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ON KOSTYUCHENKO PROBLEM

BILAL T. BILALOV AND TELMAN B. KASUMOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. This work is dedicated to the Kostyuchenko problem, well-
known in the spectral theory of differential operators. This is a review
paper that covers the main results on this problem. The authors reveal
the essence of Kostyuchenko problem and discuss the difficulties that
arise when treating it. Unsolved matters concerning this problem are
also mentioned.

1. Introduction

Kostyuchenko problem (hereinafter referred to as Problem K ) consists in
studying the completeness of the system

{
eiαnt sin nt

}
n∈N in L2 (0, π) by purely

functional and theoretical methods, where α ∈ C is in general some complex
parameter. Sometimes this system is referred to as Kostyuchenko system. It is
a part (some authors prefer to say “a half”) of root elements of the quadratic
pencil

f ′′ + 2aλf ′ + bλ2f = 0;
f (0) = f (π) = 0,

(1.1)

where α = −a
√
b− a2. Such pencils appear when solving some partial differential

equations by the Fourier method. Let’s illustrate the scheme of this method with
a following model problem (see [31]).

Let Pθ = {(x; y) ∈ C : x + iy = x̃ + teiθ, x̃ ∈ (0, π), t > 0} be an inclined
half-string (see Fig. 1), where θ ∈ (0, π) is some number.

Fig. 1.
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Consider in Pθ the Laplace equation

∆u(x; y) = 0, (x; y) ∈Pθ, (1.2)

with the boundary conditions

u (t cos θ; t sin θ) = u (π + t cos θ; t sin θ) = 0, t > 0;

u (x; 0) = ϕ1 (x) ;

(
∂u

∂x
cos θ +

∂u

∂y
sin θ

)∣∣∣∣
(x;0)

= ϕ2 (x) .

To apply the Fourier method to this problem, we make a change of variables
(x; y) → (z; τ) : z = x − y ctg θ ; τ = y

sin θ . Then the half-string Pθ in the plane
(x; y) becomes a half-string P in the plane (z; τ), where

P ≡ {(z; τ) : z ∈ (0, π) , τ > 0} .
Simple calculations show that the following relations hold

∂2u

∂x2
=
∂2u

∂z2
,

∂2u

∂y2
= ctg2θ

∂2u

∂z2
− 2

cos θ

sin2 θ

∂2u

∂z∂τ
+

1

sin2 θ

∂2u

∂τ2
.

Substituting these relations in (1.2), we get the equation

∂2u

∂z2
− 2 cos θ

∂2u

∂z∂τ
+
∂2u

∂τ2
= 0, (z; τ) ∈P, (1.3)

with the boundary conditions

u (0; τ) = u (π; τ) = 0, ∀τ > 0;

u (z; 0) = ϕ1 (z) ;
∂u

∂τ

∣∣∣∣
(z;0)

= ϕ2 (z) .

We will seek for the elementary solutions of this equation in the form u (z; τ) =
f (z) eλτ , where λ ∈ C is some parameter. Taking into account this expression,
from (1.3) we obtain a quadratic pencil (1.1) with the coefficients a = − cos θ and
b = 1. Problem (1.1) has non-trivial solutions only for λn = n

sin θ , n = ±1,±2, ...;
and the corresponding system of solutions has the following form

fn (z) = eαnz sin nz, n 6= 0,

where α = − 1
sin θ . Elementary solutions of (1.3) are the functions un (z; τ) =

fn (z) e
n

sin θ
nτ , n 6= 0. The general solution has the following form

u (z; τ) =
∑
n6=0

anun (z; τ) .

Omitting formalities, we have

∂u

∂τ
=

1

sin θ

∑
n6=0

nanun (z; τ) .

For boundary values we obtain the expressions

ϕ1 (z) =
∑
n6=0

anfn (z) ,
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ϕ2 (z) =
1

sin θ

∑
n6=0

nanfn (z) ,

or in vector form

~ϕ (z) =
∑
n6=0

an ~fn (z) ,

where ~ϕ (z) = (ϕ1 (z) ;ϕ2 (z)) and ~fn (z) =
(
fn (z) ; 1

sin θnfn (z)
)
, n 6= 0.

To transform the above relations into the abstract form, we proceed as follows.
Assume that ϕk ∈ Xk,where Xk, k = 1, 2, are some Banach spaces furnished with
the norms ‖ · ‖(k), respectively. Consider the direct sum X = X1+̇X2 with the

corresponding norm ‖ · ‖ (for example, we can take ‖~x‖ =
(
‖x1‖p(1) + ‖x2‖p(2)

)1/p
,

where ~x = (x1;x2) ∈ X and p ∈ [1,+∞] is some number). Thus, the formula-
tion of the problem (1.2) or (1.3) requires the study of approximation proper-

ties of the system
{
~fn

}
n6=0

in the space X. So there appeared the concepts of

twofold completeness, minimality and basicity. If the system
{
~fn

}
n6=0

is com-

plete, minimal in X and forms a basis for it, then the system {fn}n6=0 is said
to be double complete, double minimal in X and to form a double basis for it,
respectively. If we impose on the solution of the problem (1.2) the condition
of vanishing at infinity, then we should consider only those elementary solu-
tions un (z; τ) which correspond to the negative values of n : n < 0. In this
case, the condition u (z; 0) = ϕ1 (z) is sufficient for the unique solvability (i.e.
the condition ∂u

∂τ

∣∣
(z;0)

= ϕ2 (z) is unnecessary). And this in turn requires the

study of approximation properties of the system {fn}n<0 in X1 (i.e. those of
the “half” of the system {fn}n6=0). In the simpler case α = 0, we obtain the

system of sines {sin nz}n6=0. As Xk’s, we take in this case the Sobolev space

X1 ≡ W 2
1,0 (0, π) =

{
ϕ ∈W 2

1 (0, π) : ϕ (0) = ϕ (π) = 0} and the Lebesgue space

X2 ≡ L2 (0, π). The corresponding system {(sinnx; n sinnx)}n6=0 forms a basis

for H ≡ W 2
1,0 (0, π) +̇L2 (0, π), i.e. the system {sinnx}n6=0 forms a double basis

for H. In turn, the “half” {sinnx}n<0 forms a usual basis for W 2
1,0 (0, π). The

question naturally arises as to whether it is possible to preserve these properties
for α 6= 0. That was exactly the reason of Problem K .

A similar situation occurs when considering the pencil

f ′′ − 2αλf ′ +
(
α2 + 1

)
λ2f = 0,

where the spectral parameter λ is included in the boundary conditions(
αλf − f ′

)∣∣
x=0

=
(
αλf − f ′

)∣∣
x=π

= 0.

