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Abstract. We consider initial abstract boundary value problems for
parabolic differential-operator equations in UMD Banach spaces settings
on the rectangle [0, T ] × [0, 1]. We use our previous results on norm-
estimates of solutions of boundary value problems for abstract elliptic
equations with a parameter on [0, 1] in a UMD Banach space. Unique
solvability of the problems is proved in the spaces of vector-valued con-
tinuous functions. The corresponding estimates of the solution are also
established. Then, completeness of a system of root functions of abstract
elliptic boundary value problems and completeness of elementary solu-
tions of initial abstract parabolic boundary value problems are obtained.
All abstract results are provided by a relevant application to parabolic or
elliptic PDEs. We also treat, in applications, integro-differential equa-
tions and boundary conditions.

1. Introduction and basic notations

In this paper, we take into account some previous results in [8] and [13] on
resolvent estimates of boundary value problems for abstract elliptic equations
with a parameter on [0,1] in a UMD Banach space to consider initial abstract
boundary value problems for parabolic differential-operator equations in UMD
Banach spaces settings on the rectangle [0, T ] × [0, 1]. To this end, we apply
the uniqueness, existence, and regularity results concerning the Cauchy problem
u′(t) = Lu(t) + f(t), u(0) = u0 in a complex Banach space X in [13] and [7] (see
the Appendix, Theorems 5.1 and 5.2).
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Let us briefly describe the main results of the paper. Of concern, is the abstract
initial boundary value problem for the parabolic differential-operator equation

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x) +A1(x)u(t, x) = f(t, x),

(t, x) ∈ (0, T )× (0, 1),

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk∑
s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2,

u(0, x) = u0(x), x ∈ (0, 1),

where mk ∈ {0, 1}; αk, βk are complex numbers; xks ∈ [0, 1]; B(x), A1(x),
for x ∈ [0, 1], and A, Tks are, generally speaking, unbounded operators in E.
Unique solvability of the problem is proved in the space of Lp((0, 1);E)-valued
continuous in time functions, i.e., in C([0, T ];Lp((0, 1);E)), while the right-hand
side of the equation is from the space of some kind of Hölder continuous functions,
Cγµ((0, T ];Lp((0, 1);E)), γ ∈ (0, 1], µ ∈ [0, 1), or Cγ0 ([0, T ];Lp((0, 1);E)), γ ∈
(0, 1). We furnish here a concrete example of application to partial differential
equations. In this case, the operator A means an elliptic differential operator
in y-variable from some bounded domain of Rn with smooth boundary, B(x)
means a multiplication operator perturbed by some integral operator and A1(x)
means some integro-differential operator, for each x ∈ [0, 1]. Moreover, due to
the abstract operators Tks in the boundary conditions, we can also treat integro-
differential boundary conditions. All the above considerations are in section 2 of
the paper.

Then, we consider completeness of a system of root functions of abstract ellip-
tic boundary value problems with a parameter (section 3) and completeness of
elementary solutions of initial abstract parabolic boundary value problems (sec-
tion 4). The corresponding applications to partial differential equations are also
shown. Generally, we would like to note that the main purpose of the paper was
to obtain results in abstract settings but we tried to illustrate some of abstract
results of the paper by relevant applications to parabolic or elliptic PDEs, even
to some of integro-differential problems.

The last section 5 is an appendix which collects the main abstract results we
used in the paper.

We bring here some relevant papers on the subjects. Up to our best knowl-
edge, there are only a few papers in the literature on the subject of section
2. In our previous paper joint with D. Guidetti [6], we consider a similar ab-
stract initial boundary value problem for parabolic differential-operator equa-
tions to that in section 2 but with rather simple separated boundary conditions.
In this case, we have succeeded to find necessary and sufficient conditions for
the unique solvability of the problem (in fact, for Lq-maximal regularity) in the
space Lq((0, T );Lp((0, 1);E)). In [5], the authors also consider separated bound-
ary conditions but the main part of the equation contains 2m-order differential
operator in x-variable in contrast to our second order. They also do not claim
that the underlying Banach space is UMD. Necessary and sufficient conditions
are found in order the corresponding problem will have a strict solution. So, our
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section 2, seems to be the first attempt to consider non-separated boundary con-
ditions in such abstract settings. The papers concerned to the subject of section
3 are [1] and [2]. Both papers consider a situation of B(x) = 0 in the equation
and treat other boundary conditions. Boundary conditions in [1] may contain
the spectral parameter λ at the same first order that the equation and boundary
conditions in [2] may contain an unbounded operator in the main part of the
boundary condition. The reader can find some other papers on the subject of
section 3 in the references in [1] and [2]. It seems to us that there are no other
studies in the literature on the subject of section 4 in such abstract settings. So,
the results of section 4 are completely new.

