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REGULARIZED TRACE FORMULA FOR SOME SINGULAR

SCHRÖDINGER TYPE OPERATOR

ZAKI F.A. EL-RAHEEM

In memory of M. G. Gasymov on his 75th birthday

Abstract. In this paper we prove and calculate a regularized trace for-
mula for the spectra of schrödinger type operator with explosive factor
on the half line. The methodology used is carried out by applying con-
tour integration over a complex plane, the result obtained contains both
the sum of eigenvalues and integration of scattering function, because of
the nature of spectra is discreet and continuous.

The sum of the eigenvalues {λn} of an operator is usually called its trace. For
the eigenvalues λnof an differential operator, the series

∑
n λn, roughly speaking,

diverges, however, it can be regularized by subtracting from λn the first term
of the asymptotic expansion, which interfere with the convergence of the series.
The sum of such a regularized series is called the regularized trace. The theory
of regularized traces of differential operators dates back to Gelfand and Levitan
[12], who considered the Sturm-Liouville operator

−y′′ + q(x)y = µy, y′(0) = 0, y′(π) = 0, (1)

where q(x) ∈ C1[0, π] and
∫ π

0 q(x)dx = 0, they obtained the formula

∞∑
n=0

(µn − λn) =
1

4
[q(0) + q(π)], (2)

where µn and λn are the eigenvalues of operator (1) in cases of q(x) 6= 0 and
q(x) = 0 respectively.

This formula gave rise to a large and very important theory, which started
from the investigation of specific operators and further embraced the analysis of
regularized traces of discrete operators in general form. In a short time, a number
of authors turned their attention to trace theory and obtained interesting results.
Gelfand [11] demonstrated a technique of using the trace of a resolvent for finding
traces. Dikii provided a proof of the Gelfand-Levitan formula in [1] on the basis
of direct methods of perturbation theory, and in [2], he derived trace formulas of
all orders for the Sturm-Liouville operator by constructing the fractional powers
of the operator in closed form and by computing an analytic extension for its
zeta function. Later, Levitan [13] suggested one more method for computing
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the traces of the Sturm-Liouville operator: by matching the expressions for the
characteristic determinant via the solution of an appropriate Cauchy problem and
via the corresponding infinite product, he found and compared the coefficients
of the asymptotic expansions of these expressions, thus obtaining trace formulas.
The investigation carried out in 1957 by Faddeev [7] linked the trace theory
to a substantially new class of problems. Afterwards these investigations were
continued in many directions, such as Dirac operators, differential operators with
abstract operator-valued coefficients, and the case of matrix-valued.

The trace formulae can be used for approximate calculation of the first eigen-
value of an operator [14], and in order to establish necessary and sufficient con-
ditions for a set of complex numbers to be the spectrum of an operator [15].

In [8] Gasymov was the first one who tackled a singular differential operator
with discrete spectrum. The later case is continued by Gasymov and his disciples
[9]-[10] and others.

The present paper is organized as follows, in the introduction we demonstrate,
briefly, some historical and scientific survey to regularized trace formula. From
[6] we present the basic definitions and results that are needed in the subsequent
investigation, then we prove Lemma 0.1 and the main theorem.

Consider the initial value problem

−y′′ + q(x)y = λ2ρ(x)y , 0 ≤ x <∞, (3)

y′(0)− hy(0) = 0 , h > 0, (4)

where

ρ(x) =

{
−1 ; 0 ≤ x ≤ 1,
1 ; 1 < x <∞, (5)

q(x) is a finite real valued twice differentiable function such that∫ ∞
0

(1 + x)|q(j)(x)|dx <∞, j = 0, 1, 2,

and λ is a complex spectral parameter. It should be noted that the introduction
of ρ(x) as discontinuous function, specially ±1, gives rise to a lot of analytical
difficulties, rather that the classical case, indeed, it splits the spectra into two
parts discreet and continuous , the later is treated by scattering function.

Following [6], the characteristic equation of the eigenvalues of (3)-(4) is given
by f ′(0, λ)− hf(0, λ) = 0, further,

f ′(0, λ)− hf(0, λ) = f(1, λ)ϕ′(1, λ)− f ′(1, λ)ϕ(1, λ), (6)

where
f(x, λ) = eiλx +

∫∞
x K(x, t)eiλtdt,

K(x, x) = 1
2

∫ x
0 q(t)dt, 1 < x <∞,

(7)

ϕ(x, λ) = coshλx+
∫ x

0 A(x, t) coshλtdt,

A(x, x) = h+ 1
2

∫ x
0 q(t)dt, A(x, 0) = 0, A(0, 0) = h.

