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Abstract. This is a survey of recent results obtained by the author
and his co-authors G. Barbatis, E. B. Davies, E. Feleqi, V. Goldshtein,
P. D. Lamberti, M. Lanza de Cristoforis, A. Ukhlov on the problem of
estimates for the variation of the eigenvalues of elliptic operators upon
variation of the open sets on which they are defined. These estimates
are expressed in terms of various geometric characteristics of vicinity of
the open sets.

1. Introduction

We shall mostly consider a non-negative self-adjoint operator

Hu = (−1)m
∑

|α|=|β|=m

Dα
(
Aαβ(x)Dβu

)
, x ∈ Ω, (1.1)

of order 2m subject to homogeneous Dirichlet or Neumann boundary conditions
on an open set Ω in RN . Here m ∈ N is arbitrary and the coefficients Aαβ are
bounded measurable real-valued functions defined on Ω and the uniform ellipticity
condition is satisfied: for some θ > 0∑

|α|=|β|=m

Aαβ(x)ξαξβ ≥ θ|ξ|2 (1.2)

for all x ∈ Ω, ξ = (ξα)|α|=m ∈ Rm̂, where m̂ is the number of all multi-indices

α ∈ NN0 , with |α| = α1 + · · ·+ αN = m.
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If Ω is sufficiently regular open set, then H has compact resolvent and its
spectrum consists of a sequence of eigenvalues

λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λn[Ω] ≤ . . .
of finite multiplicity such that limn→∞ λn[Ω] = ∞. (Here each eigenvalue is
repeated as many times as its multiplicity.)

In this survey, for fixed coefficients Aαβ, we shall present sharp stability esti-
mates for the variation of λn[Ω] upon variation of Ω. Some of them were discussed
in [24, 31, 29, 30, 13, 15, 19]. Here we focus on the results obtained by the author
and his co-authors in the last decade.

Certain, less complete results of such type are obtained for the variation of
of the corresponding eigenfunctions and, more generally, for solutions of ellip-
tic equations. We shall not discuss them in this survey. We only mention the
following papers dedicated to this topic: [42, 45, 3, 43, 4, 7, 8, 9].

A wide class of open sets will be under consideration. For this reason first we
state what is the meaning of the homogeneous Dirichlet or Neumann boundary
conditions for an arbitrary open set Ω.

For 1 ≤ p ≤ ∞, by Wm,p(Ω) we denote the Sobolev space of all complex-
valued functions u in Lp(Ω), which have all weak derivatives Dαu up to order m
in Lp(Ω), endowed with the norm

‖u‖Wm,p(Ω) =
∑
|α|≤m

‖Dαu‖Lp(Ω).

By Wm,p
0 (Ω) we denote the closure in Wm,p(Ω) of the space of the C∞-functions

with compact support in Ω.
We shall also use the semi-normed Sobolev spaces Lm,p(Ω) of all complex-

valued functions u in (Lp)loc(Ω), which have all weak derivatives Dαu of order m
in Lp(Ω), endowed with the semi-norm

‖u‖Lm,p(Ω) =
∑
|α|=m

‖Dαu‖Lp(Ω).

Let V (Ω) be a closed subspace of Wm,2(Ω) containing Wm,2
0 (Ω). We consider

the following eigenvalue problem∫
Ω

∑
|α|=|β|=m

AαβD
αuDβ v̄ dx = λ

∫
Ω
uv̄ dx, (1.3)

for all test functions v ∈ V (Ω), in the unknowns u ∈ V (Ω), u 6= 0, (the eigenfunc-
tions) and λ ∈ R (the eigenvalues).

As is well known, problem (1.3) is the weak formulation of the eigenvalue
problem for the operator H in (1.1) subject to suitable homogeneous boundary
conditions: the choice of V (Ω) corresponds to the choice of boundary conditions
(see e.g., [41]).

We set

QΩ(u, v) =

∫
Ω

∑
|α|=|β|=m

AαβD
αuDβ v̄dx, QΩ(u) = QΩ(u, u),

for all u, v ∈Wm,2(Ω).
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If the embedding V (Ω) ⊂Wm−1,2(Ω) is compact, then the eigenvalues of equa-
tion (1.3) coincide with the eigenvalues of a suitable operator HV (Ω) canonically
associated with the restriction of the quadratic form QΩ to V (Ω). In fact, we
have the following theorem (see [26] and [16, Theorem 2.8] for a detailed proof).