System of solutions for this problem is {eαnx cosnx}n∈Z. Note that such kind of
problem has been earlier considered by M.G. Dzavadov [15]:

y′′ + 2bλy′ + cλ2y = 0 ,

y′ (0) + aλy (0) = y′ (1) + aλy (1) = 0 ,
(1.4)

where b and c are constant numbers with b2 − c < 0.
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These problems are complicated in many aspects, and the study of basis prop-
erties (such as completeness, minimality, basicity) of the systems of corresponding
root elements by the methods of spectral theory of linear operators either fails
or cannot give conclusive answers to the questions posed. That is why in 1969
A.G. Kostyuchenko suggested to use purely functional methods for the study of
the completeness of the system K s

α ≡ {eαnx sinnx}n∈N in L2 (0, π).
It should be noted that the study of basis properties of the Kostyuchenko

system is interesting from the point of view of optimal control theory, too. To
illustrate this, let’s consider the following control problem for distributed oscilla-
tory system described by A.G. Butkovski [13]:

∂2Q

∂t2
=
∂2Q

∂x2
+ f (t) δ (x− ϑ (t)) , 0 < x < π , t > 0 ,

Q (x, 0) = Q0 (x) ,
∂Q

∂t

∣∣∣∣
t=0

= Q1 (x) , 0 < x < π,

Q (0, t) = Q (π, t) = 0 , t > 0.

It is required to find a law of changes in the concentrated load f (t) and in
the speed ϑ (t) of its application such that the solution Q (x, t) settles down at
prescribed time T , i.e. Q (x, t) ≡ 0. Applying the Fourier method to this problem,
we obtain the following system of integral equations of the first kind with regard
to two unknown functions f and ϑ:∫ T

0
f (t) eikt sin (kϑ (t)) dt = dk , k ∈ N.

Suchlike problems are often encountered in the context of damped oscillations
of big mechanical systems (see L.A. Muravey [38, 39]). In the linear case ϑ (t) =
at, change of variables τ = at leads us to the minimality of the Kostyuchenko
system in L2 (0, T ).

In this work, we present a brief trip back to the history of basis properties of
Kostyuchenko system. We try to reveal the difficulties associated with the study
of these properties and state the results obtained in this field.

2. Notation and needful concepts

We will use the following notation. N will be a set of all positive integers; Z
will denote a set of all integers; Z+ ≡ {0} ∪ N; R will stand for the real axis;
C will be the complex plane; C+ ≡ {z ∈ C : Imz > 0}; Re and Im will denote

real and imaginary part, respectively; (·) will stand for complex conjugation; [x]
will be used to denote the integer part of the number x ∈ R; and I will be the
identity operator.

We give some concepts needed for the statement of results.
LetB be a complex Banach space equipped with the norm ‖ · ‖, and {x+

n ;x−n }n∈Z+

⊂ B be a double system.
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Definition 2.1. System {x+
n ;x−n }n∈Z+

⊂ B is called a basis for B if for every

x ∈ B there exists a unique double sequence {a+
n ; a−n }n∈Z+

⊂ C such that∥∥∥∥∥∥
N+∑
n=0

a+
n x

+
n +

N−∑
n=0

a−n x
−
n − x

∥∥∥∥∥∥→ 0 asN± →∞,

i.e.

x =

+∞∑
n=0

a+
n x

+
n +

−∞∑
n=0

a−n x
−
n .

If we denote the closure of the linear span L
[{
x±n
}
n∈Z+

]
by B±, then we

can say that B+ and B− are topologically complementable in B, and B can be
represented as a direct sum B = B++̇B−, with {x±n }n∈Z+

forming a Schauder

basis for B±. If we represent the classical system of exponents
{
eint
}
n∈Z in

the form of
{
eint; e−(n+1)t

}
n∈Z+

, then it will form a basis for Lp , 1 < p < +∞,

in the sense of this definition, with the Hardy classes H± playing the roles of
the subspaces B± with accuracy to within the isomorphism. In the sequel, the
basicity of a double system will be understood in the sense of the above definition.

Definition 2.2. System {xn}n∈N ⊂ B is called a basis sequence in B, if every

element of the closure of the linear span L
[
{xn}n∈N

]
can be expanded in this

system.

It is absolutely clear that if the complete and minimal system {xn}n∈N in B is
a basis sequence, then it forms a basis for B.

Let’s recall the definition of uniformly minimal system in a Banach space B
with the norm ‖ · ‖. Let {xn}n∈N ⊂ B be some system. Denote by Bk the closure
of the linear span {xn}n∈N;n6=k.

Definition 2.3. If there exists δ > 0 such that inf
y∈Bk

‖xk − y‖ ≥ δ ‖xk‖ for every

k ∈ N, then {xn}n∈N is called uniformly minimal in B.

We will also need some classes of continuous functions. C[a, b] will denote a Ba-
nach space (over R) of real functions continuous on [a, b]; CM0 [a, b] ≡ {f ∈ C [a, b] :
f (x) = 0, ∀x ∈M}; and CLB[(·)] will be the closure of the linear span of the
system ( · ) in the topology of the space B.

3. On completeness of system K s
α

3.1. A brief chronology. M.G. Dzavadov [15] was probably the first to pay
attention to the completeness of the “half” of eigenfunctions of the quadratic
pencil (1.4) in L2 (0, 1) in 1964. The whole system of solutions of problem (1.4)
has the form

yk (x) = Aeαkx + eβkx, k ∈ Z,
where

A =
b− a+ i

√
c− b2

a− b+ i
√
c− b2

,
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α = π

(
−b√
c− b2

+ i

)
, β = −π

(
b√
c− b2

+ i

)
.

The following theorem was proved in [15].
Theorem [D]. The half

{
y−k
}
k∈Z+

of eigenfunctions of problem (1.4) is complete

in L2 (0, 1), where y−k (x) = y−k (x) , ∀k ∈ Z+.
The proof of this theorem provided in [15] and based directly on the definition

of the completeness of a system is quite smart. This theorem has in particular
the following corollary.
Corollary [D]. Kostyuchenko system K s

α is complete in L2 (0, 1) for ∀α ∈ R.
It should be noted that the proof of Theorem [D] is based on the functional and

theoretical methods. Therefore, the solution to the Problem K for real values of
parameter α belongs to M.G. Dzavadov, not to B.Y. Levin as many sources claim.
Another proof of this fact using the methods of the theory of entire functions was
provided by B.Y. Levin [28] in 1971, who proved the following more general
theorem.
Theorem [L]. System K s

α is complete in Lp (0, π), 1 ≤ p < +∞, for ∀α ∈ R,
whereas it is not complete in C [0, π] and has a defect equal to 2.

We can’t go without mentioning the results obtained by M.G. Gasymov [17,
18, 19] in 1971-1972. Though these results repeat those of [15, 28] concerning
the system K s

α , they were obtained by a different method using general facts
about the k-fold completeness of root elements of operator pencils. To illustrate,
consider the quadratic pencil

y′′ − dλy′ + λ2y = 0,

y (0) = y (1) = 0 ,
(3.1)

given in [17], where d ∈ R is some parameter. The results of [17] imply that
for |d| < 2 the system of root elements of the pencil (3.1) corresponding to the
eigenvalues in the left half-plane is complete in L2 (0, 1). Compared to problem
(1.4), we have a =∞, c = 1 and b = −d

2 . Hence it follows the same result on the
completeness of K s

α in L2 for ∀α ∈ R. For comprehensive information about the
n-fold completeness of root elements of operator pencils we refer the readers to
the 1982 review article by G.V. Radzievski [40] (see also [37]).