(8)

Integrating the right hand side of (7) and (8) by parts suitable number of times,
we have the following asymptotic formulas, for Imλ ≥ 0, |λ| → ∞

f(1, λ) = eiλ
[
1− K(1, 1)

iλ
+

α

(iλ)2
+©

(
1

λ3

)]
, (9)
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f ′(1, λ) = eiλ
[
iλ−K(1, 1)− β

iλ
+©

(
1

λ2

)]
, (10)

ϕ(1, λ) = coshλ+
A(1, 1)

λ
sinhλ− a

λ2
coshλ+©

(
e|Reλ|

λ3

)
, (11)

ϕ′(1, λ) = λ sinhλ+A(1, 1) coshλ− b

λ
sinhλ+©

(
e|Reλ|

λ2

)
, (12)

where

α = ∂K(1,t)
∂t

∣∣∣
t=1

, β = ∂K(1,t)
∂x

∣∣∣
t=1

, a = ∂A(1,t)
∂t

∣∣∣
t=1

and b = ∂A(1,t)
∂x

∣∣∣
t=1

. (13)

Substituting from (9)-(12) into (6), we get

f ′(0, λ)− hf(0, λ) = −iλeiλvo(λ)

[
1 +

v1(λ)

λ vo(λ)
+

v2(λ)

λ2vo(λ)
+©

(
e|Reλ|

λ3vo(λ)

)]
,

(14)
where

vo(λ) = coshλ+ i sinhλ,

v1(λ) = [A(1, 1) +K(1, 1)] coshλ+ i[K(1, 1)−A(1, 1)] sinhλ,

v2(λ) = [a+ β − k(1, 1)A(1, 1)] coshλ+ i[K(1, 1)A(1, 1)− α− b] sinhλ.

(15)

From [6], equation (2.11), fo(0, λ) = −iλeiλvo(λ), so that equation (14) takes the
form

f ′(0, λ)− hf(0, λ) = fo(0, λ) [1 + r(λ)] , (16)

where

r(λ) =
v1(λ)

λ vo(λ)
+

v2(λ)

λ2vo(λ)
+©

(
e|Reλ|

λ3vo(λ)

)
. (17)

Let Ωn be the rectangular contour

Ωn =

{
|Re λ| ≤ π

(
n+

3

4

)
, 0 ≤ Im λ ≤ π

(
n+

3

4

)}
, (18)

by using the inequality, |vo(λ)| ≥ Ce|Reλ|, λ ∈ Ωn,∀n, of Lemma 2.2 [4], r(λ)
takes the form

r(λ) =
v1(λ)

λ vo(λ)
+

v2(λ)

λ2 vo(λ)
+©

(
e|Reλ|

λ3

)
. (19)

The last discussion leads to the Lemma 0.1.

Lemma 0.1. For all Reλ 6= 0 the characteristic function fh(0, λ) def
= f ′(0, λ) −

hf(0, λ), of the eigenvalues of problem (3)-(5) admits the asymptotic formula, for
λ ∈ Ωn, Reλ 6= 0

fh(0, λ) = fo(0, λ)

[
1 +

v1(λ)

λ vo(λ)
+

v2(λ)

λ2 vo(λ)
+©

(
e|Reλ|

λ3

)]
, (20)

where f0(0, λ) is the characteristic equation of the eigenvalues of the boundary
value (3)-(5), when q(x) ≡ 0 and h = 0, v0(λ), v1(λ) and v2(λ) are given by (15).

We prove, now, the main theorem of the present paper.
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Theorem 0.1. Under the conditions of Lemma 0.1, the following regularized
trace formula with respect to the eigenvalues of problem (3)-(5), takes place

lim
n→∞

{
1

2πi

∫ τn

0
λ2dln

S(λ)

So(λ)
+

n∑
k=1

(
λk

2 − λok
2 − ω

)}
= Q, (21)

where

τn = π
(
n+ 3

4

)
, λok

2 = −π2
(
n+ 1

4

)2
, So(λ) = e−2iλ coshλ−i sinhλ

coshλ+i sinhλ ,

Q =
(
ln2
π −

3
4

)
(b+ β)− 3α

2 −
2
πKA−

1
2(K2 +A2) + 3

4(i− 1)A+A1,

A = A(1, 1),K = K(1, 1), A1 = 3A(1,1)
4 − A(1,1)K(1,1)

π + a+b+α+β
2π , ω = niA(1, 1),

α = ∂K(1,t)
∂t

∣∣∣
t=1

, β = ∂K(1,t)
∂x

∣∣∣
t=1

, a = ∂A(1,t)
∂t

∣∣∣
t=1

and b = ∂A(1,t)
∂x

∣∣∣
t=1

.

