ2(π, λ)

, λ ∈ B. (3.3)

Proof. Since vector-functions (u (x, µ), ϑ(x, µ)) and (u (x, λ), ϑ(x, λ)), µ, λ ∈ B,
are solutions of the problem (1.1), we have

ϑ′(x, µ)− {µ+ p(x)}u(x, µ) = 0,

u′(x, µ) + {µ+ r(x)}ϑ(x, µ) = 0,

ϑ′(x, λ)− {λ+ p(x)}u(x, λ) = 0,

u′(x, λ) + {λ+ r(x)}ϑ(x, λ) = 0.

Multiplying these equations by u(x, λ),−ϑ(x, λ),−u (x, µ) and ϑ(x, µ), respec-
tively, and adding, we obtain

d

dx
{ϑ(x, µ)u (x, λ)− u(x, µ)ϑ(x, λ)} = (µ−λ) {u (x, µ)u (x, λ) + ϑ(x, µ)ϑ(x, λ)} .
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Integrating this relation from 0 to π, we find that

{ϑ(x, µ)u (x, λ)− u(x, µ)ϑ(x, λ)}π0 =

= (µ− λ)

∫ π

0
{u (x, µ)u (x, λ) + ϑ(x, µ)ϑ(x, λ)} dx,

whence, by (2.6), it follows that

ϑ(π, µ)u (π, λ)− u (π, µ)ϑ(π, λ) =

= (µ− λ)

∫ π

0
{u (x, µ)u (x, λ) + ϑ(x, µ)ϑ(x, λ)} dx .

Thus,

−
(
u (π, µ)

ϑ(π, µ)
− u (π, λ)

ϑ(π, λ)

)
= (µ− λ)

∫ π
0 {u (x, µ)u (x, λ) + ϑ(x, µ)ϑ(x, λ)} dx

ϑ(π, µ)ϑ(π, λ)
.

Dividing this equality by (µ − λ) and passing to the limit as µ → λ we obtain
(3.3). The Lemma 3.1 is proved.
Corollary 3.1.The function G(λ) is continuous and strictly decreasing on each
interval (µn−1, µn), n = 0, ±1, ±2, ... .

By m (λ) and s (λ), λ ∈ R, we denote the number of zeros in the interval (0, π)
of functions u(x, λ) and ϑ(x, λ), respectively.
Lemma 3.2. Let p(x) ≡ r(x) ≡ 0. If λ ∈ (µn−1, µn] for n > 0, then

(m (λ), s(λ)) =

{
(n− 1, n− 1) for λ ∈ (µn−1, νn],
(n, n− 1) for λ ∈ (νn, µn],

in the case α = 0,

(m (λ), s(λ)) =

{
(n− 1, n) for λ ∈ (µn−1, νn],
(n, n) for λ ∈ (νn, µn],

in the case α ∈ (0, π/2],

(m (λ), s(λ)) =

{
(n, n) for λ ∈ (µn−1, νn],
(n+ 1, n) for λ ∈ (νn, µn],

in the case α ∈ (π/2, π) ;

if λ ∈ [µn−1, µn) for n < 0, then

(m (λ), s(λ)) =

{
(|n|+ 1, |n|) for λ ∈ [µn−1, νn),
(|n|, |n|) for λ ∈ [νn, µn),

in the case α ∈ [0, π/2),

(m (λ), s(λ)) =

{
(|n|, |n|) for λ ∈ [µn−1, νn),
(|n| − 1, |n|) for λ ∈ [νn, µn),

in the case α ∈ [π/2, π) ;

if λ ∈ [µ−1, µ0), then

(m (λ), s(λ)) =

{
(1, 0) for λ ∈ [µ−1, ν0),
(0, 0) for λ ∈ [ν0, µ0),

in the case α ∈ [0, π/2),

(m (λ), s(λ)) =

{
(0, 0) for λ ∈ [µ−1, ν0),
(0, 0) for λ ∈ (ν0, µ0),

in the case α = π/2,

(m (λ), s(λ)) =

{
(0, 0) for λ ∈ [µ−1, ν0),
(1, 0) for λ ∈ [ν0, µ0),

in the case α ∈ [π/2, π) .