Theorem 1.4. Let Ω be an open set in RN . Let m ∈ N, θ > 0 and, for all
α, β ∈ NN0 such that |α| = |β| = m, let Aαβ be bounded measurable real-valued
functions defined on Ω, satisfying the condition Aαβ = Aβα and condition (1.2).

Let V (Ω) be a closed subspace of Wm,2(Ω) containing Wm,2
0 (Ω) and such that

the embedding V (Ω) ⊂Wm−1,2(Ω) is compact.
Then there exists a non-negative self-adjoint linear operator HV (Ω) on L2(Ω)

with compact resolvent, such that

Dom(H
1/2
V (Ω)) = V (Ω)

and
< H

1/2
V (Ω)u,H

1/2
V (Ω)v >L2(Ω)= QΩ(u, v) for all u, v ∈ V (Ω).

Moreover, the eigenvalues of equation (1.3) coincide with the eigenvalues λn[HV (Ω)]
of HV (Ω) and

λn[HV (Ω)] = inf
L⊂V (Ω)
dimL=n

sup
u∈L
u6=0

QΩ(u)

‖u‖2
L2(Ω)

,

where the infimum is taken with respect to all subspaces L of V (Ω) of dimension n
(Min-Max Principle).

We pay particular attention to the cases V (Ω) = Wm,2
0 (Ω) and V (Ω) =

Wm,2(Ω) which correspond to Dirichlet and Neumann boundary conditions re-
spectively.

Definition 1.5. Let Ω be an open set in RN . Let m ∈ N, θ > 0 and, for all
α, β ∈ NN0 such that |α| = |β| = m, let Aαβ be bounded measurable real-valued
functions defined on Ω, satisfying the equality Aαβ = Aβα and condition (1.2).

If the embedding Wm,2
0 (Ω) ⊂Wm−1,2(Ω) is compact, we set

λn,D[Ω] = λn[H
Wm,2

0 (Ω)
].

If the embedding Wm,2(Ω) ⊂Wm−1,2(Ω) is compact, we set

λn,N [Ω] = λn[HWm,2(Ω)].

The numbers λn,D[Ω], λn,N [Ω] are called the Dirichlet eigenvalues, Neumann
eigenvalues respectively, of operator (1.1).

If a result holds for both the Dirichlet and Neumann eigenvalues, we shall write
just λn[Ω].

Remark 1.6. If Ω is such that the embedding W 1,2
0 (Ω) ⊂ L2(Ω) is compact (for

instance, if Ω is an arbitrary open set with finite Lebesgue measure), then also

the embedding Wm,2
0 (Ω) ⊂ Wm−1,2(Ω) is compact and the Dirichlet eigenvalues

are well-defined.
If Ω is such that the embedding W 1,2(Ω) ⊂ L2(Ω) is compact (for instance, if Ω

has a continuous boundary, see Definition 4.1), then the embedding Wm,2(Ω) ⊂
Wm−1,2(Ω) is compact and the Neumann eigenvalues are well-defined.
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In the next sections we shall study the variation of λn,D[Ω] and λn,N [Ω] upon
variation of Ω in suitable classes of open sets defined below.

2. General spectral stability theorem

We start with stating the general stability theorem for non-negative self-adjoint
operators, based on the notion of a transition operator [12].

Let H be a non-negative self-adjoint operator on a separable Hilbert space
(H, (·, ·)H) with domain Dom(H) dense in H. If H has a compact resolvent, its
spectrum is discrete and consists of a sequence λn[H], n ∈ N, of non-negative
eigenvalues of finite multiplicity satisfying limn→∞ λn[H] = ∞. We shall always
assume that such eigenvalues are arranged in nondecreasing order and repeated
as many times as their multiplicity. The corresponding eigenfunctions will be
denoted by ϕn[H] and it will always be assumed that they form an orthonormal
set in H. We shall also denote by Ln[H] the linear span of ϕ1[H], . . . , ϕn[H] and
set

L[H] ≡
∞⋃
n=1

Ln[H].

Definition 2.1. Let H1, H2 be two non-empty families of separable Hilbert spaces
and B1 = {H1(H1) : H1 ∈ H1}, B2 = {H2(H2) : H2 ∈ H2} where H1(H1) and
H2(H2) are non-negative self-adjoint linear operators on H1, H2 respectively, with
compact resolvents. Moreover, let δ : B1 × B2 → [0,∞) (a measure of vicinity of
H1 ∈ B1 and H2 ∈ B2).