(22)

Proof. From the theory of functions of a complex variable we have the well known
formula

1

2πi

∮
Ωn

λ2d ln [fh(0, λ)] =

n∑
k=1

λ2
k, (23)

where the contour Ωn is defined by (18), the characteristic function fh(0, λ) is
defined in Lemma 0.1 and λk is the eigenvalue inside Ωn. But since

1

2πi

∮
Ωn

λ2d ln [fh(0, λ)] =
1

2πi

∫ τn

−τn
λ2d ln [fh(0, λ)] +

1

2πi

∫
Ω+

n

λ2d ln [fh(0, λ)],

(24)
where Ω+

n is the upper part of the contour Ωn, so that, from (23) and (24), we
have

n∑
k=1

λ2
k =

1

2πi

∫ τn

−τn
λ2d ln [fh(0, λ)] +

1

2πi

∫
Ω+

n

λ2d ln [fh(0, λ)]. (25)

Similarly, we carry out the same construction for fo(0, λ):

n∑
k=1

λok
2 =

1

2πi

∫ τn

−τn
λ2d ln [fo(0, λ)] +

1

2πi

∫
Ω+

n

λ2d ln [fo(0, λ)]. (26)

Subtracting (26) from (25) we have∑n
k=1

(
λ2
k − λok

2
)

= 1
2πi

∫ τn
−τn λ

2d ln [fh(0, λ)]− 1
2πi

∫ τn
−τn λ

2d ln [fo(0, λ)]

+ 1
2πi

∫
Ω+

n
λ2d ln [fh(0, λ)]− 1

2πi

∫
Ω+

n
λ2d ln [fo(0, λ)].

(27)

By using the asymptotic relations (19) and (20), one can write

1

2πi

∫
Ω+

n

λ2d ln [fn(0, λ)] =
1

2πi

∫
Ω+

n

λ2d ln [fn(0, λ)] +
1

2πi

∫
Ω+

n

λ2d ln [1 + r(λ)],

(28)
where r(λ) is defined by (19). By virtue of (28) equation (27) becomes

n∑
k=1

(
λ2
k − λok

2
)

=
1

2πi

∫ τn

−τn
λ2dln[fh(0, λ)]



REGULARIZED TRACE FORMULA . . . 137

− 1

2πi

∫ τn

−τn
λ2dln[fo(0, λ)] +

1

2πi

∫
Ω+

n

λ2dln[1 + r(λ)]. (29)

First, we calculate the 3rd. term of (29). Integrating by parts we have

1

2πi

∫
Ω+

n

λ2 d ln[1 + r(λ)] =
1

2πi
λ2 ln[1 + r(λ)]

∣∣∣∣
Ω+

n

− 1

2πi

∫
Ω+

n

2λ d ln[1 + r(λ)].

(30)
From the asymptotic formula of r(λ), we have r(λ) → 0 as n → ∞ on Ω+

n , so
that

− 1

2πi

∫
Ω+

n

2λd ln[1 + r(λ)] = − 1

2πi

∫
Ω+

n

2λ

[
r(λ) +

1

2
r2(λ) +©

(
1

λ3

)]
dλ, (31)

substituting from (19) into (31), we get

− 1
2πi

∫
Ω+

n
2λd ln[1 + r(λ)] =

− 1
πi

∫
Ω+

n

v1(λ)
vo(λ)dλ−

1
πi

∫
Ω+

n

v2(λ)
λ vo(λ)dλ+ 1

2πi

∫
Ω+

n

v21(λ)
λ v2o(λ)

dλ+
∫

Ω+
n
©
(

1
λ3

)
dλ.

(32)

Further, by virtue of (32) and (30), equation (29) takes the form∑n
k=1

(
λ2
k − λok

2
)

= 1
2πi

∫ τn
−τn λ

2dln[fh(0, λ)]− 1
2πi

∫ τn
−τn λ

2dln[fo(0, λ)]

+ 1
2πiλ

2 ln[1 + r(λ)]
∣∣
Ω+

n
− 1

πi

∫
Ω+

n

v1(λ)
vo(λ)dλ

− 1
πi

∫
Ω+

n

v2(λ)
λ vo(λ)dλ+ 1

2πi

∫
Ω+

n

v21(λ)
λ v2o(λ)

dλ+
∫

Ω+
n
©
(

1
λ3

)
dλ.

