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In memory of M. G. Gasymov on his 75th birthday

Abstract. In the paper we study singularities of a resolvent equation,
asymptotic behavior and smoothness of solutions of a homogeneous re-
solvent equation, and also the negative part of the spectrum of two-
dimensional magnetic Schrödinger operator in the space L2(R2).

1. Introduction

In the two-dimensional space R2 consider the Schrödinger magnetic differential
expression

Ha, V =
2∑

k=1

(
1

i

∂

∂xk
+ ak(x)

)2

+ V (x), (1)

where i =
√
−1 is an imaginary unit, x = (x1, x2) ∈ R2, a(x) = (a1(x), a2(x))

and V (x) are magnetic and electric potentials, respectively.
It is well known that two-dimensional Schrödinger operators (without magnetic

potential) have the following peculiarities that call significant problems in their
analysis. Firstly, the classic Hardy inequality is not fulfilled and the Cwikel–
Lieb–Rosenblum inequality doesn’t hold.

There is a deep relation between the Hardy inequality and the threshold of
the essential spectrum of the Schrödinger operator (see e.g. [15]). If the Hardy
inequality is not fulfilled, the threshold of the essential spectrum is very sensitive
to the smallest changes of the electrical potential, i.e. in this case the Schrödinger
operator becomes a virtual operator. Recall that an operator is said to be virtual
if to the smallest change of the electric potential there arises even one eigen-
value left from the threshold of the substantial spectrum. After introducing the
magnetic field, by virtue of diamagnetic inequality (that is the consequence of
the Kato inequality (see [8] or [2])) one can expect that the above described sit-
uations may be improved. Indeed in the paper [9], Laptev and Weidl showed
that if one replaces an ordinary gradient by a magnetic gradient, then under
certain conditions on the magnetic field the Hardy inequality becomes possible.
In particular, the Aharonov–Bohm magnetic field being the Dirac δ−function is
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contained in the Laptev-Weidl class. Using the results of Laptev-Weidl, in [3]
Balinsky, Evans and Lewis proved that the Cwikel–Lieb–Rosenblum inequality
is valid for the Aharonov–Bohm magnetic field. Note that if the magnetic field
is an integer, then the ordinary and magnetic Schrödinger operators and unitary
equivalent, therefore in this case if the ordinary Schrödinger operator is virtual,
the magnetic Schrödinger operator is also virtual.

In the present paper, in the space L2(R2) we study the singularities of the
resolvent equation, asymptotic behavior and smoothness of the solutions of a
homogeneous resolvent equation and the negative part of the spectrum of two-
dimensional magnetic Schrödinger operator generated by the differential expres-
sion Ha, V , where the real magnetic and electric potentials a(x) and V (x) satisfy
the following conditions:

1)
∫
R2
|a(x)|ν dx < +∞ , where ν > 2, |a(x)| =

√
a21(x1, x2) + a22(x1, x2);

2)
∫
R2
|Φ(x)|µ dx < +∞, where µ > 1,

Φ(x) ≡ Φ(x1, x2) = a2(x1, x2) + V (x1, x2) + i div a(x1, x2),

a2(x) ≡ a2(x1, x2) = a21(x1, x2) + a22(x1, x2),

div a(x1, x2) =
∂a1(x1, x2)

∂x1
+
∂a2(x1, x2)

∂x2
.

Note that the similar issues in one-dimensional case were investigated in [1], in
three-dimensional case in [10] and [11]. It is known that estimation of the number
of negative eigen values plays an important role both in quantum mechanics and
in spectral theory of differential operators. A lot of papers have been devoted to
the investigation of the negative part of the spectrum of the Schrödinger operator.
In the first turn we indicate the papers [4], [7], [18], [19] and references therein.

Denote by C+ = {λ ∈ C : Imλ > 0} (C is a complex plane) an upper half-
plane. Let H0 be an operator (it is called a free Hamiltonian) −∆ in L2(R2)
with domain of definition D(H0) = W 2

2 (R2) (second order Sobolev space). As
the spectrum of the self-adjoint operator H0 coincides with the positive semi-axis
[0,+∞), then for any complex number from C+ the operator H0 − λ2 is the

bijection of W 2
2 (R2) on L2(R2) with the bounded inverse R0(λ

2) =
(
H0 − λ2

)−1
.

The operator R0(λ
2) is an integral operator i.e. for any f(x) ∈ L2(R2)

R0(λ
2)f(x) =

∫
R2

G0(x, y, λ)f(y)dy.