Let us now give necessary definitions and notations.
If E and F are Banach spaces, B(E,F ) denotes the Banach space of all

bounded, linear operators from E into F with the norm equal to the opera-
tor norm; moreover, B(E) := B(E,E). The spectrum of a linear operator A
in E is denoted by σ(A), its resolvent set by ρ(A). The domain and range of
an operator A is denoted by D(A) and R(A), respectively. The resolvent of an
operator A is denoted by R(λ,A) := (λI −A)−1.

A Banach space E is said to be of class HT, if the Hilbert transform is bounded
on Lp(R;E) for some (and then all) p > 1. Here the Hilbert transform H of a
function f ∈ S(R;E), the Schwartz space of rapidly decreasing E-valued func-
tions, is defined by

Hf :=
1

π
PV (

1

t
) ∗ f,

i.e., (Hf)(t) := 1
π lim
ε→0

∫
|τ |>ε

f(t−τ)
τ dτ . These spaces are often also called UMD Ba-

nach spaces, where the UMD stands for the property of unconditional martingale
differences.

Definition 1.1. Let E be a complex Banach space, and A is a closed linear
operator in E. The operator A is called sectorial if the following conditions are
satisfied:

(1) D(A) = E, R(A) = E, (−∞, 0) ⊂ ρ(A);
(2) ‖λ(λI +A)−1‖ ≤M for all λ > 0, and some M <∞.

Definition 1.2. Let E and F be Banach spaces. A family of operators T ⊂
B(E,F ) is called R-bounded, if there is a constant C > 0 and p ≥ 1 such that
for each natural number n, Tj ∈ T , uj ∈ E and for all independent, symmet-
ric, {−1, 1}-valued random variables εj on [0, 1] (e.g., the Rademacher functions
εj(t) = sign sin(2jπt) ) the inequality∥∥∥ n∑

j=1

εjTjuj

∥∥∥
Lp((0,1);F )

≤ C
∥∥∥ n∑
j=1

εjuj

∥∥∥
Lp((0,1);E)

is valid. The smallest such C is called R-bound of T and is denoted by R{T }.

Definition 1.3. A sectorial operator A is called R-sectorial if

RA(0) := R{λ(λI +A)−1 : λ > 0} <∞.
The number

φRA := inf{θ ∈ (0, π) : RA(π − θ) <∞},
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where RA(θ) := R{λ(λI + A)−1 : | arg λ| ≤ θ}, is called an R-angle of the
operator A.

For the operator A closed in E, the domain of definition D(An) of the operator
An is turned into a Banach space E(An) with respect to the norm

‖u‖E(An) :=
( n∑
k=0

‖Aku‖2
) 1

2
.

The operator An from E(An) into E is bounded.
For the Banach spaces F and E, introduce the Banach space Wn

p ((0, 1);F,E),
1 < p < ∞, a natural number n ≥ 1, of vector-valued functions with the finite
norm

‖u‖Wn
p ((0.1);F,E) :=

( 1∫
0

‖u(x)‖pFdx+

1∫
0

‖u(n)(x)‖pEdx
) 1
p
.

We write Wn
p ((0, 1);E) := Wn

p ((0, 1);E,E).
Let E0 and E1 be two Banach spaces continuously embedded into the Banach

space E : E0 ⊂ E, E1 ⊂ E. Two such spaces are called an interpolation couple
{E0, E1}. Then, a standard real interpolation space (E0, E1)θ,p , 0 < θ < 1,
p ≥ 1, and a standard complex interpolation space [E0, E1]θ are defined (for
the exact definitions we refer the reader, e.g., to the book by H. Triebel [11]).

2. Initial abstract parabolic boundary value problems and
application to parabolic initial boundary value problems

Let X be a Banach space and let A be a linear, closed operator in X. Consider
Banach spaces

1) Cµ(I;X) :=
{
f | f ∈ C(I;X), ‖f‖Cµ(I;X) := sup

t∈I
‖tµf(t)‖ <∞

}
, µ ≥ 0;

2) Cγµ(I;X) :=
{
f | f ∈ C(I;X), ‖f‖Cγµ(I;X) := sup

t∈I
‖tµf(t)‖

+ sup
t<t+h
t,t+h∈I

‖f(t+ h)− f(t)‖h−γtµ <∞
}
, γ ∈ (0, 1], µ ≥ 0;

and the linear space

3) C1(I;X(A), X) :=
{
f | f ∈ C(I;X(A)) ∩ C1(I;X)