Note that all the previous results cover the case α ∈ R. It is not accidental,
and it is reasoned by the methods used in previous works (the methods of those
works were functional and theoretical; besides, the ones of the spectral theory
of operators were also used). The further research required the consideration of
more general systems. In 1975, A.A. Shkalikov [42] considered the system

f0 (x) ≡ 1,

fk (x) =
r∑
i=1

ai [ϕi (x)]k + bi

[
ϕi (x)

]k
, k ∈ N,

where 0 ≤ x ≤ l, and ai; bi; i = 1, r are the complex numbers. Besides, at least
one of the numbers ai, bi is nonzero. Conditions imposed on the functions ϕi (x)
are:
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1. ϕi (x), i = 1, r, are continuous (or with a finite number of discontinuities)
complex functions of bounded variation on [0, l];

2. for ∀i, j = 1, r and for ∀x1, x2 ∈ [0, l], except maybe for a finite number of
pairs, it holds

ϕi (x1) 6= ϕj (x2) (if i = j, thenx1 6= x2),

and also ϕi (x1) 6= ϕj (x2);
3. Denote by Γ the union of all γi and γi, where γi are the curves formed by the

values of the functions ϕi (x). Contour Γ satisfies one of the following conditions:
a) contour Γ or some part of it is not the boundary of a bounded domain;
b) the inside of any bounded domain, whose boundary is contour Γ or some

part of it, does not contain any other point of Γ.
Then, with the above assumptions, the following theorem is true.

Theorem [Sh]. System of functions {fk (x)}k∈Z+
is complete in Lp (0, l) , ∀p ≥

1.
This theorem has the following

Corollary [Sh]. System K s
α is complete in Lp (0, π) for ∀p ≥ 1 and ∀α ∈ R.

These results have been enhanced by some authors by taking Banach space of
continuous functions in the role of Lebesgue space. The first enhanced results
were obtained by Y.A. Kazmin in 1977-1980 [23, 24, 25]. We now state his results.
Let W (t) be a complex valued function with the following properties:

a) W = W (t) maps injectively the segment [a, b] onto C+∪R with ImW (t) >
0, ∀t ∈ (a, b);

b) W = W (t) is continuous and of bounded variation on [a, b] (in other words,
W (t) is such that the W -image of the segment [a, b] is a simple rectifiable unclosed
curve Γ+ lying in the upper half-plane C+∪R with the endpointsW (a) andW (b),
which satisfy one of the following four conditions:

1) W (a) ∈ R,W (b) ∈ R; 2) W (a) ∈ R,W (b) ∈ C+;
3) W (a) ∈ C+,W (b) ∈ R; 4) W (a) ∈ C+;W (b) ∈ C+.
The following systems are considered:

{Im [W (t)]n}n∈N , (3.2)

{Re [W (t)]n}n∈Z+
. (3.3)

The following theorem was proved in [23].
Theorem [K]. If the function W (t) satisfies the conditions a) and b), then the
systems (3.2) and (3.3) possess the following properties:

ia) CLC[a;b] [(3.2)] = C
{a;b}
0 [a, b], if ImW (a) = ImW (b) = 0;

ib) CLC[a;b] [(3.2)] = C
{a}
0 [a, b], if ImW (a) = 0, ImW (b) 6= 0;

ic) CLC[a;b] [(3.2)] = C
{b}
0 [a, b], if ImW (a) 6= 0, ImW (b) = 0;

id) CLC[a;b] [(3.2)] = C [a, b], if ImW (a) ImW (b) 6= 0;
ii) CLC[a;b] [(3.3)] = C [a; b];
iii) CLLp(a,b) [(3.3)] = CLLp(a,b) [(3.3)] = Lp (a, b) , ∀p ≥ 1.

Denote by K c
α the following system:

K c
α ≡

{
eαnt cosnt

}
n∈Z+

.

Theorem [K] has the following interesting corollary.
Corollary [K]. Let α ∈ R. Then
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1) CLC[0,π] [K s
α ] = C

{0,π}
0 [0, π] ;

2) CLLp(0,π) [K s
α ] = Lp (0, π) , ∀p ≥ 1;

3) CLC[0,π] [K c
α ] = C [0, π] ;

4) CLLp(0,π) [K c
α ] = Lp (0, π) , ∀p ≥ 1.

Note that the results on the n-fold completeness of root elements of the op-
erator pencils do not cover the case of system K c

α . In [23, 24], Y.A. Kazmin
extended those results on a double system of the form

{Re [W (t)]n ; Im [W (t)]n}n∈Z+
, (3.4)

which imply in particular the completeness of the system{
eαnt cosnt; eαnt sinnt

}
n∈Z+

in Lp (−π, π) for ∀p ≥ 1, where α ∈ R is an arbitrary parameter. Kazmin proved
these results by a smart method which has never been used before.

In 1982-1984, A.G. Tumarkin [47, 48, 49] obtained similar results for the system
of functions (3.2)-(3.4) using a different method. He found the completeness
criterion for these systems in the space of continuous functions and sufficient
conditions for minimality in the same space. Tumarkin proved that in cases when
these systems are complete and minimal, they don’t form a basis. Concerning
systems K s

α and K c
α , it turned out that they are complete and minimal in the

spaces C
{0;π}
0 [0, π] and C [0, π] for ∀α ∈ R, respectively.

In 1981-1983, extending Kazmin’s method further, A.N. Barmenkov [1, 3, 2]
considered more general system of the form{

A (t)Wn (t) +B (t)W
n

(t)
}
n∈Z+

, (3.5)

where A;B : [a, b] → C are complex coefficients. Under some conditions on the
functions A,B and W , he established a completeness criterion for the system
(3.5) in Lp (a, b) , 1 < p <∞. The obtained result was applied to the system{

eαnt sin (nt+ v (t))
}
n∈Z+

, (3.6)

where ν : [0, π] → C is some complex valued function and α ∈ R. In particular,
the following statement is true.
Statement [B]. Functional sequence{

eαnt sin (n+ a) t
}
n∈Z+

is complete in Lp (0, π), 1 < p <∞, if and only if Rea ≤ 1 + arctgα
πp .

It is absolutely clear that the similar statement can be made for the system{
eαnt cos (n+ a) t

}
n∈Z+

,

too, where α ∈ R, a ∈ C are some parameters.

3.2. A few words about the methods of proof. Now we will talk about
some details of the methods used in previous works. M.G. Dzavadov proceeded
directly from the completeness criterion for the system, reduced the complete-
ness of the “half” of the system to the completeness of the system itself, and then
used the results on the twofold completeness of the whole system. B.Y. Levin
used special technique of continuability of some analytic functions generated by
the system K s

α . M.G. Gasymov used the methods of spectral theory of operator
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pencils. In [17, 19, 18], M.G. Gasymov introduced a new method associating the
completeness of a part of eigenvectors with the solvability of an operator differ-
ential equation on a half-axis. Y.A. Kazmin used the following classical fact. Let
X be a Banach space, X∗ be its conjugate and M ⊂ X be some set. Then for the
closure of M it holds M ≡⊥

(
M⊥

)
, where M⊥ ≡ {ϑ ∈ X∗ : ϑ (x) = 0,∀x ∈M}

and ⊥M1 ≡ {x ∈ X∗ : ϑ (x) = 0,∀ϑ ∈M1} (M1 ⊂ X∗). In Kazmin’s case we have
X ≡ C [a, b], and the role of M is played by the linear span of the system under
consideration. For more information about this fact we refer the readers to the
monograph by U. Rudin [41]. A.G. Tumarkin also proceeded from the definition
of completeness and largely used Walsh’s classical theorem on the completeness
of the real and imaginary parts of polynomials on a curve. A.N. Barmenkov re-
duced the completeness of systems in Lp, 1 < p < +∞, to the trivial solvability
of the corresponding Riemann boundary value problems in the theory of analytic
functions in the Smirnov classes Eq,

1
p+ 1

q = 1. This reduction is realized with the

help of classical Privalov theorem on the criterion for the belonging of a function
to the Smirnov class E1. For this theorem, we refer the readers to the monograph
by G.M. Goluzin [20]. Theory of Riemann boundary value problems in classes
Eq is well studied in the monograph by I.I. Daniliuk [14].