Here the generalized function

G0(x, y, λ) =
i

4
H

(1)
0 (λ |x− y|)

is a fundamental (see e.g. [16, p. 204]) solution of the operator −∆− λ2 , i.e.

(−∆− λ2)G0(x, y, λ) = δ(x− y),

where ∆ two-dimensional Laplace operator, δ(x − y) δ is the Dirac function,

H
(1)
0 (λ |x− y|) is the first order Hankel function.
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Subject to conditions 1) and 2) we can write differential expression (1) in the
form

∆a,V = −∆ +W,

where

W = −2i div a(x) + Φ(x). (2)

Consider in L2(R2) the quadratic forms

h0(ϕ) =

∫ +∞

−∞
|∇ϕ|2 dx,

ha,V (ϕ) = h0(ϕ) + (Wϕ,ϕ) ,

where∇ =
(

∂
∂x1

, ∂
∂x2

)
is a symbolic Hamilton vector, W is an operator acting by

formula (2). Obviously, h0(ϕ) corresponds to the self-adjoint operator H0 := −∆

with domain of definition W 2
2 (R2). It is known that Q(h0) = W 1

2 (R2) = D(H
1/2
0 )

(first order Sobolev space) and for any ϕ ∈ Q(h0), h0(ϕ) = (H
1/2
0 ϕ,H

1/2
0 ϕ).

Note that if a(x) and V (x) are sufficiently smooth bounded functions, then
minimal (in this case they are maximal) operators H0 and H = H0 +W , respec-
tively, that correspond to differential expression −∆ and, Ha, V are self-adjoint
operator in L2(R2) with the same domains of definition W 2

2 (R2) (second order
Sobolev space). Generally speaking, under conditions 1) and 2) the differen-
tial expression Ha, V doesn’t define the minimal operator on the linear manifold
C∞0 (R2), therefore for constructing a self-adjoint operator by means of this ex-
pression, in the paper [5] the method of quadratic forms is used and the following
theorem is proved.

Theorem 1. Let conditions 1) and 2) be fulfilled. Then there exists a unique
lower bounded self-adjoint operator H = H0+W , responding to the form ha,V (ϕ) =
h0(ϕ)+(Wϕ,ϕ) with Q(H0) = Q(H) such that any essential domain of the oper-
ator H0 is a essential domain for the operator Has well. In particular, the space
of the governing functions C∞0 (R2) is the essential domain of definition of the
operator H.

Note that the sum H0 + W is understood in the sense of forms and it may
differ from the operator sum.

Let C(R2) be a Banach space of all bounded continuous functions on R2 with
the nom sup

x∈R2

|f(x)| = ‖f‖C(R2)
< +∞.

Let h(x) ∈ C∞0 (R2) and z = λ2, Imλ > 0. Suppose

u0(λ) ≡ u0(x, λ) = R0(λ
2)h(x), u(λ) ≡ u(x, λ) = R(λ2)h(x),

where R0(λ
2) =

(
H0 − λ2

)−1
and R(λ2) =

(
H − λ2

)−1
are the resolvents of the

operators H0 and H, respectively. Taking into account that the operators −∆
and R0(λ

2) are permutational, and according to theorem 1 the space of governing
functions C∞0 (R2) is a essential domain of both operators H0 and H from the
equation of perturbation theory

R(λ2) +R0(λ
2)WR(λ2) = R0(λ

2),
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for u(λ) we get the inhomogeneous equation

u(λ) +K(λ)u(λ) = u0(λ), (3)

where K(λ) is an integral operator with the kernel

K(x, y, λ) =

G0(x, y, λ)Φ(y)− 2i
∂G0(x, y, λ)

∂x1
a1(y)− 2i

∂G0(x, y, λ)

∂x2
a2(y).

In the paper [6] it is proved that the operator K(λ) is compact in C(R2) for
all λ from C+, is continuous with respect to λ in the uniform operator topology
and is analytic with respect to λ in C+ in the same topology. These results allow
to apply to the equation

f +K(λ)f = 0 (4)

the Fredholm analytic theorem [13, p. 224, theorem VI.14]. According to Fred-
holm’s theory, inhomogeneous equation (3) for Imλ > 0 has a unique solution in
C(R2) if the respective homogeneous equation (4) has only a zero solution.