}
,

where I denotes an interval containing into [0,∞).
Consider now, in a Banach space E, the following abstract initial boundary

value problem for a parabolic differential-operator equation

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x)+

A1(x)u(t, x) = f(t, x), (t, x) ∈ (0, T )× (0, 1), (2.1)
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αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk∑
s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2, (2.2)

u(0, x) = u0(x), x ∈ (0, 1), (2.3)

where mk ∈ {0, 1}; αk, βk are complex numbers; xks ∈ [0, 1]; B(x), A1(x), for
x ∈ [0, 1], and A, Tks are, generally speaking, unbounded operators in E.

Theorem 2.1. Let the following conditions be satisfied:

(1) an operator A is closed, densely defined and invertible in a UMD Banach
space E;

(2) R{λR(λ,A) : | arg λ| ≥ β} <∞, for some 0 < β < π
2 ; 1

(3) the embedding E(A) ⊂ E is compact;
(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;
(5) for any ε > 0 and for almost all x ∈ [0, 1],

‖B(x)u‖ ≤ ε‖A
1
2u‖+ C(ε)‖u‖, u ∈ D(A

1
2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1
2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u

are measurable on [0, 1] in E;
(6) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (E(A), E) 1

2p
,p,

where p ∈ (1,∞),

‖Tksu‖(E(A),E) 1
2+ 1

2p ,p
≤ ε‖u‖(E(A),E) 1

2p ,p
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(E(A),E) 1
2 ,p

+ C(ε)‖u‖;

(7) f ∈ Cγµ((0, T ];Lp((0, 1);E)), for some γ ∈ (0, 1], µ ∈ [0, 1);
(8) u0 ∈W 2

p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
:=
{
u ∈W 2

p ((0, 1);E(A), E) |
Lku = 0, k = 1, 2}, where Lku := αku

(mk)(0)+βku
(mk)(1)+

∑Nk
s=1 Tksu(xks),

k = 1, 2.

Then, problem (2.1)–(2.3) has a unique solution u(t, x) in

C
(
[0, T ];Lp((0, 1);E)

)
∩ C1

(
(0, T ];

W 2
p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
, Lp((0, 1);E)

)
and, for t ∈ (0, T ], the following estimates hold:

‖u(t, ·)‖Lp((0,1);E) ≤ C
(
‖u0(·)‖W 2

p ((0,1);E(A),E) + ‖f‖Cµ((0,t];Lp((0,1);E))

)
,∥∥∥∂u(t, ·)

∂t

∥∥∥
Lp((0,1);E)

≤ C
(
‖u0(·)‖W 2

p ((0,1);E(A),E) + t−µ‖f‖Cγµ((0,t];Lp((0,1);E))

)
,

(2.4)
where C does not depend on t.

1In fact, conditions (1) and (2) are equivalent to that A is invertible R-sectorial operator in
E with the R-angle φRA < β.
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Proof. In the Banach space X = Lp((0, 1);E), consider an operator L defined by
the equalities

D(L) := W 2
p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
,

Lu := u′′(x)−B(x)u′(x)−Au(x)−A1(x)u(x)
(2.5)

and rewrite problem (2.1)-(2.3) in the following form

u′(t) = Lu(t) + f(t),

u(0) = u0,
(2.6)

to which we want to apply [13, Theorem 7.2.2/1] (see Theorem 5.1 in the Ap-
pendix) with η = 1. To this end, the only thing is to check that, for some α > 0,

‖R(λ, L)‖B(X) ≤M |λ|−1, | arg λ| ≤ π

2
+ α, |λ| → ∞.

In turn, the latter inequality (with α = π
2 − β) follows from [8, Theorem 6] (with

ϕ = π − β; see Theorem 5.3 in the Appendix). So, from Theorem 5.1, it follows
that problem (2.1)–(2.3) has a unique solution in

C
(
[0, T ];Lp((0, 1);E)

)
∩

C1
(
(0, T ];W 2

p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
, Lp((0, 1);E)

)
and, for t ∈ (0, T ], the following estimates hold:

‖u(t, ·)‖Lp((0,1);E) ≤ C
(
‖u0(·)‖W 2

p ((0,1);E(A),E) + ‖A1(·)u0(·)‖Lp((0,1);E)

+ ‖B(·)u′0(·)‖Lp((0,1);E) + ‖f‖Cµ((0,t];Lp((0,1);E))

)
,∥∥∥∂u(t, ·)

∂t

∥∥∥
Lp((0,1);E)