Important results on the completeness and minimality of the system K s
α have

been obtained by Y.I. Lyubarski, V.A. Tkachenko [35, 36] and Y.I. Lyubarski
[31, 32]. Previous works which treated K s

α covered the case α ∈ R only. It
is not accidental, it is reasoned by the methods used in those works. It is not
difficult to see that for α /∈ R the system K s

α is impossible to represent in the
form of (3.5). In this case, the classical methods of the theory of entire functions
are inapplicable to the study of basis properties of K s

α . On the other hand, the
completeness and minimality are easily reduced to the boundary value problems
with shift in the Smirnov classes (again with the help of the Privalov theorem).
This, in turn, allows considering more general system of the form{

ϑ±n
}
n≥m = {a (t)ϕn (t)± b (t)ψn (t)}n≥m , (3.7)

where a; b;φ;ψ : [a, b] → C are complex valued functions. System K s
α can be

represented in the form (3.7) for ∀α ∈ C. The study of basis properties of
the system (3.7) is different from that of system (3.5) in many aspects. And
this gave birth to the new field in the approximation theory aimed at studying
the basis properties of the systems like (3.7). The most widely studied case

here is ψ (t) ≡ ϕ (t). This case does not cover the Kostyuchenko system for
nonreal values of the parameter α. The system (3.7) proved to be hard to explore,
because the study of its basis properties is reduced to the study of solvability of
Riemann boundary value problems with shift in the theory of analytic functions
in the Hardy H±p or Smirnov spaces Ep (D). And those boundary value problems
are significantly more difficult that the others (see, e.g., [30, 16]). That’s why
the basis properties of the systems like (3.7) have not yet been fully studied.
The authors used different methods to treat those problems, and therefore the
conditions they imposed on the functions in (3.7) were also different.

3.3. Special features of the system K s
α . For many reasons, the study of basis

properties of the Kostyuchenko system K s
α is a hard problem. First, it leads to

the boundary value problems with a Carleman shift which have specific features
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and are mostly not fully studied, especially in the Hardy classes H±p . Second, due

to ψ (t) 6= ϕ (t), these problems are in a certain sense nonsymmetric with respect
to the real axis. This creates another big difficulty for studying the Noetherness of
these problems in corresponding spaces. Moreover, the corresponding quadratic
pencil is not self-adjoint when α 6= 0. For these reasons, the suggested methods
are inapplicable for studying basis properties in case ψ (t) ≡ ϕ (t). Under severe
restrictions to the functions a (t) , b (t) , ϕ (t) and ψ (t), the authors in [31, 35, 36,
32] investigated the Noetherness of corresponding problem and found its index.
This allowed them to find m ∈ Z such that the system {ϑ−n }n≥m is complete
and minimal in L2. Actually, under allowable conditions, the latter provides
a completeness and minimality criterion for the system (3.7) (and also for the
system K s

α ) in L2. We can also mention the results of [33, 34] in this context.
In 1993-2012, B.T. Bilalov [4, 5, 6, 7, 8, 9, 11, 10] suggested a new method for

studying basis properties of single systems like (3.7). Namely, those properties
are derived from the similar properties of a specially defined double system of
exponents with shift. The advantage of new method is that the study of basis
properties of double systems is reduced to the use of methods of the theory of
boundary value problems with Gaseman shift in Hardy classes, which are already
studied more elaborately (see, e.g.,[29, 30, 22]). This, in turn, allows obtaining
some necessary and sufficient condition for the Riesz basicity of the system K s

α

in L2 (0, π). The concept of double Kostyuchenko system Kα is introduced and
the Riesz basicity criterion for this system in L2 (−π, π) is provided.

4. Completeness and minimality criterion. Lyubarski’s results

Here we discuss the main result of [31]. Assume that the following conditions
hold:

a, b ∈ C [0, π] ; φ, ψ ∈ C3 [0, π] ;

a (t) b (t)φ (t)ψ (t)φ′ (t)ψ′ (t) 6= 0, ∀t ∈ [0, π] .
(4.1)

Basis properties of the system (3.7) essentially depend on the curves

Γϕ ≡ {z ∈ C : z = ϕ (t) , t ∈ [0, π]} ,

Γψ ≡ {z ∈ C : z = ψ (t) , t ∈ [0, π]} .
Let Γ = Γϕ ∪ Γψ. It follows from the results of [8] that if Γ does not divide
the plane, then the system (3.7) is complete in L2 (0, π) with infinite defect.
Therefore we will consider the case when C\Γ is disjoint. Namely, let

ϕ (0) = ψ (0) , ϕ (1) = ψ (1) , and Γ be a simple curve. (4.2)

Besides, Γ is a piecewise smooth contour with possible breakpoints only at ξ0 =
ϕ (0) and ξ1 = ϕ (π) (see Fig.2).

Let πθ0 and πθ1 be the inside angles of the contour Γ at these points. Assume

θ0 > 0; θ1 > 0. (4.3)

Define the orientation of Γϕ as the one from ξ0 to ξ1, and the orientation of Γψ
as the one from ξ1 to ξ0. We will assume that this orientation coincides with the
positive orientation on Γ. By D+

Γ and D−Γ we denote the bounded and unbounded



96 BILAL T. BILALOV AND TELMAN B. KASUMOV

Fig. 2.

components of the set C\Γ, respectively. For simplicity, we assume that 0 ∈ D+
Γ .

Let
E2
m = z−mE2

(
D+

Γ

)
=

{f : f is holomorphic inD+
Γ \ {0} and zmf (z) ∈ E2

(
D+

Γ

)}
.

Homeomorphism ω : Γ→ Γ, defined by the relations

ω : ξ → ψ
(
ϕ−1 (ξ)

)
, ξ ∈ Γϕ ;

ω : ξ → ϕ
(
ψ−1 (ξ)

)
, ξ ∈ Γψ,

is associated with the functions ϕ and ψ. Define the following functions on Γ:

G (ξ) = b(t)ϕ′(t)
a(t)ψ′(t) , ξ = ϕ (t) ∈ Γϕ ;

G (ξ) = [G (ω (ξ))]−1 , ξ ∈ Γψ ,
gk (ξ) = 1

2πi

[
G (ξ) ξ−k−1 − ω−k−1 (ξ)

]
, ξ ∈ Γ, k = m, ∞ .

Completeness and minimality of the system {ϑ−n }n≥m in L2 (0, π) are provided
by the following main lemma.
Lemma [L]. Let the conditions (4.1) and (4.2) be satisfied. Then: a) in order
for the system {ϑ−n }n≥m to be complete in L2 (0, π), it is necessary and sufficient
that the homogeneous problem with shift

Φ+ (ω (ξ)) = G (ξ) Φ+ (ξ) , ξ ∈ Γ, (4.4)

has only trivial solution in E2
m; b) in order for the system {ϑ−n }n≥m to be minimal

in L2 (0, π), it is necessary and sufficient that the non-homogeneous boundary
value problem with shift

Φ+
k (ω (ξ)) = G (ξ) Φ+

k (ξ) + gk (ξ) , ξ ∈ Γ, (4.5)

has a solution Φk ∈ E2
m for ∀k ≥ m.