2. Main Results

It is known (see e.g. [12], [14]) that study of peculiarities with respect to param-
eter λ of the solution of the scattering theory problem is reduced to investigation
of the set of those λ at which homogeneous equation (4) has a non-trivial solution,
and also asymptotic behavior and smoothness of the solutions f(x) themselves.
Now investigate equation (4).

The following theorem is valid
Theorem 2. Let λ ∈ C+, and f(x) be the solution of the equation

f(x) = −
∫
R2

K(x, y, λ)f(y)dy. (5)

Then if conditions 1) and 2) are fulfilled, then for any δ ∈ (0, Imλ) there exists
a number Cδ > 0 such that for any x from R2

|f(x)| ≤ Cδ√
1 + |x|

e−δ|x|. (6)

Proof. According to general theory of compact operators (see. [12, p.41] or
[11]) there exists a sequence of numbers {γn} and sequence of functions {fn(x)} ⊂
C(R2) such that for each n

fn(x) = −γn
∫
|y|≤n

K(x, y, λ)fn(y)dy, (7)

and lim
n→∞

γn = 1, fn(x)→ f(x) uniformly as n→∞.

Assume

gn(x) =
√

1 + |x|eδ|x|fn(x).
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According to (7) we have

gn(x) = −γn
∫
|y|≤n

Kδ(x, y, λ)gn(y)dy, (8)

where

Kδ(x, y, λ) =

√
1 + |x|√
1 + |y|

eδ(|x|−|y|)K(x, y, λ).

From the conjecture for |y| ≤ n, |x| ≥ n+ 1 we have

|K(x, y, λ)| ≤ C√
1 + |x|

e−Imλ|x|(|Φ(y)|+ |a(y)|), (9)

where C > 0 is a constant number. From estimation (9) and conditions 1), 2),
by virtue of compactness of the operator K(λ) (see [6]) we get that the operator
Kδ(λ) with the kernel Kδ(x, y, λ) is a completely continuous operator in C(R2).
It is clear that

lim
n→∞

‖Kδ,n(λ)−Kδ(λ)‖C(R2)
= 0,

where Kδ,n(λ) = Kδ(λ)χn, χn is an operator of multiplication by the character-
istic function of the sphere Sn(0) = {x ∈ R2 : |x| ≤ n}. It follows from equation
(8) and compactness of the operators Kδ,n(λ) that there exist g(x) ∈ C(R2) and
the subsequence {gnk(x)} such that gnk(x) → g(x) uniformly as k → ∞. The
uniform boundedness of the sequence {gnk(x)} yields that there exists a number
Cδ > 0 such that for any natural k it is valid the inequality

sup
x∈R2

|gnk(x)| ≤ Cδ.

Passing in this inequality to limit as k →∞, we get

sup
x∈R2

|g(x)| ≤ Cδ,

whence taking into account the representation g(x) =
√

1 + |x|eδ|x|f(x) it follows
that inequality (6) is valid. The theorem is proved.

Theorem 3. Let λ ∈ C+, and f(x) be the solution of equation (5). If in
addition to conditions 1) and 2) for rather small positive number δ the condition

3)
∫
|x−y|<δ

|a(y)|
|x−y|2dy ∈ L2(R2),

is fulfilled, then f(x) ∈W 1
2 (R2).

Proof. It is known that (see [6]) if x 6= y(x, y ∈ R2) and 0 ≤ arg λ ≤ π, then
as λ |x− y| → 0 it is valid the asymptotic formula

∂

∂xj
G0(x, y, λ) ∼ − 1

2π

xj − yj
|x− y|2

, j = 1, 2.

From this property and lemma 2 from the book [16] (see [16, p. 281]) we get∣∣∣∣∣
∫
R2

∂G0(x, y, λ)

∂xj

∂G0(x, y, λ)

∂xj
dy

∣∣∣∣∣ ≤ Aj
∣∣∣∣ln 1

|x− y|

∣∣∣∣ , j = 1, 2 , (10)
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where Aj are some constants. By condition 2), from estimation (10) and the
equality (see [5] or [6])

lim
0<δ→0

{
sup
x∈R2

∫
|x−y≤δ|

ln
1

|x− y|
|Φ(y)| dy

}
= 0 ,

with regard to theorem 2 we get∫
R2

∂G0(x, y, λ)

∂xj
Φ(y)f(y)dy ∈ L2(R2), j = 1, 2. (11)

Consider

ψj,k,l(x) =

∫
R2

∂2G0(x, y, λ)

∂xj∂xk
al(y)f(y)dy, j, k, l = 1, 2.