Given H1 ∈ B1, H2 ∈ B2 and 0 ≤ amn, bmn < ∞, 0 < δ′mn, δ
′′
mn ≤ ∞ for all

m,n ∈ N, we say that a linear operator T12 : L[H1]→ Dom(H
1/2
2 ) is a transition

operator from H1 to H2 with the measure of vicinity δ and the parameters amn,
bmn, δ′mn, and δ′′mn (briefly, a transition operator from H1 to H2), if the following
conditions are satisfied:

(i) (T12ϕn[H1], T12ϕn[H1])H2 ≥ 1− annδ(H1, H2), n ∈ N,

if δ(H1, H2) < δ′nn,

(ii) |(T12ϕm[H1], T12ϕn[H1])H2 | ≤ amnδ(H1, H2), m, n ∈ N, m 6= n,

if δ(H1, H2) < δ′mn,

(iii) (H
1/2
2 T12ϕn[H1], H

1/2
2 T12ϕn[H1])H2 ≤ λn[H1] + bnnδ(H1, H2), n ∈ N ,

if δ(H1, H2) < δ′′nn,

(iv) |(H1/2
2 T12ϕm[H1], H

1/2
2 T12ϕn[H1])H2 | ≤ bmnδ(H1, H2), m, n ∈ N, m 6=

n,

if δ(H1, H2) < δ′′mn.

We assume, without loss of generality, that amn = anm, bmn = bnm,m, n ∈ N.

Theorem 2.2. Let B1, B2 and δ be as in Definition 2.1.
1. Assume that for each n ∈ N supH1∈B1

λn[H1] < ∞. Then the following
statements are equivalent:

(s1) For each n ∈ N there exist cn ∈ [0,∞[ and εn ∈]0,∞[ such that the
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inequality
λn[H2] ≤ λn[H1] + cnδ(H1, H2), (2.3)

holds for all H1 ∈ B1 and H2 ∈ B2 satisfying δ(H1, H2) < εn;

(s2) For each m,n ∈ N there exist amn, bmn ∈ [0,∞[, δ′mn, δ′′mn ∈]0,∞] such
that for each H1 ∈ B1 and H2 ∈ B2 there exists a transition operator T12 from
H1 to H2 with the measure of vicinity δ and the parameters amn, bmn, δ′mn, δ′′mn.

2. If T12 is a transition operator from H1 ∈ B1 to H2 ∈ B2 with the measure
of vicinity δ and the parameters amn, bmn, δ′mn, and δ′′mn then inequality (2.3)
holds for all H1 ∈ B1 and H2 ∈ B2 satisfying δ(H1, H2) < εn with

cn = 2(anλn[H1] + bn) and εn = min{δ′n, δ′′n, (2an)−1},
where

δ′n = min
1≤k,l≤n

δ′′kl, δ′′n = min
1≤k,l≤n

δ′′kl

and an, bn are the operator norms of the matrices (akl)
n
k,l=1, (bkl)

n
k,l=1 respectively.

Remark 2.4. Recall that, since the matrices (akl)
n
k,l=1 and (bkl)

n
k,l=1 are sym-

metric
an = max

1≤k≤n
|µk|, bn = max

1≤k≤n
|νk|,

where µk, νk are all eigenvalues of the matrices (akl)
n
k,l=1, (bkl)

n
k,l=1 respectively

(repeated as many times as their multiplicities), and the following simple esti-
mates hold:

an ≤
( n∑
k,l=1

a2
kl

)1/2

, bn ≤
( n∑
k,l=1

b2kl

)1/2

.

Remark 2.5. Conditions (i)-(ii) in Definition 2.1 can replaced by the following
condition: for all functions f ∈ Ln[H1] such that ‖f‖H1 = 1

(T12f, T12f)H2 ≥ 1− ânδ(H1, H2)

if δ(H1, H2) < δ̂′n. Conditions (iii)-(iv) in Definition 2.1 can be replaced by the
following condition: for all functions f ∈ Ln[H1] such that ‖f‖H1 = 1

(H
1/2
2 T12f,H

1/2
2 T12f)H2 ≤ λn[H1] + b̂nδ(H1, H2)

if δ(H1, H2) < δ̂′′n.
The statement of Theorem 2.2 is true also for so amended Definition 2.1, mu-

tatis mutandis. In particular, if these conditions are satisfied, then inequality
(2.3) holds with cn and εn defined by (2.2) where now

an = ân, bn = b̂n, δ
′
n = δ̂′n, δ

′′
n = δ̂′′n.