Functions G and gk here satisfy the (Carleman) conditions

G (ξ)G (ω (ξ)) = 1, ∀ξ ∈ Γ,

G (ω (ξ)) gk (ξ) + gk (ω (ξ)) = 0, ∀ξ ∈ Γ,

without which the problems (4.4) and (4.5) are obviously unsolvable (see the
monograph by G.S. Litvinchuk [29, 30]). It should be noted that the classical
formulations of the problems (4.4) and (4.5), i.e. the case when Γ is a Lyapunov
contour, the derivative ω′ exists and satisfies the Hölder condition on Γ, have been
well studied in [30]. In the case we consider here these conditions are not satisfied.
In classical formulation, using theorem on conformal gluing, the problems (4.4)
and (4.5) are reduced to the corresponding Riemann problems (without shift).
It proved out that the similar theorem on conformal gluing exists in the case we
consider here, too. Using the concept of expanding and shrinking logarithmic
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spiral, the authors in [31, 35, 36, 32] proved the existence of a needed conformal
gluing. Then, using Lemma [L], they established the criterion of completeness
and minimality for the system {ϑ−n }n∈N in L2 (0, π) (more precisely, they found
a number m ∈ Z such that the system {ϑ−n }n≥m is complete and minimal in

L2 (0, π), and this, in turn, is equivalent to the criterion of completeness and
minimality of the system {ϑ−n }n∈N in L2 (0, π)). Let’s state the obtained result.
Theorem [L]. Let the conditions (4.1)-(4.3) be satisfied. Choose a continuous

branch of the function L (t) = 1
2πi log a(t)ψ′(t)

b(t)ϕ′(t) on [0, π] and assume

a+ = b+ + ic+ = L (π) ; a− = b− + ic− = L (0) ;

σ+ = 1
πθ1

log
∣∣∣ϕ′(π−0)
ψ′(π−0)

∣∣∣ ; σ− = 1
πθ0

log
∣∣∣ψ′(+0)
ϕ′(+0)

∣∣∣ ;

α+ = θ1
2

(
σ2

+ + 1
)
− 1; α− = θ0

2

(
σ2
− + 1

)
− 1 ;

β± = α± ± 2 (b± − c±σ±) ; m± =
[

1−β±
2

]
, m = m+ +m− − 1.

(4.6)

Then the system {ϑ−n }n≥m is complete and minimal in L2 (0, π).

Apply Theorem [L] to the system K s
α . We have

ϕ (t) = e(α+i)t, ψ (t) = e(α−i)t; a = b =
1

2i
.

For α ∈ C\ {(−i∞, −i]
⋃

[i, i∞)}, these functions satisfy the conditions (4.1)-

(4.3). For certainty we assume that Imα ≥ 0. Let α+i
α−i = e(r+iωπ), ω ∈ [0, 1],

r ≥ 0. By (4.6), we have β+ = β+ (r; ω) = −1
2
r2

π2ω
− ω − 3; β− = β− (r; ω) =

−r2
2π2(2−ω)

+ ω
2 . Next, we calculate the numbers m± and m. For α ∈ R we obtain

r = 0, and hence m+ = 2, m− = 0 ⇒ m = 1. As a result, the system K s
α is

complete and minimal in L2 (0, π). In general case we have m+ ≥ 2 and m− ≥ 0.
For α ∈ [i, i∞) the system

{
eαnt sinnt

}
n∈Z is not twofold complete in L2 (0, π).

Note that the above-discussed research is technically very complicated, and
this of course is reasoned by the chosen study method. Except for the case
±α ∈ [i, i∞), the matter of completeness and minimality of the system K s

α in
L2 (0, π) can be considered fully solved.

5. On the basicity of the system K s
α . Shkalikov’s results

5.1. Basicity of the system K s
α . The only work so far which treated the

basicity of the system K s
α in L2 (0, π) is A.A. Shkalikov’s [43] of 1988. He

considered the quadratic pencil

P (λ) = T + λG− λ2F,

of unbounded operators acting in a Hilbert space H with the scalar product
( · ; · ). P (λ) is called hyperbolic if T is a positive definite self-adjoint operator,
i.e. T >> 0. F is self-adjoint and positive (F ≥ 0) with D (F ) ⊃ D (T ); G is
symmetric, D (G) ⊃ D (T ) and

(Gy, y) 6= 0 for 0 6= y ∈ KerF ∩D
(
T

1
2

)
.

By Hθ, θ ∈ R we denote the scale of Hilbert spaces generated by the operator

T
1
2 > 0. System {yk} consisting of the eigenelements of the pencil P (λ), which
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correspond to its positive (negative) eigenvalues, will be denoted by E+ (E−).
Shkalikov proved in [43] the following theorem.
Theorem [Sh1]. If the spectrum of hyperbolic pencil P (λ) on the half-axis

R− (R+) is discrete, then the system of elements
{
F

1
2 yk

}
, yk ∈ E− (E+) is

complete in the subspace H0 ⊂ H. If the restriction of the operator G on D (T )
admits a representation G = G+ −G−, where G+ (G−) ≥ 0 and∣∣(G(∓)x; y

)∣∣2 ≤ 4 (Tx;x) (Fy; y) , x, y ∈ D (T ) ,

then the system E− (E+) is complete in the space H1.
The following theorem was also proved by Shkalikov in [43].

Theorem [Sh2]. If F = I, T ∗ = T >> 0 , T−1 is completely continuous opera-
tor, and the symmetric operator G satisfies the condition

|(Gx; y)|2 ≤ (4− ε)2 (x;x) (Ty; y) , ∀x, y ∈ D (T ) ,

then both systems E+, E−of the pencil P (λ) form Riesz bases for the spaces Hθ,
with ∀θ ∈ [0, 1].

The obtained results are applied to the system K s
α . Namely, the following

spectral problem is considered:

−y′′ + 2aiy′ − λ2y = 0 ,
y (0) = y (π) = 0,

(5.1)

where a ∈ R is some parameter. Eigenfunctions of this problem coincide with
the system K s

α when α = ia√
1+a2

. Define in L2 (0, π) the following operators:

Hy = −y′′, D (H) = W 2
2 [0, π] ∩

0

W 1
2 [0, π] ,

Gy = 2aiy′, D (G) =
0

W 1
2 .

Then the problem (5.1) can be restated in the following operator form:(
H + λG− λ2I

)
y = 0,

where obviously H = H∗ >> 0. Using the above-mentioned general result, we
obtain the following theorem on the basicity of the system K s

α .
Theorem [Sh3]. For α ∈ (−i, i), the system K s

α is complete in L2 (0, π) and

minimal in
0

W 1
2 [0, π]. For α ∈

(
− i√

2
, i√

2

)
, it forms (with accuracy to within the

norm) a Riesz basis for
0

W 1
2 [0, π] and L2 (0, π).