(33)

For more convenient, we write equation (33) in the following abbreviated form
n∑
k=1

(
λ2
k − λok

2
)

= If
h
− Ifo + Ir(λ) − Iv1 − Iv2 + Iv21 +

∫
Ω+

n

©
(

1

λ3

)
dλ, (34)

where

If
h

=
1

2πi

∫ τn

−τn
λ2d ln[fh(0, λ)], (35)

Ifo =
1

2πi

∫ τn

−τn
λ2d ln[fo(0, λ)], (36)

Ir(λ) =
1

2πi
λ2 ln[1 + r(λ)]

∣∣∣∣
Ω+

n

, (37)

Iv1 =
1

πi

∫
Ω+

n

v1(λ)

vo(λ)
dλ, (38)

Iv2 =
1

πi

∫
Ω+

n

v2(λ)

λ vo(λ)
dλ, (39)

Iv21 =
1

2πi

∫
Ω+

n

v2
1(λ)

λ v2
o(λ)

dλ. (40)

Now we calculate each of the integrations (35)-(40).

If
h

=
1

2πi

∫ 0

−τn
λ2d ln[fh(0, λ)] +

1

2πi

∫ τn

0
λ2d ln[fh(0, λ)],

If
h

= − 1

2πi

∫ τn

0
λ2d ln[fh(0,−λ)]
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+
1

2πi

∫ τn

0
λ2d ln[fh(0, λ)] =

−1

2πi

∫ τn

0
λ2d ln S(λ). (41)

Similarly

Ifo =
−1

2πi

∫ τn

0
λ2d ln So(λ), (42)

so that,

If
h
− Ifo =

−1

2πi

∫ τn

0
λ2d ln

S(λ)

So(λ)
. (43)

Further, we evaluate Ir(λ), λ = τ + iζ on Ω+
n , τn = ζn = π

(
n+ 3

4

)
,

Ir(λ) =
1

2πi
λ2 ln[1 + r(λ)]

∣∣∣∣
Ω+

n

= − 1

2πi
λ2 ln[1 + r(λ)]

∣∣∣∣τn
−τn

= − 1

2πi

[
τ2
n ln[1 + r(τn)]− τ2

n ln[1 + r(−τn)]
]

=
−1

2πi

[
τn
v1(τn)

vo(τn)
+
v2(τn)

vo(τn)
− 1

2

v2
1(τn)

v2
o(τn)

−τn
v1(−τn)

vo(−τn)
− v2(−τn)

vo(−τn)
+

1

2

v2
1(−τn)

v2
o(−τn)

+©
(

1

τn

)]
. (44)

Each term of (44) can be written as

v1(τn)

vo(τn)
=

{
[A(1,1)+K(1,1)]+i [(K(1,1)−A(1,1)]

1+i +©
(
e−2τn

)
, τn →∞,

[A(1,1)+K(1,1)]−i [K(1,1)−A(1,1)]
1−i +©

(
e2τn

)
, τn → −∞,

(45)

v2(τn)

vo(τn)
=

{
[a+β−K(1,1)A(1,1)]+i [K(1,1)A(1,1)−α−b]

1+i +©
(
e−2τn

)
, τn →∞,

[a+β−K(1,1)A(1,1)]−i [K(1,1)A(1,1)−α−b]
1−i +©

(
e2τn

)
, τn → −∞.

(46)

So that, by virtue of (45), (46) and (44 ) we have

Ir(λ) = −1
2πi

{
τn

[
d1+id2

1+i −
d1−id2

1−i

]
+ c1+ic2

1+i −
c1−ic2

1−i +

1
2

[
−
(
d1+id2

1+i

)2
+
(
d1−id2

1−i

)2
]}

+ o(1),
(47)

where c1 = a + β −K(1, 1)A(1, 1), c2 = K(1, 1)A(1, 1) − α − b, d1 = A(1, 1) +
K(1, 1) and d2 = K(1, 1)−A(1, 1), after simplification, we have

Ir(λ) = nA(1, 1) +A1 + o(1), (48)

where A1 = 3A(1,1)
4 − A(1,1)K(1,1)

π + a+b+α+β
2π .