3. Estimates via vicinity of transformations

3.1. Bi-Lipschitz mappings. If ϕ1 and ϕ2 are Lipschitz mapping such that
Ω1 = ϕ1(B) and Ω2 = ϕ2(B), where B ⊂ RN is the unit ball, the dependence of
|λn[Ω1]− λn[Ω2]| on the vicinity of the mappings ϕ1 and ϕ2 was investigated in
[34, 37]. See also [16, 18] and survey paper [19], where one can find references to
other related results.
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Let, for τ > 0, Fτ be the set of all mappings ϕ of the unit ball B of the Sobolev
class L1,∞(B) such that

‖∇ϕ‖L1,∞(B) ≤ τ , ess inf
B

|det∇ϕ| ≥ 1

τ
.

Theorem 3.1. For any τ > 0 there exists Aτ > 0 such that for any ϕ1, ϕ2 ∈ Fτ
and for any n ∈ N

|λn[Ω1]− λn[Ω2]| ≤ cnAτ‖ϕ1 − ϕ2‖L1,∞(B) , (3.2)

where λn[Ω1] and λn[Ω2] are the eigenvalues of the Dirichlet or Neumann Lapla-
cian on Ω1 = ϕ1(B), Ω2 = ϕ2(B) respectively, and

cn = max{λ2
n[Ω1], λ2

n[Ω2]} . (3.3)

In the case of the Dirichlet Laplacian this theorem also holds if the ball B is
replaced by any open set Ω ⊂ RN such that the embedding W 1,2

0 (Ω) ↪→ L2(Ω) is
compact [34]. In this case Aτ depends also on the Poincaré constant of Ω of the
form

cD[Ω] = sup1/2

{ ∫
Ω |u|

2dx∫
Ω |∇u|2dx

: u ∈W 1,2
0 (Ω) \ {0}

}
.

In the case of the Neumann Laplacian this theorem also holds if the ball B is
replaced by any open set Ω ⊂ RN such that the embedding W 1,2(Ω) ↪→ L2(Ω) is
compact [37]. In this case Aτ depends also on the Poincaré constant of Ω of the
form

cN [Ω] = sup1/2

{ ∫
Ω |u|

2dx∫
Ω |∇u|2dx

: u ∈W 1,2(Ω) \ {0},
∫

Ω
udx = 0

}
.

Further results on behaviour of λn[ϕ(Ω)] in dependence on the transformation
ϕ, including analyticity results and persistence of multiplicity of the eigenvalues
can be found in [32, 33, 34, 35, 36, 37].

3.2. Conformal mappings. In the two-dimensional case application of confor-
mal mappings allows improving estimate (3.2) for the Dirichlet Laplacian for the
class of conformal regular plane domains Ω ⊂ C. In [10] a bounded simply con-
nected plane domain Ω ⊂ C is called a conformal regular domain if there exists
a conformal mapping ϕ : D → Ω of the Sobolev class L1,p(D) for some p > 2,
where D is the unit disc in C.

Let, for 2 < p ≤ ∞, τ > 0, Gp,τ be the set of all conformal mappings ϕ of the
unit disc D of the Sobolev class L1,p(D) such that

‖∇ϕ‖L1,p(D) ≤ τ .

Theorem 3.4. ([10]) For any 2 < p ≤ ∞ there exists Bp,τ > 0 such that for any
ϕ1, ϕ2 ∈ Gp,τ and for any n ∈ N

|λn,D[Ω1]− λn,D[Ω2]| ≤ cnBp,τ‖ϕ1 − ϕ2‖L1,2(D) ,

where λn,D[Ω1] and λn,D[Ω2] are the eigenvalues of the Dirichlet Laplacian on
Ω1 = ϕ1(D), Ω2 = ϕ2(D) respectively, and cn is defined by equality (3.3).

Now we describe a rather wide class of plane domains Ω for which there exist
conformal mappings ϕ : D→ Ω of class Gp,τ for some 2 < p ≤ ∞.
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Definition 3.5. A homeomorphism ϕ : W1 → W2 between planar domains is
called K-quasiconformal if it preserves orientation, belongs to the Sobolev class
W 1,2
loc (W1) and its directional derivatives ∂a satisfy the distortion inequality

max
a
|∂aϕ| ≤ K min

a
|∂aϕ| a.e. in W1 .

Infinitesimally, quasiconformal homeomorphisms transform circles to ellipses
with eccentricity uniformly bounded by K. If K = 1 we recover conformal
homeomorphisms, while for K > 1 plane quasiconformal mappings need not be
smooth.

Definition 3.6. A domain Ω is called a K-quasidisc if it is the image of the unit
disc D under a K-quasiconformal homeomorphism of the plane onto itself.