Proof. Let p(x) ≡ r(x) ≡ 0. In this case

µn = n+ (α/π) ∈ [n, n+ 1), (un(x), ϑn(x)) = (cos(µnx− α), sin(µnx− α)),

νn = n− 1

2
+
α

π
∈ [n− 1

2
, n+

1

2
), (un(x), ϑn(x)) = (cos(νnx− α), sin(νnx− α)).
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The following relation is valid:

... < ν−1 < µ−1 < ν0 < µ0 < ν1 < µ1 < ... < νn < µn < ... . (3.4)

Note that µ0 = 0 and (u0(x), ϑ0(x)) = (1, 0) for α = 0. It is obvious that if
α ∈ (0, π), then µ0x− α ∈ (−α, 0). Therefore,

(m (µ0), s(µ0)) =

{
(0, 0) for α ∈ (0, π/2],
(1, 0) for α ∈ (π/2, π).

(3.5)

Obviously, µnx − α ∈ (−α, nπ), if n > 0, µnx − α ∈ (nπ,−α), if n < 0.
Consequently, the following relations hold:

(m (µn), s(µn)) =

 (n, n− 1) for α = 0,
(n, n) for α ∈ (0, π/2],
(n+ 1, n) for α ∈ (π/2, π),

in the case n > 0, (3.6)

(m(µn), s(µn)) =

{
(|n|, |n| − 1) for α ∈ [0, π/2),
(|n| − 1, |n| − 1) for α ∈ [π/2, π),

in the case n < 0. (3.7)

Note that ν0 = 0 and (u0(x), ϑ0(x)) = (0,−1) for α = π/2. Moreover, if
α ∈ [0, π/2), then (ν0x − α) ∈ (−π/2,−α) ; if α ∈ (π/2, π), then (ν0x − α) ∈
(−α,−π/2). Therefore,

(m (ν0), s(ν0)) =

{
(0, 0) for α ∈ [0, π/2),
(0, 0) for α ∈ (π/2, π).

(3.8)

It is easy to verify that (νnx − α) ∈ (−α, (n − 1/2)π), if n > 0; (νnx − α) ∈
(−α, (n− 1/2)π), if n < 0. Consequently, the following relations hold:

(m (νn), s(νn)) =

 (n− 1, n− 1) for α = 0,
(n− 1, n) for α ∈ (0, π/2],
(n, n) for α ∈ (π/2, π),

in the case n > 0, (3.9)

(m (νn), s(νn)) =

{
(|n|, |n|) for α ∈ [0, π/2),
(|n| − 1, |n|) for α ∈ [π/2, π),

in the case n < 0. (3.10)

The lemma is obtained by applying Corollary 2.1, using the relations (3.4)-
(3.10). The proof of Lemma 3.2 is complete.
Theorem 3.1. Eigenvector-functions (un(x), ϑn(x)), n ∈ Z, of the problem
(3.1), (1.2), (1.3), corresponding to the eigenvalues λn, have the following oscil-
lation properties:
a1) if α = 0, β ∈ [0, π/2), then (m (λn), s (λn)) = (n, n− 1) for n > 0;
b1) if α ∈ (0, π/2], β ∈ [0, π/2), or α ∈ (π/2, π), β ∈ [π/2, π), then

(m (λn), s (λn)) = (n, n) for n ≥ 0;
c1) if α = 0, β ∈ [π/2, π), then (m (λn), s (λn)) = (n− 1, n− 1) for n > 0;
d1) if α ∈ (0, π/2], β ∈ [π/2, π), then (m (λn), s (λn)) = (n− 1, n) for n > 0;
e1) if α ∈ (π/2, π), β ∈ [0, π/2), then (m (λn), s (λn)) = (n+ 1, n) for n ≥ 0;
a2) if α ∈ [0, π/2), β = 0, then (m (λn), s (λn)) = (|n|, |n| − 1) for n < 0;
b2) if α ∈ [0, π/2), β ∈ (0, π/2], or α ∈ [π/2, π), β ∈ (π/2, π), then

(m (λn), s (λn)) = (|n|, |n|) for n ≤ 0;
c2) if α ∈ [0, π/2), β ∈ (π/2, π), then (m (λn), s (λn)) = (|n|+1, |n|) for n ≤ 0;
d2) if α ∈ [π/2, π), β = 0, then (m (λn), s (λn)) = (|n| − 1, |n| − 1) for n < 0;
e2) if α ∈ [π/2, π), β ∈ (0, π/2], then (m (λn), s (λn)) = (|n|−1, |n|) for n < 0.
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Proof. By virtue of (3.4) and Lemma 3.1 the following location of the eigenvalues
of problem (3.1), (1.2), (1.3) on the real axis is true:

... < µ−2 < ν−1 < λ−1 < µ−1 < ν0 < λ0 < µ0 < ν1 < λ1 < µ1 < ... , (3.11)

if β ∈ (0, π/2),

... < µ−2 < λ−1 < ν−1 < µ−1 < λ0 < ν0 < µ0 < λ1 < ν1 < µ1 < ... , (3.12)

if β ∈ (π/2, π).
From Lemma 3.2 and relations (3.11), (3.12), we obtain:

(1) if α = 0, then

(m (λn), s(λn)) =

{
(n, n− 1) for n > 0,
(|n|, |n| − 1) for n < 0,

in the case β = 0,

(m (λn), s(λn)) =

{
(n, n− 1) for n > 0,
(|n|, |n|) for n ≤ 0,

in the case β ∈ (0, π/2),

(m (λn), s(λn)) =

{
(n− 1, n− 1) for n > 0,
(|n|, |n|) for n ≤ 0,

in the case β = π/2,

(m (λn), s(λn)) =

{
(n− 1, n− 1) for n > 0,
(|n|+ 1, |n|) for n ≤ 0,

in the case β ∈ (π/2, π);

(2) if α ∈ (0, π/2), then

(m (λn), s(λn)) =

{
(n, n) for n ≥ 0,
(|n|, |n| − 1) for n < 0,

in the case β = 0,

(m (λn), s(λn)) =

{
(n, n) for n ≥ 0,
(|n|, |n|) for n < 0,

in the case β ∈ (0, π/2),

(m (λn), s(λn)) =

{
(n− 1, n) for n > 0,
(|n|, |n|) for n ≤ 0,

in the case β = π/2,

(m (λn), s(λn)) =

{
(n− 1, n) for n > 0,
(|n|+ 1, |n|) for n ≤ 0,

in the case β ∈ (π/2, π);

(3) if α = π/2, then

(m (λn), s(λn)) =

{
(n, n) for n ≥ 0,
(|n| − 1, |n| − 1) for n < 0,

in the case β = 0,

(m (λn), s(λn)) =

{
(n, n) for n ≥ 0,
(|n| − 1, |n|) for n < 0,

in the case β ∈ (0, π/2),

(m (λn), s(λn)) =

{
(n− 1, n) for n > 0,
(|n| − 1, |n|) for n < 0,

in the case β = π/2,

(m (λn), s(λn)) =

{
(n− 1, n) for n > 0,
(|n|, |n|) for n ≤ 0,

in the case β ∈ (π/2, π);
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(4) if α ∈ (π/2, π), then

(m (λn), s(λn)) =

{
(n+ 1, n) for n ≥ 0,
(|n| − 1, |n| − 1) for n < 0,

in the case β = 0,

(m (λn), s(λn)) =

{
(n+ 1, n) for n ≥ 0,
(|n| − 1, |n|) for n < 0,

in the case β ∈ (0, π/2),

(m (λn), s(λn)) =

{
(n, n) for n ≥ 0,
(|n| − 1, |n|) for n < 0,

in the case β = π/2,

(m (λn), s(λn)) =

{
(n, n) for n > 0,
(|n|, |n|) for n ≤ 0,

in the case β ∈ (π/2, π).

Assertions a1)−e2) of this theorem follow directly from the relations (1)-(4). The
Theorem 3.1 is proved.

Now consider the following boundary value problem

ϑ′ − {λ+ µ p(x)}u = 0, u′ + {λ+ µ r(x)} = 0, 0 < x < π,

ϑ(0) cosα+ u(0) sinα = 0,

ϑ(π) cosβ + u (π) sinβ = 0,

(3.13)

where 0 ≤ µ ≤ 1.
Remark 3.2. By Theorem 7.1 of [3, Ch. 3] ( see also [6]) on the continuous
dependence of the solution of system of differential equations on the parameter
we find that the eigenvalues λn(µ), n ∈ Z, of the problem (3.13) depends contin-
uously on the parameter µ ∈ [0, 1]. In this λn(0) and λn(1), n ∈ Z, coincide with
the eigenvalues of the problems (3.1), (1.2), (1.3) and (1.1)-(1.3), respectively.
Therefore we can assume that for the eigenvalues of problem (1.1)-(1.3) also true
the relation (3.4).

The following oscillation theorem for Dirac systems (1.1)-(1.3) is valid.
Theorem 3.2. There exist numbers m0 ∈ N ∪ {0} and m1 ∈ Z− ≡ −N such
that for eigenvector-functions of the problem (1.1)-(1.3) at n ≥ m0 are valid
assertions a1) − e1), when n ≤ m1 are valid assertions a2) − e2) of Theorem
3.1.