To calculate the integration Iv1 , we write

Iv1 = Iv11 + Iv12 + Iv13 , (49)

where

Iv11 =
−1

π

∫ ζn

0

d1 cosh(τn + iζ) + i d2 sinh(τn + iζ)

cosh(τn + iζ) + i sinh(τn + iζ)
dζ, (50)

Iv12 =
1

π

∫ ζn

0

d1 cosh(−τn + iζ) + i d2 sinh(−τn + iζ)

cosh(−τn + iζ) + i sinh(−τn + iζ)
dζ, (51)

Iv13 =
1

πi

∫ τn

−τn

d1 cosh(τ + iζn) + i d2 sinh(τ + iζn)

cosh(τ + iζn) + i sinh(τ + iζn)
dτ. (52)
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As for Iv11 , by the help of the asymptotic formula tanh(τn + iζ) = 1 +©(e−2τn),
we have

Iv11 =
−1

π

∫ ζn

0

[
d1 + i d2

1 + i
+©(e−2τn)

]
dζ =

−1

π

d1 + id2

1 + i
ζn + o(1). (53)

Similarly, by using, the asymptotic formula tanh(−τn + iζ) = −1 +©(e−2τn), in
Iv12 , we have

Iv12 =
1

π

∫ ζn

0

[
d1 − i d2

1− i
+©(e−2τn)

]
dζ =

1

π

d1 − id2

1− i
ζn + o(1), (54)

since ζn = π
(
n+ 3

4

)
we have

Iv11 + Iv12 = nA(1, 1) +
3A(1, 1)

4
+ o(1). (55)

The asymptotic formulas used in Iv11 and Iv12 could not apply into Iv13 (because
the integration, in Iv13 is with respect to τ), so that it is more convenient to write

cosh(τ+iζn) = (−1)n√
2

[i sinh τ−cosh τ ] and sinh(τ+iζn) = (−1)n√
2

[i cosh τ−sinh τ ],

so that, from(52), we have

Iv13 =
1

πi

∫ τn

−τn

d1[i sinh τ − cosh τ ] + i d2[i cosh τ − sinh τ ]

[i sinh τ − cosh τ ] + i [i cosh τ − sinh τ ]
dτ

=
1

πi

∫ τn

−τn

d1 + d2

2
dτ = −iA(1, 1)n− 3i

4
A(1, 1). (56)

From (49), (55) and(56) we obtain

Iv1 = n (1− i)A(1, 1) +
3

4
(1− i)A(1, 1) + o(1). (57)

To evaluate Iv2 let

Iv2 = Iv21 + Iv22 + Iv23 , (58)

where

Iv21 =
−1

π

∫ ζn

0

c1 cosh(τn + iζ) + i c2 sinh(τn + iζ)

(τn + iζ)[cosh(τn + iζ) + i sinh(τn + iζ)]
dζ, (59)

Iv22 =
1

π

∫ ζn

0

c1 cosh(−τn + iζ) + i c2 sinh(−τn + iζ)

(−τn + iζ)[cosh(−τn + iζ) + i sinh(−τn + iζ)]
dζ, (60)

Iv23 =
1

πi

∫ τn

−τn

c1 cosh(τ + iζn) + i c2 sinh(τ + iζn)

(τ + iζn)[cosh(τ + iζn) + i sinh(τ + iζn)]
dτ, (61)

where c1, c2 are given by (47). For Iv21 , as we did befor , by using the asymptotic
formula tanh(τn + iζ) = 1 +©(e−2τn), after some calculation, we have

Iv21 =
−1

π

c1 + i c2

1 + i

∫ ζn

0

dζ

(τn + iζ)
+ o(1) =

−1

π

c1 + i c2

1 + i
ln(τn + iζ)

∣∣∣∣ζn
0

+ o(1),

(62)
keeping in mined that τn = ζn = π

(
n+ 3

4

)
on Ω+

n , Iv21 becomes

Iv21 =
−1

πi

c1 + i c2

1 + i
ln(1 + i) + o(1). (63)
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Using the asymptotic formula tanh(−τn + iζ) = −1 +©(e−2τn), in Iv12 , we
deduce, after some calculation, that

Iv22 =
1

πi

c1 − i c2

1− i

∫ ζn

0

dζ

(τn + iζ)
=

1

πi

c1 − ic2

1− i
ln(τn + iζ)

∣∣∣∣ζn
0

+ o(1), (64)

again ζn = π
(
n+ 3

4

)
on Ω+

n , so that,

Iv22 =
1

πi

c1 − ic2

1− i
ln(1− i) + o(1). (65)

From (63) and (65) we have

Iv21 + Iv22 = 2 Re

{
1

πi

c1 − ic2

1− i
ln(1− i)