Theorem 3.7. ([10]) For any quasidiscs Ω and conformal homeomorphisms ϕ :
D→ Ω there exist p > 2 and M > 0 such that ϕ ∈ Gp,τ .

Remark 3.8. The estimated of this section are rather general. However, given,
two open sets Ω1 and Ω2, in general, it is not easy to find an open set Ω and
mappings ϕ1 and ϕ2 satisfying the conditions of Theorem 3.1 or Theorem 3.4.

In the further sections direct estimates for |λn[Ω1] − λn[Ω2]| will be presented
via various geometric characteristics of vicinity of Ω1 and Ω2.

4. Classes of open sets with continuous boundaries

We recall that for any set V in RN and δ > 0 we denote by Vδ the set
{x ∈ V : d(x, ∂Ω) > δ}. Moreover, by a rotation in RN we mean a N × N -
orthogonal matrix with real entries which we identify with the corresponding
linear operator acting in RN .

Definition 4.1. Let ρ > 0, s, s′ ∈ N, s′ ≤ s and {Vj}sj=1 be a family of bounded

open cuboids and {rj}sj=1 be a family of rotations in RN .

We say that that A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) is an atlas in RN with the

parameters ρ, s, s′, {Vj}sj=1, {rj}sj=1, briefly an atlas in RN .

We denote by C(A) the family of all open sets Ω in RN satisfying the following
properties:

(i) Ω ⊂
s⋃
j=1

(Vj)ρ and (Vj)ρ ∩ Ω 6= ∅;

(ii) Vj ∩ ∂Ω 6= ∅ for j = 1, . . . s′, Vj ∩ ∂Ω = ∅ for s′ < j ≤ s;
(iii) for j = 1, ..., s

rj(Vj) = {x ∈ RN : aij < xi < bij , i = 1, ...., N}
and

rj(Ω ∩ Vj) = {x ∈ RN : aNj < xN < gj(x̄), x̄ ∈Wj},
where x̄ = (x1, ..., xN−1), Wj = {x̄ ∈ RN−1 : aij < xi < bij , i = 1, ..., N − 1} and

gj is a continuous function defined on W j (it is meant that if s′ < j ≤ s then

gj(x̄) = bNj for all x̄ ∈W j);
moreover for j = 1, . . . , s′

aNj + ρ ≤ gj(x̄) ≤ bNj − ρ,
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for all x̄ ∈W j.
We say that an open set Ω in RN is an open set with a continuous boundary

if Ω is of class C(A) for some atlas A.

Let m ∈ N,M > 0. We say that an open set Ω is of class CmM (A), Cm−1,1
M (A) if

Ω is of class C(A) and all the functions gj in (iii) are of class Cm(W ), Cm−1,1(W )
and ∑

1≤|α|≤m

‖Dαgj‖L∞(W ) ≤M,

∑
1≤|α|≤m−1

‖Dαgj‖L∞(W ) +
∑

|α|=m−1

sup
x̄,ȳ∈W
x̄ 6=ȳ

|Dαgj(x̄)−Dαgj(ȳ)|
|x̄− ȳ|

≤M

respectively.
We say that an open set Ω in RN is an open set of class Cm, Cm−1,1 if Ω is

of class CmM (A), Cm−1,1
M (A) respectively, for some atlas A and some M > 0.

In the sequel we shall always assume that an atlas A is fixed and all open sets
Ω under consideration belong to C(A).

5. Estimates via the atlas distance

For all Ω1,Ω2 ∈ C(A) we define the atlas distance dA by

dA(Ω1,Ω2) = max
j=1,...,s′

sup
(x̄,xN )∈rj(Vj)

|g1j(x̄)− g2j(x̄)| .

Theorem 5.1. ([14, 16]) Let A be an atlas in RN . Let m ∈ N, L, θ > 0. For all
α, β ∈ NN0 with |α| = |β| = m, let the coefficients Aαβ ∈ C0,1(∪sj=1Vj) satisfy the
equality Aαβ = Aβα, the inequality

‖Aαβ‖C0,1(∪sj=1Vj) ≤ L,

and ellipticity condition (1.2).
Then for each n ∈ N there exist cn, εn > 0 depending only on n,N,A,m,L, θ

such that for both Dirichlet and Neumann boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cndA(Ω1,Ω2),

for all Ω1,Ω2 ∈ C(A) satisfying dA(Ω1,Ω2) < εn .

Theorem 5.2. ([14]) Let A be an atlas in RN , m = 1 and let the assumptions
of Theorem 5.1 on the coefficients Aαβ with m = 1 be satisfied.