Proof. Let λ /∈ (m,M), and let (u(x, λ), ϑ(x, λ)) be a solution of system (1.1)
which satisfies the initial condition (2.6).

Suppose that (ϕ(x, λ), ψ(x, λ)) is a solution of the system of differential equa-
tions

ψ′ − (λ−M)ϕ = 0, ϕ′ + (λ−M)ψ = 0, (3.14)

satisfying the initial condition

ϕ (0, λ) = cosα, ψ (0, λ) = − sinα, (3.15)

and (γ(x, λ), χ(x, λ)) is a solution of the system of differential equations

χ′ − (λ−m) γ = 0, γ + (λ−m)χ = 0, (3.16)

satisfying the initial condition

γ (0, λ) = cosα, χ(0, λ) = − sinα. (3.17)
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It is easy to verify that in this cases

ϕ(x, λ) = cos ((λ−M)x− α), ψ(x, λ) = sin ((λ−M)x− α), (3.18)

γ(x, λ) = cos ((λ−m)x− α), ψ(x, λ) = sin ((λ−m)x− α). (3.19)

From (3.18) and (3.19) see that the number of zeros in (0, π) of the functions
ϕ(x, λ) and ψ(x, λ) tends to +∞ as λ → +∞, the number of zeros in (0, π) of
the functions γ (x, λ) and χ (x, λ) tends to +∞ as λ → −∞. We compare the
boundary value problem (1.1), (2.6) with the problems (3.14)-(3.15) and (3.16)-
(3.17). Then from Theorem 2.2 implies that the number of zeros in (0, π) of the
solutions u(x, λ) and ϑ(x, λ) of the problem (1.1), (2.6) tends to +∞ as λ→ ±∞.

Let us consider the equations u(x, λ) = 0 and ϑ(x, λ) = 0 for λ ∈ (−∞,m]
⋃

[M,+∞). By Lemma 3.1 the roots of these equations depend continuously on
λ. On the other hand, by Corollary 2.1 with increasing |λ| each zero of u(x, λ)
and ϑ(x, λ) moves to the left, and through the point 0 can not leave because
the number of zeros does not decrease. Then, by Corollary 2.2 zeros of these
functions entering the interval (0, π) through point π.

Let m0 ≥ 0 and m1 < 0 are numbers such that µm0−1 is first value of parameter
λ ≥ M and µm1 is first value of parameter λ ≤ m for which ϑ(π, λ) = 0. We
recall that µn, n ∈ Z, are the eigenvalues of the problem (1.1)-(1.3) for β = 0.
Assume that the function ϑ(x, µm0−1) has m̃0 zeros and ϑ(x, µm1) has m̃1 zeros
in the interval (0, π).

By Corollary 2.1 the function ϑ(x, µm0−1+k) has m̃0+k zeros and ϑ(x, µm1−k)
has m̃1 + k zeros in the interval (0, π). On the base Theorem 2.2 the sequences
µm0−1, µm0 , ... and ..., µm1−1, µm1 have the property that the function ϑ(x, λ)
for µk−1 < λ ≤ µk, k = m0, m0 + 1, m0 + 2, ..., and for µk−1 ≤ λ < µk, k =

... ,m1 − 2, m1 − 1, m1, has k̃ zeros in the interval (0, π).
From (2.7) we see that the eigenvalues of problem (1.1)-(1.3) for β ∈ (0, π) are

the roots of the equation

G(λ) = − cotβ.

By virtue of Corollary 3.1 the function G(λ) is continuous and strictly decreasing
on each interval (µk−1, µk), k ∈ Z. Since ϑ(π, µk) = 0, k ∈ Z, then in the interval
(µk−1, µk) the function G(λ) should strictly decrease from +∞ to −∞. Hence
there exists a unique λ = λ∗k, k ∈ Z, such that G(λ) = − cotβ, i.e. condition (1.3)
is satisfied. Therefore, λ∗k is an eigenvalue of the boundary value problem (1.1)-
(1.3) and (u(x, λ∗k), ϑ(x, λ∗k)) is the corresponding eigenvector-function. Moreover,
the second component ϑ(x, λ∗k) of this eigenvector-function for k ≥ m0 has as
many zeros as the function ϑ(x, µk), and for k ≤ m1 has as many zeros as the
function ϑ(x, µk−1) in the interval (0, π). By Remark 3.2 one can readily see that
λ∗k is the kth eigenvalue of the boundary value problem (1.1)-(1.3); i.e. λk = λ∗k.