}
+ o(1)

=
1

π

[
ln
√

2 (c1 − c2) +
3π

4
(c1 + c2)

]
+ o(1). (66)

Further, to evaluate Iv23 , we use the equalities

cosh(τ+iζn) =
(−1)n√

2
[i sinh τ−cosh τ ], sinh(τ+iζn) =

(−1)n√
2

[i cosh τ−sinh τ ],

(67)

Iv23 =
1

πi

∫ τn

−τn

c1[cosh τ − i sinh τ ] + i c2[sinh τ − i cosh τ ]

(τ + iζn)[cosh τ − i sinh τ + i(sinh τ − i cosh τ)]
dτ,

=
c1 + c2

πi

∫ τn

−τn

dτ

(τ + iζn)
+

c2 − c1

π

∫ τn

−τn

tanh(τ + iζn)

(τ + iζn)
dτ,

therefoe,

Iv23 =
3(c1 + c2)

4
+

c2 − c1

π
ln2 + o(1). (68)

From (58), (66) and (68) we have

Iv2 =
3(c1 + c2)

2
+

c2 − c1

π
ln
√

2 + o(1). (69)

Let
Iv21 = Iv211 + Iv212 + Iv213 , (70)

where

Iv211 =
1

2π

∫ ζn

0

1

(τn + iζ)

(
d1 cosh(τn + iζ) + i d2 sinh(τn + iζ)

cosh(τn + iζ) + i sinh(τn + iζ)

)2

dζ, (71)

Iv212 =
−1

2π

∫ ζn

0

1

(−τn + iζ)

(
d1 cosh(−τn + iζ) + i d2 sinh(−τn + iζ)

cosh(−τn + iζ) + i sinh(−τn + iζ)

)2

dζ, (72)

Iv213 =
−1

2πi

∫ τn

−τn

1

(τ + iζn)

(
d1 cosh(τ + iζn) + i d2 sinh(τ + iζn)

cosh(τ + iζn) + i sinh(τ + iζn)

)2

dτ. (73)

We evaluate, now, the right hand side of (70)

Iv211 =
1

2π

∫ ζn

0

1

(τn + iζ)

(
d1 cosh(τn + iζ) + i d2 sinh(τn + iζ)

cosh(τn + iζ) + i sinh(τn + iζ)

)2

dζ

=
1

2π

∫ ζn

0

1

(τn + iζ)

(
d1 + i d2 tanh(τn + iζ)

1 + i tanh(τn + iζ)

)2

dζ,
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by using the asymptotic formula, tanh(τn + iζ) = 1 +©(e−2τn), we have

Iv211 =
1

2π

(
d1 + id2

1 + i

)2 ∫ ζn

0

dζ

(τn + iζ)
+ o(1)

=
1

2πi

(
d1 + id2

1 + i

)2

ln(1 + i) + o(1). (74)

By using the asymptotic formula tanh(−τn + iζ) = −1 +©(e−2τn) and similar
technique, as in Iv211 , we obtain

Iv212 =
−1

2πi

(
d1 − id2

1− i

)2

ln(1− i) + o(1). (75)

From (74) and (75), we have

Iv211 + Iv212 = 2Re

{
1

2πi

(
d1 + id2

1− i

)2

ln(1 + i)

}
+ o(1)

=
(d2

2 − d2
1)ln2

4π
+
d1 d2

4
+ o(1). (76)

As for Iv213 , we use the equalities cosh(τ+iζn) = (−1)n√
2

[ i sinhτ−coshτ ], sinh(τ+

iζn) = (−1)n√
2

[ i coshτ − sinhτ ], therefore, (73) becomes

Iv213 =
−(d1 + d2)2

8πi

∫ τn

−τn

dτ

(τ + iζn)

+
d2

1 − d2
2

4π

∫ τn

−τn

tanh τdτ

(τ + iζn)
+

(c2 − c1)2

8πi

∫ τn

−τn

tanh2 τdτ

(τ + iζn)
. (77)

By using the asymptotic formula tanh τ = 1 +©(e−2τn) in the second and third
terms of (77), we obtain

Iv213 = −−3(d1 + d2)2

16
+
d2

1 − d2
2

4π
ln2− (d2 − d1)2

16
+ o(1). (78)

From (76) and (78), we have

Iv21 = −d
2
1 + d2

2

4
+ o(1). (79)

Substituting from (43),(48),(57),(69) and (79) into (34), and passing to limit as
n→∞ we obtain the required formula (21), which complete the proof. �
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