Then there exist c, E > 0 depending only on N,A, L, θ such that for the Dirich-
let boundary conditions for each n ∈ N

|λn[Ω1]− λn[Ω2]| ≤ cλn[Ω1 ∩ Ω2] dA(Ω1,Ω2),

for all Ω1,Ω2 ∈ C(A) satisfying dA(Ω1,Ω2) < E .
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6. Estimates via the lower Hausdorff-Pompeiu deviation

If C ⊂ RN and x ∈ RN we denote by d(x,C) the euclidean distance of x to C.
Let A,B ⊂ RN . We define the lower Hausdorff-Pompeiu deviation of A from B
by

dHP(A,B) = min

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
.

If the minimum is replaced by the maximum, then the right-hand side becomes
the usual Hausdorff-Pompeiu distance dHP(A,B) of A and B.

We now introduce a class of open sets for which we can estimate the atlas
distance dA via the lower Hausdorff-Pompeiu deviation of the boundaries.

Let A be an atlas in RN . Let ω : [0,∞[→ [0,∞[ be a continuous non-decreasing
function such that ω(0) = 0 and, for some k > 0, ω(t) ≥ kt for all 0 ≤ t ≤ 1.

Let M > 0. We denote by C
ω(·)
M (A) the family of all open sets Ω in RN

belonging to C(A) and such that all the functions gj in the part (iii) of the
definition of an open set of class C(A) satisfy the condition

|gj(x̄)− gj(ȳ)| ≤Mω(|x̄− ȳ|),

for all x̄, ȳ ∈W j .

Theorem 6.1. ([14, 16]) Let A be an atlas in RN and let the assumptions of
Theorem 5.1 on the coefficients Aαβ be satisfied. Let ω : [0,∞[→ [0,∞[ be a
continuous non-decreasing function satisfying ω(0) = 0 and, for some k > 0,
ω(t) ≥ kt for all 0 ≤ t ≤ 1.

Then for each n ∈ N there exist cn, εn > 0 depending only on n,N,A,m,L,M,
θ, ω such that for both Dirichlet and Neumann boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cnω(dHP(∂Ω1, ∂Ω2)),

for all Ω1,Ω2 ∈ Cω(·)
M (A) satisfying dHP(∂Ω1, ∂Ω2) < εn .

Corollary 6.2. Under the assumptions of Theorem 6.1 for each n ∈ N there exist
cn, εn > 0 depending only on n,N,A,m,L,M, θ, ω such that for both Dirichlet
and Neumann boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cnω(ε),

for all 0 < ε < εn and for all Ω1,Ω2 ∈ Cω(·)
M (A) satisfying the inclusions

(Ω1)ε ⊂ Ω2 ⊂ (Ω1)ε or (Ω2)ε ⊂ Ω1 ⊂ (Ω2)ε ,

where, for Ω ⊂ RN and ε > 0, Ωε denotes the ε-neighbourhood of Ω.

If ω(ε)εγ , 0 < γ ≤ 1, then C
ω(·)
M (A) = C0,γ

M (A) and the above estimate takes
the form

|λn[Ω1]− λn[Ω2]| ≤ cnεγ .

This estimate for the Dirichle Laplacian was obtained in [25, 27] and for the
Neumann Laplacian in [6].
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7. Estimates via the measure of the symmetric difference

Theorem 7.1. ([12, 14, 18]) Let A be an atlas in RN and let the assumptions of
Theorem 5.1 on the coefficients Aαβ be satisfied. Let 2 < p ≤ ∞ and let A be a

family of open sets of class Cm−1,1
M (A) such that for each n ∈ N

sup
Ω∈A
‖ϕn[Ω]‖Wm,p(Ω) <∞

for all n ∈ N.
Then for each n ∈ N there exists cn, εn > 0 depending only on n,A,m,M, θ,

p,

sup
Ω∈A
‖ϕk[Ω]‖Wm,p(Ω) , k = 1, . . . , n ,

such that for both the Dirichlet and Neumann boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 M Ω2|1−
2
p ,

where |Ω1 M Ω2| is the Lebesgue measure of the symmetric difference of Ω1 and
Ω2, for all Ω1,Ω2 ∈ A such that |Ω1 M Ω2| < εn.

Moreover, the exponent 1− 2
p is sharp. It cannot be replaced by 1− 2

p + δ where

δ > 0 is a constant independent of p.

Corollary 7.2. Let A be an atlas in RN and let the assumptions of Theorem 7.1
on the coefficients Aαβ be satisfied.