Represent ψj,k,l(x) in the form

ψj,k,l(x) =

∫
|x−y|<δ

∂2G0(x, y, λ)

∂xj∂xk
al(y)f(y)dy+∫

|x−y|≥δ

∂2G0(x, y, λ)

∂xj∂xk
al(y)f(y)dy =

ψ
(1)
j,k,l(x) + ψ

(2)
j,k,l(x), j, k, l = 1, 2 . (12)

Using the asymptotic formula (see [6])

G0(x, y, λ) =
i

4

√
1

πλ |x− y|
ei(λ|x−y|−

π
4 )
[
1 +O

(
1

λ |x− y|

)]
(x 6= y (x, y ∈ R2), 0 ≤ arg λ < π, as |λ| |x− y| → +∞)

and condition 1), with regard to theorem 2 we have

ψ
(2)
j,k,l(x) ∈ L2(R2), j, k, l = 1, 2.

From the estimation ∣∣∣∣∣
∫
|x−y|<δ

∂2G0(x, y, λ)

∂xj∂xk
al(y)f(y)dy

∣∣∣∣∣ ≤
‖f(x)‖C(R2)

∫
|x−y|<δ

|al(y|
|x− y|2

dy, j, k, l = 1, 2,

and condition 3) it follows that ψ
(1)
j,k,l(x) ∈ L2(R2), j, k, l = 1, 2. Thus, from

representation (12) we have

ψj,k,l(x) =

∫
R2

∂2G0(x, y, λ)

∂xj∂xk
al(y)f(y)dy ∈ L2(R2), j, k, l = 1, 2. (13)

Relations (11) and (13) show that the generalized derivatives

∂f(x)

∂xj
=

∫
R2

∂G0(x, y, λ)

∂xj
Φ(y)f(y)dy−
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2i

∫
R2

∂2G0(x, y, λ)

∂x1∂xj
a1(y)f(y)dy − 2i

∫
R2

∂2G0(x, y, λ)

∂x2∂xj
a2(y)f(y)dy, j = 1, 2,

of the function f(x) belong to L2(R2). Hence and from theorem 2 it follows that
f(x) ∈W 1

2 (R2). The theorem is proved
Theorem 4. Let λ ∈ C+, and f(x) be the solution of equation (5). Then if

conditions 1), 2) and 3) are fulfilled, then λ = iτ , τ > 0. And λ2 = −τ2 is the
eigenvalue of the operator H of finite multiplicity.

Proof. Show that the number λ2 is the eigenvalue of the operator H. From
theorems 2 and 3 it follows that equation (5) has a non-trivial and descending
solution from the space W 1

2 (R2). Show that it is valid

ha,V (f) = h0(f) + (Wf, f) = λ2(f, f).

From the everywhere density of the space of governing functions C∞0 (R2) in
W 1

2 (R2) it follows that there exists a sequence {fn(x)}∞n=1 ⊂ C∞0 (R2) such that
lim
n→∞

‖fn(x)− f(x)‖W 1
2 (R2)

= 0. Since Imλ > 0, then the operator −∆ − λ2

one-to-one maps the spaces generalized functions of slower growth S′ onto it-
self (S is the Schwartz space [17, p. 87]). It is known that C∞0 (R2) ⊂ S′ and
W 1

2 (R2) ⊂ S′. Hence it follows that the images of the elements of the spaces
C∞0 (R2) and W 1

2 (R2) at mapping −∆ − λ2 became the elements of the space
of generalized functions of slower growth S′. In particular, the linear manifold(
−∆− λ2

)
C∞0 (R2) is everywhere dense both in L2(R2) and W 1

2 (R2). The similar

results hold for the operator −∆− λ2 as well. Now let ψ ∈
(
−∆− λ2

)
C∞0 (R2).

Then there exists a unique element ϕ ∈ C∞0 (R2) such that ψ =
(
−∆− λ2

)
ϕ.

Taking into account (5) and the equality K(λ) = R0(λ
2)W , we have

0 = (f +K(λ)f, ψ) = lim
n→∞

(fn +K(λ)fn, ψ) =

lim
n→∞

(
fn +K(λ)fn,

(
−∆− λ2

)
ϕ
)

=

lim
n→∞

((
−∆− λ2

)
(fn +K(λ)fn) , ϕ

)
=

lim
n→∞

((
−∆− λ2

) (
fn +R0(λ

2)Wfn
)
, ϕ
)

=

lim
n→∞

((
−∆− λ2

)
fn +Wfn, ϕ

)
=((

−∆− λ2
)
f +Wf,ϕ

)
=
(
Hf − λ2f, ϕ

)
.