The eigenvalues νk, k ∈ Z, of the boundary value problem (1.1)-(1.3) for β =
π/2 are zeros of the function G(λ). In a similar way one can show that the
equation G(λ) = 0 has the unique solution νk in each interval (µk−1, µk), k ∈ Z.
Consequently,

µk−1 < νk < µk, k ∈ Z.
Moreover, the following relations are valid for k ∈ Z :

µk−1 < νk < λk < µk, if β ∈ (0, π/2), (3.20)
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µk−1 < λk < νk < µk, if β ∈ (π/2, π). (3.21)

From the relations (3.20) and (3.21) it follows that if u (x, νk) has k∗ zeros in the
interval (0, π), then u (x, λk) has k∗ + 1 zeros at β ∈ (0, π/2), has k∗ zeros at
β ∈ (π/2, π) for k ≥ m0, and has k∗ zeros at β ∈ (0, π/2), has k∗ + 1 zeros at
β ∈ (π/2, π) for k ≤ m1 in the same interval (0, π).

Note that the formula (11.18) of [10, Ch. 1] has an error. This is due to the
fact that in the formula (11.9) [10, Ch. 1] the expression for the function β(x)
to be a minus sign, whereby the formula (11.12) [10, Ch. 1] can be the following
form

ξ(x, λ) = λx+ (1/2)

∫ x

0
{p(t) + r(t)}dt. (3.22)

By Lemma 11.1 [10, Ch. 1], we have that the following estimates hold uniformly
with respect to x, 0 ≤ x ≤ π:

u (x, λ) = cos(ξ(x, λ)− α) +O(1/λ), (3.23)

ϑ(x, λ) = sin(ξ(x, λ)− α) +O(1/λ). (3.24)

As was already mentioned above, the eigenvalues of problem (1.1)-(1.3) coin-
cide with the roots of the equation (2.7). Inserting now the values of the functions
u(π, λ) and ϑ(π, λ) from the estimates (3.23) and (3.24), we obtain

sin(ξ(π, λ)− α+ β) +O(1/λ) = 0,

whence, by (3.22), it follows that

sin (λπ − α+ β + (1/2)

∫ π

0
{p(t) + r(t)}dt ) +O(1/λ) = 0. (3.25)

Further, following the corresponding arguments conducted in [10, p. 57], by
(3.25), we obtain

λn = n+
α− β − (1/2)

∫ π
0 {p(t) + r(t)}dt )

π
+O

(
1

n

)
. (3.26)

Using the formula (3.26), we obtain an asymptotic formula for the eigenvector-
functions, u (x, λn) = un(x), ϑ(x, λn) = ϑn(x), namely:

un(x) = cos(λnx+ (1/2)

∫ x

0
{p(t) + r(t)}dt− α) +O(1/n), (3.27)

ϑn(x) = sin(λnx+ (1/2)

∫ x

0
{p(t) + r(t)}dt− α) +O(1/n). (3.28)

By (3.26) for sufficiently large |n|, n ∈ Z, we have that for x ∈ (0, π)

(λnx+ (1/2)

∫ x

0
{p(t) + r(t)}dt− α) ∈ (−α, nπ − β +O(1/n)) ,

if n ≥ m0,

(λnx+ (1/2)

∫ x

0
{p(t) + r(t)}dt− α) ∈ (nπ − β +O(1/n),−α),

if n ≤ m1. Since for x ∈ (0, π)

(n+ (α− β)/π)x− α) ∈ (−α, nπ − β), if n ≥ m0

and
(n+ (α− β)/π)x− α) ∈ (nπ − β, −α), if n ≤ m1,
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then following the corresponding arguments given in the proof of Theorem 3.1 in
[9], we see that for sufficiently large |n|, n ∈ Z, the number of zeros in the interval
(0, π) of the eigenvector- functions

cos(λnx+ (1/2)

∫ x

0
{p(t) + r(t)}dt− α) +O(1/n)

and

sin(λnx− (1/2)

∫ x

0
{p(t) + r(t)}dt− α) +O(1/n))

(whence obtained from (3.27), (3.28)) of the problem (1.1)-(1.3) coincide with
the number of zeros of the eigenvector-functions

cos ((n+ (α+ β)/π)x− α) and sin ((n+ (α− β)/π)x− α),

respectively. Therefore, given the above mentioned arguments, we obtain that
for the problem (1.1)-(1.3) at n ≥ m0 are valid assertions a1)−e1), when n ≤ m1

are valid assertions a2) − e2) of the theorem 3.1. The proof of Theorem 3.2 is
complete.
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