Then for all n ∈ N there exist cn, εn > 0 depending only on n,A,m,L,M, θ
such that for the Dirichlet boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 M Ω2|,

for all Ω1,Ω2 ∈ C2m
M (A) such that |Ω1 M Ω2| < εn .

8. Estimates for the p-Laplacian

Let Ω be a bounded open set in RN and 1 < p < ∞. Consider the nonlinear
eigenvalue problem

−∆pu = λ|u|p−2u

for u ∈W 1,p
0 (Ω) and λ ∈ R, where

∆pu = div|∇u|p−2∇u

is the p-Laplacian. Clearly ∆2 is the usual Dirichlet Laplacian. The real numbers
λ for which this equation has a nontrivial solution are by definition the eigenvalues
of −∆p.

As is known, it is possible to produce a nondecreasing unbounded sequence of
eigenvalues λp,n[Ω], n ∈ N by means of the following variant of the Min-Max
Principle [28, 23, 40]

λp,n[Ω] = inf
M∈Mp,n(Ω)

sup
u∈M

∫
Ω

|∇u|pdx∫
Ω

|u|pdx
,
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where Mp,n(Ω) is the family of those conic subsets M of W 1,p
0 (Ω) \ {0}, whose

intersection with the unit sphere of Lp(Ω) is compact in W 1,p
0 (Ω) and whose

Krasnoselskii’s genus γ(M) is greater than or equal to n.

Theorem 8.1. ([17]) Let A be an atlas in RN and let and 1 < p <∞.
Then there exist c, E > 0 depending only on N,A and p such that for the

Dirichlet boundary conditions for each n ∈ N
|λp,n[Ω1]− λp,n[Ω2]| ≤ cλp,n[Ω1 ∩ Ω2] dA(Ω1,Ω2)

for all Ω1,Ω2 ∈ C(A) satisfying dA(Ω1,Ω2) < E .

9. Estimates for the Robin Laplacian

Let Ω be a bounded domain in RN of class C0,1, h be an essentially bounded
non-negative measurable function on ∂Ω, and the quadratic form on L2(Ω) be
defined by

QΩ,h[f ] ≡
{ ∫

Ω |∇f |
2 dx+

∫
∂Ω h|tr f |

2 dσ if f ∈W 1,2(Ω) ,
+∞ if f ∈ L2(Ω) \W 1,2(Ω) ,

where dσ denotes the usual surface measure on ∂Ω, and tr f denotes the trace
on ∂Ω of the function f ∈W 1,2(Ω). The Robin Laplacian in Ω, corresponding to
h is defined to be the non-negative selfadjoint operator −∆Ω,h acting in L2(Ω),
and associated to the quadratic form QΩ,h. We consider the eigenvalue problem

−∆Ω,h[u] = λu .

Note that the classical formulation of this problem in a domain with a smooth
boundary is

−∆u = λu in Ω,
∂u

∂ν
+ hu = 0 on ∂Ω ,

where ν is the exterior unit normal to ∂Ω. (For h = 0, one obtains the Neu-
mann problem.) We denote by {λn[Ω, h]}n∈N the non-decreasing sequence of all
eigenvalues.

Definition 9.1. Let A be an atlas in RN and M > 0. Let Ω1, Ω2 be bounded
domains in RN of class C0,1

M with corresponding families of functions {g1,j}s
′
j=1,

{g2,j}s
′
j=1 as in Definition 4.1 (iii). Then we set

G(∂Ω1, ∂Ω2) ≡
s′∑
j=1

∫
Wj

∣∣∣∣ |∇ϕ1,j(x)| − |∇ϕ2,j(x)|
∣∣∣∣ dx .

For h1 ∈ L∞(∂Ω1), h2 ∈ L∞(∂Ω2), we also set

a(h1, h2) ≡ max
{
‖h1‖L∞(∂Ω1), ‖h2‖L∞(∂Ω2), ‖h1‖2L∞(∂Ω1), ‖h2‖2L∞(∂Ω2)

}
.

Theorem 9.2. ([20]) Let A be an atlas in RN and M > 0. Then for each n ∈ N
there exists bn > 0 such that

λn[Ω2, h2] ≤ λn[Ω1, h1]

+bn

[
|Ω1 \ Ω2|+ a(h1, h2) (|Ω1 \ Ω2|+G(∂Ω1, ∂Ω2)) + ‖h1 − h2‖L1(∂Ω)

]
,
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for all bounded domains Ω1, Ω2 in RN which are of class C0,1
M (A) and satisfy the

conditions

Ω2 ⊂ Ω1, |Ω1 \ Ω2| ≤ b−1
n ,

and for all nonnegative h1 ∈ L∞(∂Ω1), h2 ∈ L∞(∂Ω2).