≤ C
(
‖u0(·)‖W 2

p ((0,1);E(A),E) + ‖A1(·)u0(·)‖Lp((0,1);E)

+ ‖B(·)u′0(·)‖Lp((0,1);E) + t−µ‖f‖Cγµ((0,t];Lp((0,1);E))

)
,

where C does not depend on t. Taking into account condition (5) and that the op-

erator d
dx is a bounded operator fromW 2

p ((0, 1);E(A), E) intoW 1
p ((0, 1);E(A

1
2 ), E)

(see, e.g., [9, Theorem 7 and Corollary 8]), we get, from the last inequalities, in-
equalities in (2.4). �

If one uses [7, Theorem 7.2] (see Theorem 5.2 in the Appendix) instead of [13,
Theorem 7.2.2/1] (see Theorem 5.1 in the Appendix) then one gets the following
result instead of Theorem 2.1.

Theorem 2.2. Let the following conditions be satisfied:

(1) an operator A is closed, densely defined and invertible in a UMD Banach
space E;

(2) R{λR(λ,A) : | arg λ| ≥ β} <∞, for some 0 < β < π
2 ;

(3) the embedding E(A) ⊂ E is compact;
(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;
(5) for any ε > 0 and for almost all x ∈ [0, 1],

‖B(x)u‖ ≤ ε‖A
1
2u‖+ C(ε)‖u‖, u ∈ D(A

1
2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);
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for u ∈ D(A
1
2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u

are measurable on [0, 1] in E;
(6) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (E(A), E) 1

2p
,p,

where p ∈ (1,∞),

‖Tksu‖(E(A),E) 1
2+ 1

2p ,p
≤ ε‖u‖(E(A),E) 1

2p ,p
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(E(A),E) 1
2 ,p

+ C(ε)‖u‖;

(7) f ∈ Cγ0 ([0, T ];Lp((0, 1);E)) with f(0, x) + u′′0(x)−B(x)u′0(x)−Au0(x)−
A1(x)u0(x) ∈ Wγ, for some γ ∈ (0, 1), where Wγ := {v ∈ Lp((0, 1);E) |
∃λ0 > 0 big enough such that sup

λ>λ0

(1+λ)γ‖L(λI−L)−1v‖Lp((0,1);E) <∞}

and the operator L is defined by (2.5);
(8) u0 ∈W 2

p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
.

Then, problem (2.1)–(2.3) has a unique strict solution u(t, x) in

C1
(
[0, T ];W 2

p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
, Lp((0, 1);E)

)
with the regularity ∂u(t,x)

∂t ∈ Cγ0 ([0, T ];Lp((0, 1);E)).

Show now the following application of Theorem 2.1. Let Ω := (0, 1) × G,
where G ⊂ Rr, r ≥ 2 be a bounded open domain with an (r − 1)-dimensional
boundary ∂G which locally admits rectification, and let us consider in the domain
(0, T ) × Ω a very nonclassical parabolic initial boundary value problem (with
integro-differential terms in the equation and unbounded operators and the values
of the unknown function in intermediate points in boundary conditions)

Dtu(t, x, y)−D2
xu(t, x, y) + b(x, y)Dxu(t, x, y) +

∫
G
c(x, y, z)Dxu(t, x, z)dz−

r∑
s,j=1

asj(y)DsDju(t, x, y) +
r∑
j=1

bj(x, y)Dju(t, x, y) + b0(x, y)u(t, x, y)

+
1∑
`=0

r∑
j=1

∫
G
c`j(x, y, z)D

`
zju(t, x, z)dz = f(t, x, y),

(t, x, y) ∈ (0, T )× (0, 1)×G, (2.7)

Lku := αkD
mk
x u(t, 0, y) + βkD

mk
x u(t, 1, y) +

Nk∑
s=1

Tksu(t, xks, ·) = 0,

(t, y) ∈ (0, T )×G, k = 1, 2, (2.8)

L0u :=

r∑
j=1

cj(y
′)Dju(t, x, y′) + c0(y′)u(t, x, y′) = 0,

(t, x, y′) ∈ (0, T )× (0, 1)× ∂G, (2.9)

u(0, x, y) = u0(x, y), (x, y) ∈ (0, 1)×G, (2.10)

where Dt := ∂
∂t , Dx := ∂

∂x , Dzj := ∂
∂zj

, Dj := −i ∂
∂yj

, Dy := (D1, . . . , Dr),

mk ∈ {0, 1}, αk, βk are complex numbers, y := (y1, . . . , yr), xks ∈ [0, 1] , Tks are,
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generally speaking, unbounded operators in Lq(G), 1 < q < ∞. Let m be the
order of the differential boundary operator L0 in (2.9), i.e., m = 0 if all cj(y

′) ≡ 0,
j = 1, . . . , r (and then c0(y′) 6= 0, ∀y′ ∈ ∂G), and m = 1 if at least one of cj(y

′),
j = 1, . . . , r, is not identically zero.