Obviously, with regard to the system K s
α Shkalikov’s method is neither func-

tional nor theoretical. It just uses a general result on quadratic pencils. And
this does not give a conclusive answer to the question of the basicity of K s

α for
α ∈ (−i, i) (when α ∈ iR\ (−i, i), the full set of eigenfunctions is not twofold
complete in L2 (−π, π) as mentioned above).

5.2. Results on nonbasicity of the system K s
α . In 1996, L.V. Kritskov [27]

obtained a significant result on the basicity of the system K s
α in L2 (0, π). He

proved the following interesting
Theorem [Kr]. If α /∈ iR, then the system K s

α is not uniformly minimal in
L2 (0, π) even after removal of any finite number of its functions.
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In view of the fact that every basis is uniformly minimal, this theorem has the
following
Corollary [Kr]. When α /∈ iR, the system K s

α does not form a basis for
L2 (0, π) even after removal of any finite number of its functions.

The same result stays true for the system K c
α . Note that the method of proof

used in this work is smart and instructive. It uses the facts about the theory of
continued fractions (see, e.g., [21]).

In 2009, using a completely different method, A.Sh.Shukurov [45, 46] proved
nonbasicity of K s

α in Lp (0, π) , 1 ≤ p < +∞, for α /∈ iR. This fact follows from
Shukurov’s earlier, more general result for the system of the form

{ϕn (t) sinnt}n∈N , (5.2)

where ϕ : [a, b]→ C is some measurable complex valued function on the segment
[a, b]. He proved the following main theorem.
Theorem [Sh]. If the system (5.2) forms a basis for Lp (a, b), 1 ≤ p < +∞,
then |ϕ (t)| ≡ const a.e. on [a, b].

To prove this theorem, Shukurov largely uses the following
Lemma [Sh]. Let E ⊂ [a, b] be a Lebesgue measurable set. If ∃ {nk}k∈N ⊂ N:

lim
k→∞

∫
E
|sinnkt|p dt = 0 ( lim

k→∞

∫
E
|cosnkt|p dt = 0),

for 1 ≤ p < +∞, then mesE = 0, where mes(·) denotes the Lebesgue measure.
Similar result is true for the system {ϕn (t) cosnt}n∈Z+

. In particular, the

following corollary holds:
Corollary [Sh]. If α /∈ iR, then the systems K s

α and K c
α don’t form bases for

Lp (0, π), 1 ≤ p < +∞.

6. Riesz basicity of double system

This section discusses the elimination of above-mentioned defect, or, in other
words, the establishment of basicity criterion for the system K s

α in L2 (0, π)
when α ∈ (−i, i). For this purpose, B.T. Bilalov [4, 5, 6, 7, 8, 9, 11, 10] used a
different method, which can be briefly described as follows. Single systems {ϑ±n }
of the form (3.7) are considered in Lp (0, a). Based on these systems, a double
system of functions is constructed in Lp (−a, a). Relationship between the basis
properties of a double system in Lp (−a, a) and those of single systems in Lp (0, a)
is established. The study of the basis properties of a double system is reduced to
the study of corresponding Gaseman problem with shift. Compared to Carleman
problem, the latter is well-studied. Under certain conditions on system data,
this allows to establish basis properties of a double system. Then, using above-
mentioned relationship, the basis properties of single systems are established.
In some cases, criteria for basis properties are found. In special case, basicity
criterion for the system K s

α is found when |α| < 1.
Now we state the main results obtained in this context. Without loss of gen-

erality, we assume that the system (3.7) is defined on the segment [0, π]. General
case can be reduced to this one by a linear change of variables, which does not
affect the basis properties of the system (3.7) in Lp. Introduce the following
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functions:

A (t) ≡
{
a (t) , t ∈ [0, π] ,
b (−t) , t ∈ [−π, 0] ,

W (t) ≡
{
ϕ (t) , t ∈ [0, π] ,
ψ (−t) , t ∈ [−π, 0] .

Let

Wn;k (t) ≡
[
A (t)Wn (t) ;A (−t)W k (−t)

]
.

The following relationship is available between the basis properties of double
system {Wn;k} and those of system (3.7).

Lemma [B1]. Double system {Wn;k}n; k≥m

(
1 ∪ {Wn;k}n; k≥m

)
is complete,

minimal in Lp (−π, π) and forms a basis for it or an absolute basis for L2 (−π, π)
if and only if every one of the single systems {ϑ+

n }n≥m and {ϑ−n }n≥m (1∪{ϑ+
n }n≥m

and {ϑ−n }n≥m) is complete, minimal in Lp (0, π) and forms a basis for it or an

absolute basis for L2 (0, π), respectively, 1 ≤ p < +∞.
To obtain the main results, the following lemma is largely used.

Lemma [B2]. (a) Let the system {Wn;k} with n ≥ 0 , k ≥ 1, form a basis for
Lp (−π, π) (absolute basis for L2 (−π, π)). If the system {ϑ−n }n∈N is complete in
Lp (0, π), then it forms a basis for Lp (0, π) (absolute basis for L2 (0, π)).

(b) Let the system {Wn;k} with n ≥ 1 , k ≥ 2, form a basis for Lp (−π, π)
(absolute basis for L2 (−π, π)). If the system {ϑ−n }n∈N is minimal in Lp (0, π),
then it forms a basis for Lp (0, π) (absolute basis for L2 (0, π)).

Similar assertions are true for the system {ϑ+
n }n∈N.

The next lemma allows establishing Riesz basicity of the single systems.
Lemma [B3]. Let the conditions (a1), (a2) be satisfied and∥∥ω−n ∥∥2

6= 0, ∀n ≥ m,
(∥∥ω+

n

∥∥
2
6= 0, ∀n ≥ m

)
,

where ‖·‖2 is the usual norm in L2 (0, π). Then

inf
n≥m

∥∥ω−n ∥∥2
> 0, sup

n≥m

∥∥ω−n ∥∥2
< +∞;

(
inf
n≥m

∥∥ω+
n

∥∥
2
> 0, sup

n≥m

∥∥ω+
n

∥∥
2
< +∞

)
.

To prove the main theorem, the results of [9] are largely used. To make our
reasoning easier, we state here one of the results of [9] concerning Riesz basicity
in L2 (−π, π) of a double system of exponents{

A (t) eiν̃(t)n; B (t) e−ikt
}
n∈Z+;k∈N

, (6.1)

where ν̃ (t) is a shift of the interval [−π, π], and the complex valued coefficients

A (t) ≡ |A (t)| eiα(t), B (t) ≡ |B (t)| eiβ(t) satisfy the following conditions:
(A1). A(t), B(t) are piecewise continuous functions on [−π, π], {t̃k}l1 is the

set of discontinuity points of these functions on (−π, π), and A (t)B (t) 6= 0,
∀t ∈[−π, π];

(A2). ν̃ (t)∈C [−π, π], ν̃ (t) is piecewise differentiable and ν̃ ′ (t) is piecewise
Hölder on [−π, π], {τ̃k}m1 ’s are its discontinuity points, ν̃ (π) − ν̃ (−π) = 2π and
ν̃ ′ (t) > 0 for ∀t ∈ [−π, π];

(A3). {ϕ̃k}r̃0 ∩ Z = ∅, where ϕ̃k = 1
8π2

[
ν̃k + 2 ln

∣∣∣λ̃k∣∣∣] ν̃k + π−arg λ̃k
2π ;

ν̃0 = ln

∣∣∣∣ ν̃ ′ (−π + 0)

ν̃ ′ (π − 0)

∣∣∣∣ , ν̃k = ln

∣∣∣∣ ν̃ ′ (s̃k + 0)

ν̃ ′ (s̃k − 0)

∣∣∣∣ , k = 1, r̃;
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λ̃0 =
G (−π + 0)

G (π − 0)
; λ̃k =

G (s̃k + 0)

G (s̃k − 0)
, k = 1, r̃;

G (t) ≡ B (t)

A (t)
;
{
t̃k
}l

1
∪ {τ̃k}m1 ≡ {s̃k}

r̃
1 : −π < s̃1 < ... < s̃r̃ < π.