Theorem 9.3. ([20]) Let A be an atlas in RN , M > 0, α > 0, and 0 < γ ≤ 1.
Then for each n ∈ N, there exists cn > 0 such that

λn[Ω1, h1]− cnεγ ≤ λn[Ω2, h2] ≤ λn[Ω1, h1] + cnε ,

for all 0 < ε < c−1
n , for all bounded domains Ω1 in RN of class C1,γ

M (A), for all
non-negative h1 ∈ L∞(∂Ω1) such that ‖h1‖L∞(∂Ω1) ≤ α and Lipγ [h1] ≤ α and for

all bounded domains Ω2 in RN of class C0,1
M (A) satisfying the conditions

(Ω1)ε ⊂ Ω2 ⊂ Ω1, G(∂Ω1, ∂Ω2) ≤ ε ,

and for all nonnegative h2 ∈ L∞(∂Ω2) satisfying the conditions ‖h2‖L∞(∂Ω2) ≤ α ,
and L(h1, h2) ≤ ε .

10. Estimates of singular numbers for correct restrictions of
elliptic operators

10.1. Correct restrictions. Let m,N ∈ N and L be an elliptic differential
expression of the following form: for u ∈ C∞(RN )

(Lu)(x) = (−1)m
∑

|α|,|β|≤m

Dα
(
Aαβ(x)Dβu

)
, x ∈ RN ,

where Aαβ ∈ Cm(RN ) are real-valued functions for all multi-indices α, β satisfying
|α|, |β| ≤ m.

Moreover, let, for a domain Ω ⊂ RN ,

LΩ : D(LΩ)→ L2(Ω)

be a linear operator closed in L2(Ω) generated by the differential expression L
on Ω.

A restriction

A : D(A)→ L2(Ω) , D(A) ⊂ D(LΩ)

of LΩ is correct if the equation Au = f 1) has a unique solution u ∈ D(A) for
any f ∈ L2(Ω), 2) the corresponding inverse operator A−1 : L2(Ω) → D(A) is
bounded.

Note that, in general, the operator A is not selfadjoint. For this reason the
singular numbers sn(A) are under consideration (the eigenvalues of

√
A∗A). As

usual it is assumed that they are arranged in non-decreasing order:

s1(B) ≤ s2(B) ≤ · · · ≤ sn(B) ≤ · · · .

Here each singular number is repeated as many times as its multiplicity.
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10.2. Coinciding asymptotics.

Theorem 10.1. ([21, 22]) Let m,N ∈ N, N ≥ 2,

2m
(

1− 1

N

)
< s ≤ 2m

and Ω be a bounded domain in RN of class C2m.
Then there exists b > 0 such that, for the singular numbers sn(B) of each

correct restriction B of the operator LΩ satisfying the condition

D(B) ⊂W s
2 (Ω)

with the bounded inverse B−1 : L2(Ω)→W s
2 (Ω), the following equality holds:

lim
n→∞

sn(B)n−
2m
N = b .

10.3. Spectral stability estimates. Let now, for u ∈ C∞(RN ), Lu be a second
order elliptic differential expression without lower terms with symmetric Aαβ,
namely

Lu = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
, x ∈ RN ,

where aij ∈ C1(RN ) are real-valued functions satisfying aij = aji for all i, j =
1, ..., N .

Theorem 10.2. ([21, 22]) Let N ∈ N, N ≥ 2, 2 − 2
N < s ≤ 2. Moreover, let A

be a fixed atlas in Rn, M > 0, GM (A) be a family of bounded domains Ω ⊂ RN
of class C2

M (A) and
B(A) = {BΩ}Ω∈GM (A)

be a family of correct restrictions BΩ of the operator LΩ such that

D(BΩ) ⊂W s
2 (Ω) and sup

BΩ∈B(A)
‖B−1

Ω ‖L2(Ω)→W s
2 (Ω) <∞ .

Then there exist δ, c > 0 and for each ε ∈ (0, δ] there exists k(ε) ∈ N such that

|sn(BΩ1)− sn(BΩ2)| ≤ c n
2
N ε

for all n ≥ k(ε) and for all Ω1,Ω2 ∈ GM (A) satisfying the inclusions

(Ω1)ε ⊂ Ω2 ⊂ (Ω1)ε or (Ω2)ε ⊂ Ω1 ⊂ (Ω2)ε .
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