By arbitrariness of ψ (together with it by arbitrariness of ϕ) we get

Hf = −∆f +Wf = λ2f. (14)

For proving the equality λ = iτ , τ > 0 it suffices to note that λ = σ + iτ ∈ C+

and the eigenvalue λ2 of the self-adjoint operator H should be real. Note that
the finiteness of multiplicity of the eigenvalue λ2 = −τ2 of the operator H follows
from the Fredholm analytic theorem. The theorem is proved.
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Remark. In equality (14) the sum −∆f + Wf should be understood in the
sense of quadratic forms but not as the sum of the operators. The matter is that
though both functions f(x) and (Hf) (x) belong to the space L2(R2), but it may
happen that none of the functions −∆f and Wf belong to the space L2(R2).

Theorem 5. Let conditions 1), 2) and 3) be fulfilled. Then the negative part
of the spectrum of H consists of eigenvalues of finite multiplicity, and only the
number λ = 0 may be their limit point.

Proof. Boundedness of the negative part of the spectrum of the operator H
follows from theorem 1. On the basis of theorem 1 we deduce that each negative
eigenvalue of the operator H may be only of finite multiplicity. For proving the
last statement of the theorem, it suffices to note that from the analyticity of
the operator valued function K(λ) (see [6]) and Fredholm’s analytic theorem it
follows that each negative eigenvalue is an isolated point of the negative part of
the spectrum of the operator H. The theorem is proved.

References

[1] A. R. Aliev, E. H. Eyvazov, The resolvent equation of the one-dimensional
Schrödinger operator on the whole axis, Sib. Math. J., 53 (2012), no. 6, 957–964
(translated from Sibirsk. Mat. Zh., 53 (2012), no. 6, 1201–1208).

[2] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields, I. General
interactions, Duke Math. J., 45 (1978), no. 4, 847–883.

[3] A. A. Balinsky, W. D. Evans, R. T. Lewis, On the number of negative eigenvalues of
Schrödinger operators with an Aharonov-Bohm magnetic field, R. Soc. Lond. Proc.
Ser. A Math. Phys. Eng. Sci., 457 (2001), no. 2014, 2481–2489.

[4] M. Sh. Birman, On the spectrum of singular boundary-value problems, Mat. Sb.,
55(97) (1961), no. 2, 125–174 (in Russian).

[5] E. H. Eyvazov, On self-adjointness of the two-dimensional magnetic Schrödinger
operator, Transactions of NAS of Azerb., Ser. Phys.-Tech. Math. Sci., 34 (2014),
no. 1, 29–34.

[6] E. H. Eyvazov, On the properties of the resolvent of two-dimensional magnetic
Schrödinger operator, Azerb. J. Math., 5 (2015), no. 1 (to appear).

[7] M. G. Gasymov, V. V. Zhikov, B. M. Levitan, Conditions for discreteness and
finiteness of the negative spectrum of Schrödinger’s operator equation, Math. Notes,
2 (1967), no. 5, 813–817 (translated from Mat. Zametki, 2 (1967), no. 5, 531–538).

[8] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13 (1972),
no. 1-2, 135–148.

[9] A. Laptev, T. Weidl, Hardy inequalities for magnetic Dirichlet forms, Oper. Theory
Adv. Appl., 108 (1999), 299–305.

[10] Kh. Kh. Murtazin, A. N. Galimov, Spectrum and scattering for Schrödinger op-
erators with unbounded coefficients, Dokl. Ross. Akad. Nauk, 407 (2006), no. 3,
313–315 (in Russian).

[11] Kh. Kh. Murtazin, A. N. Galimov, The spectrum and the scattering problem for
the Schrödinger operator in magnetic field, Math. Notes, 83 (2008), no. 3, 364–377
(translated from Mat. Zametki, 83 (2008), no. 3, 402–416).

[12] Kh. Kh. Murtazin, V. A. Sadovnichii, Spectral analysis of the multiparticle
Schrödinger operator, Moscow State Univ., Moscow, 1988 (in Russian).

[13] M. Reed, B. Simon, Methods of modern mathematical physics: vol. 1, Functional
analysis, Mir, Moscow, 1977 (in Russian).



ON NEGATIVE SPECTRUM OF TWO-DIMENSIONAL SCHRÖDINGER . . . 151
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