Let θ̃ (t) ≡ β (t) − α (t) and h̃k = θ̃ (s̃k + 0) − θ̃ (s̃k − 0), k = 1, r̃. Take ñ0 = 0

and define {ñi}r̃1 ⊂ Z by the following relations:

−1

2
<
h̃k
2π
− 1

8π2

[
ν̃k + 2 ln

∣∣∣λ̃k∣∣∣] ν̃k + ñk−1 − ñk <
1

2
, k = 1, r̃. (6.2)

Denote

ω̃r̃ =
1

2π

[
θ̃ (−π + 0)− θ̃ (π − 0)

]
− 1

8π2

[
ν̃0 + 2 ln

∣∣∣λ̃0

∣∣∣] ν̃0 + ñr̃. (6.3)

The following main theorem on Riesz basicity of the system (6.1) was proved
in [36].
Theorem [B1]. Let the functions A (t) , B (t) and ν (t) satisfy the conditions
(A1)-(A3). Let ω̃r̃ be defined by the relations (6.2), (6.3). Then the system (6.1)
forms a Riesz basis for L2 (−π, π) only if ω̃r̃ ∈

(
−1

2 ,
1
2

)
. For ω̃r̃ < −1

2 , this system

is complete, but not minimal. For ω̃r̃ >
1
2 , it is minimal, but not complete.

7. Riesz basicity of single systems

Here we will consider a special case of the system (3.7):

ω±n (t) ≡ a (t) eiσ(t)n ± b (t) e−iξ(t)n, n ∈ N.
The following conditions are imposed on the functions in the above expression:

(a1). a (t), b(t) are piecewise continuous functions on [0, π], {tk}m1 are disconti-
nuity points of the function θ (t) ≡ arg b (t)−arg a (t) on (0, π), and a (t) b (t) 6= 0,
∀t ∈ [0, π];

(a2). σ (t), ξ(t) are piecewise differentiable, continuous, increasing functions

on [0, π], σ
′
(t) and ξ

′
(t) are piecewise Hölder on [−π, π], and σ

′
(t)ξ

′
(t) 6= 0,

∀t ∈ [0, π], with σ (0) = ξ (0), σ (π) + ξ (π) = 2π. Let {τk}l1 be the discontinuity

points of the functions σ
′
(t) and ξ

′
(t) on (0, π). Denote {tk}m1 ∪ {τk}

l
1 = {sk}r1,

where 0 < s1 < ... < sr < π. Define

hk = θ (sk + 0)− θ (sk − 0) = arg b (sk + 0)− arg b (sk − 0)−
− arg a (sk + 0) + arg a (sk − 0) , k = 1, r;

h0 = arg b (0)− arg a (0) ; hπ = arg b (π)− arg a (π) ;

νk = ln

∣∣∣∣∣σ
′
(sk + 0) ξ

′
(sk − 0)

σ′ (sk − 0) ξ′ (sk + 0)

∣∣∣∣∣ , k = 1, r; ν0 = 2 ln

∣∣∣∣∣σ
′
(0)

ξ′ (0)

∣∣∣∣∣ ; νπ = 2 ln

∣∣∣∣∣ ξ
′
(π)

σ′ (π)

∣∣∣∣∣ ;
λk =

b (sk + 0) a (sk − 0)

b (sk − 0) a (sk + 0)
, k = 1, r; λ0 =

b2 (0)

a2 (0)
; λπ =

a2 (π)

b2 (π)
.

Put

ω0 =
h0

π
− 1

8π2
[ν0 + 2 ln |λ0|] ν0;

ωk =
hk
2π
− 1

8π2
[νk + 2 ln |λk|] νk, k = 1, r; ωπ =

hπ
π
− 1

8π2
[νπ + 2 ln |λπ|] νπ.
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Besides, we assume that the following condition is fulfilled:
(a3).

{
ω0 − 1

2 ; ωπ − 1
2 ; ωk − 1

2 , k = 1, r
}
∩ Z = ∅.

Define the numbers {ni}r0 ⊂ Z by the following relations

−3
2 + 2n0 < ω0 <

1
2 + 2n0,

−1
2 < ωk + ni−1 − ni < 1

2 , i = 1, r.

}
(7.1)

Put
ωr = ωπ + 2nr. (7.2)

The following main theorem was proved in [10].
Theorem [B2]. Let the conditions (a1)− (a3) be satisfied, ωr be defined by (a2),
(7.1), (7.2), and one of the following conditions be fulfilled:

(b1). −1
2 < ω0 − 2n0 <

1
2 ,−

3
2 < ωr < −1

2 ;

(b2). −3
2 < ω0 − 2n0 < −1

2 ,−
1
2 < ωr <

1
2 ;

(b3). −1
2 < ω0 − 2n0 <

1
2 , −1

2 < ωr <
1
2 , and the system {υ−n }n∈N is complete

in L2 (0, π);
(b4). −3

2 < ω0 − 2n0 < −1
2 , −3

2 < ωr < −1
2 , and the system {υ−n }n∈N is

minimal in L2 (0, π). Then the system {υ−n }n∈N forms a Riesz basis for L2 (0, π).
Consider some special cases. Let the following conditions be satisfied:
(c1). a (t) , b (t) ∈ C [0, π] ; a (t) b (t) 6= 0,∀t ∈ [0, π] ;

(c2). σ
′
(t) , ξ

′
(t) ∈ C [0, π] ;σ

′
(t) > 0, ξ

′
(t) > 0,∀t ∈ [0, π] ;σ (0) = ξ (0) , σ (π)+

ξ (π) = 2π;
(c3).

{
ω0 − 1

2 ;ωπ − 1
2

}
∩ Z = ∅.

We have
Corollary [B1]. Let the conditions (c1) − (c3) be satisfied. Define the number
n0 ∈ Z by the inequality

−3

2
+ 2n0 < ω0 <

1

2
+ 2n0.

Let ωr = ωπ + 2n0, where ωπ is defined in (a2). Then the assertion of Theorem
[B2] is true for the system {ω−n }n∈N.

In fact, the relations (7.1) imply in this case that nr = n0. Consider the system

en (t) = eiσ(t)n − e−iξ(t)n, n ∈ N.

Put α0 = − ν20
8π2 , απ = − ν2π

8π2 , and suppose the following condition is true:

(c4).
{
α0 − 1

2 ;απ − 1
2

}
∩ Z = ∅.

Theorem [B2] has the following corollary.
Corollary [B2]. Let the conditions (c2), (c4) be satisfied. Find the number
n0 ∈ Z from the inequality

−3

2
+ 2n0 < α0 <

1

2
+ 2n0.

Put ω = απ + 2n0. Let one of the following conditions be true:
(d1). −1

2 < α0 − 2n0 <
1
2 ,−

3
2 < ω < −1

2 ;

(d2). −3
2 < α0 − 2n0 < −1

2 ,−
1
2 < ω < 1

2 ;

(d3). −1
2 < α0 − 2n0 <

1
2 ,−

1
2 < ω < 1

2 ;

(d4). −3
2 < α0 − 2n0 < −1

2 , −3
2 < ω < −1

2 and {en}n∈N is minimal in
L2 (0, π).
Then the system {en}n∈N forms a Riesz basis for L2 (0, π).
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With one of the conditions (d1), (d2) and (d4) fulfilled, the assertion of this
corollary follows immediately from Theorem [B2]. If the condition (d3) is fulfilled,
then, due to A (t) ≡ 1, we obtain in this case that the corresponding system
1
⋃
{Wn (t) ;Wn (−t)}n∈N forms a basis for L2 (−π, π). Consequently, by Lemma

[B1], the system {en}n∈N is complete in L2 (0, π). The rest is obvious.

8. Basicity criterion for Kostyuchenko system

8.1. Single Kostyuchenko system. Consider the Kostyuchenko system

S+
α ≡

{
eiαnt sinnt

}
n∈N ,

where α ∈ R is a real number. Let’s apply the obtained results to this system
in L2 (0, π). Represent it in the form {ω−n }n∈N. Then σ (t) = (α+ 1) t, ξ (t) =
(1− α) t. For |α| < 1 the condition (c2) is true. We find

ν0 = 2 ln

∣∣∣∣∣σ
′
(0)

ξ′ (0)

∣∣∣∣∣ = 2 ln

∣∣∣∣1 + α

1− α

∣∣∣∣ ; νπ = 2 ln

∣∣∣∣∣ ξ
′
(π)

σ′ (π)

∣∣∣∣∣ = 2 ln

∣∣∣∣1− α1 + α

∣∣∣∣ = −ν0.

Following Corollary [B2], we obtain: α0 = − ν20
8π2 ; απ = − ν2π

8π2 = − ν20
8π2 = α0.

Condition (c4) takes the form α0 − 1
2 /∈ Z. In view of

∣∣∣ln 1+α
1−α

∣∣∣ = ln 1+|α|
1−|α| , we

hence get

|α| 6= eπ
√

2n−1 − 1

eπ
√

2n−1 + 1
= πn, ∀n ∈ N.

The main inequalities for α0 and ω (ω = α0 + 2n0) imply

−3

2
< α0 − 2n0 <

1

2
; −3

2
< α0 + 2n0 <

1

2
,

hence n0 = 0. Therefore ω = α0.
First we consider the case

−1

2
< α0 <

1

2
⇔ −1

2
< − ν2

0

8π2
<

1

2
⇔ |ν0| < 2π ⇔

∣∣∣∣ln 1 + α

1− α

∣∣∣∣ < π ⇔ |α| < eπ − 1

eπ + 1
.

In this case, the condition (d3) of Corollary [B2] is fulfilled, therefore it is clear
that the system S+

α forms a Riesz basis for L2 (0, π).
Now consider the case when −3

2 < α0 < −1
2 , i.e.

eπ − 1

eπ + 1
< |α| < eπ

√
3 − 1

eπ
√

3 + 1
. (8.1)

In this case, the condition (d4) of Corollary [B2] is fulfilled. It suffices to show
that the system S+

α is minimal in L2 (0, π). For this aim, we will use the results
of [32]. Following [32], we find the numbers r ≥ 0 and ω ∈ (0, 1] from

α+ 1

α− 1
= exp (r + iωπ)⇒ ω = 1, r = ln

1 + α

1− α
.

We assume without loss of generality that 0 ≤ α < 1. Using the notation of [32],
we have

β+ = β+ (r, ω) = −1

2

r2

π2
+

1

2
− 4, β− = β− (r, ω) = −1

2

r2

π2
+

1

2
,
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and, as a result, N0 = N+ +N− − 1, where N± = [(1− β±) /2]. Consequently,

N0 =

[
r2

4π2
+

1

4
+ 2

]
+

[
r2

4π2
+

1

4

]
− 1 = 2

[
r2

4π2
+

1

4

]
+ 1.

Taking into account that ν0 = 2r, from (8.1) we obtain
[
r2

4π2 + 1
4

]
= 0, i.e.

N0 = 1. Hence, by the results of [32], it follows that the system S+
α is minimal in

L2 (0, π). Then Corollary [B2] implies a Riesz basicity of S+
α in L2 (0, π). Thus,

we get the following statement for the system S+
α .

Statement [B1]. Let α ∈ (−1, 1) and |α| 6= eπ−1
eπ+1 . Then the system S+

α forms a

Riesz basis for L2 (0, π) if and only if the following inequality holds:

|α| < eπ
√

3 − 1

eπ
√

3 + 1
. (8.2)

In fact, if the inequality (8.2) is true, then the system S+
α forms a Riesz ba-

sis for L2 (0, π). If (8.2) is not true, then, by the results of [32], the system{
eiαnt sinnt

}∞
n≥m is complete and minimal in L2 (0, π) for m > 1.

8.2. Double Kostyuchenko system. Here we give a result on the basicity of
the following double system

Kα ≡ {eiαn|t|eint; eiαk|t|e−ikt}n∈Z+;k∈N

in L2 (−π, π). This system is obtained from the system S+
α in the manner depicted

above. Namely, we first represent the system S+
α in the form

S+
α ≡ c {ϕn (t)− ψn (t)}n∈N ,

where ϕ (t) ≡ ei(α+1)t; ψ (t) ≡ ei(α−1)t, c = 1
2i . Then we have

W (t) ≡
{
φ (t) , t ∈ (0, π] ,
ψ (−t) , t ∈ [−π, 0]

≡
{
eiαteit, t ∈ (0, π] ,
e−iαteit, t ∈ [−π, 0]

≡ eiteiα|t| , t ∈ [−π, π] .

Taking into account the relationship between the basis properties of single
and double systems, we call Kα a double Kostyuchenko system. Direct use of a
theorem proved in [9] yields the following
Statement [B2]. Let |α| < 1 α 6= πn, ∀n ∈ N. Double Kostyuchenko system
Kα forms a Riesz basis for L2 (−π, π) if and only if |α| < π1 = eπ−1

eπ+1 .

8.3. Remark. Similar results can be obtained for the system{
eiαnt sin [(n+ β) t+ γ]

}
n∈Z+

,

where α, β, γ ∈ R are some parameters. For example, using Lemma [B1], from
Statement [B2] we immediately obtain that if α ∈ (−π1, π1), then the system

{eiαnt cosnt}n∈Z+

forms a Riesz basis for L2 (0, π).
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9. Unsolved matters

In conclusion, we mention some unsolved matters concerning basis properties
of the system K s

α , which are interesting mostly from a theoretical point of view.

(1) Study the basis properties of the system K s
α in L2 (0, π) when |α| > 1;

(2) Study the basis properties of the system K s
α in the weighted space L2,ρ (0, π);

(3) Study the same matters in Lebesgue spaces Lp (0, π) and in weighted
Lebesgue spaces Lp,ρ (0, π) for p 6= 2;

(4) Find out whether the system K s
α is uniformly minimal in Lp (0, π) for

p 6= 2.
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