We will consider the space

Bs
p,q(G) := (W s0

p (G),W s1
p (G))θ,q,

where 0 ≤ s0, s1 are integers, Wn
p (G) stands for the Sobolev space, 0 < θ < 1,

1 < p <∞, 1 < q <∞ and s = (1− θ)s0 + θs1.

Theorem 2.3. Let the following conditions be satisfied:

(1) (smoothness conditions) |asj(y) − asj(z)| ≤ C|y − z|δ for some C > 0

and δ ∈ (0, 1), ∀y, z ∈ G; b, bj , b0 ∈ L∞(Ω); c, c`j ∈ L∞(Ω×G); cj , c0 ∈
C2−m(∂G); ∂G ∈ C2;

(2) (ellipticity condition for the below operator A) for y ∈ G, σ ∈ Rr,
| arg λ| ≥ β, for some 0 < β < π

2 , |σ|+ |λ| 6= 0, we have

λ+
r∑

s,j=1

asj(y)σsσj 6= 0;

(3) (Lopatinskii-Shapiro condition for the below operator A) y′ is any point
on ∂G, the vector σ′ is tangent and σ is a normal vector to ∂G at the
point y′ ∈ ∂G. Consider the following ordinary differential problem, for
| arg λ| ≥ β with β from condition (2):[
λ+

r∑
s,j=1

asj(y
′)
(
σ′s − iσs

d

dt

)(
σ′j − iσj

d

dt

)]
u(t) = 0, t > 0, (2.11)

r∑
j=1

cj(y
′)
(
σ′j − iσj

d

dt

)
u(t)

∣∣∣
t=0

= h, for m = 1, (2.12)

u(0) = h, for m = 0; (2.13)

it is required that for m = 1 problem (2.11), (2.12) (for m = 0 problem
(2.11), (2.13)) has one and only one solution, including all its derivatives,
tending to zero as t→∞ for any numbers h ∈ C; 2

(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;

(5) if mk = 0 then Tks = 0; if mk = 1 then, for ε > 0 and u ∈ B
2− 1

p
q,p (G;L0u =

0,m < 2− 1
p −

1
q ),

‖Tksu‖
B

1− 1
p

q,p (G)
≤ ε‖u‖

B
2− 1

p
q,p (G)

+ C(ε)‖u‖Lq(G),

‖Tksu‖Lq(G) ≤ ε‖u‖B1
q,p(G) + C(ε)‖u‖Lq(G),

where p 6= q
q−1 and p, q ∈ (1,∞), or p = q

q−1 and m = 0;3

2Remind that, in the case m = 0, boundary condition (2.9) is transformed into the Dirichlet
boundary condition u(t, x, y′) = 0, (t, x, y′) ∈ (0, T )× (0, 1)× ∂G.

3In the case when p = q
q−1

= 2 and m = 1, B
3
2
2,2(G;L0u ∈ B̃

1
2
2,2(G)) (see [11, Theorem

4.3.3]) should be written instead of B
3
2
2,2(G;L0u = 0,m < 1). B̃sq,p(G) := {u | u ∈ Bsq,p(Rr),

supp(u) ⊂ G}.
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(6) f ∈ Cγµ((0, T ];Lp((0, 1);Lq(G))), for some γ ∈ (0, 1], µ ∈ [0, 1);

(7) u0 ∈ W̃ 2
p ((0, 1);W 2

q (G;L0u = 0), Lq(G)) :=
{
u ∈W 2

p ((0, 1);W 2
q (G;L0u =

0), Lq(G)) | Lku = 0, k = 1, 2, y ∈ G
}
.

Then, problem (2.7)–(2.10) has a unique solution in

C
(
[0, T ];Lp((0, 1);Lq(G))

)
∩

C1
(
(0, T ]; W̃ 2

p ((0, 1);W 2
q (G;L0u = 0), Lq(G)), Lp((0, 1);Lq(G))

)
and, for t ∈ (0, T ], the following estimates hold:

‖u(t, x, y)‖Lp((0,1);Lq(G)) ≤ C
(
‖u0(x, y)‖W 2

p ((0,1);W 2
q (G),Lq(G))

+ ‖f‖Cµ((0,t];Lp((0,1);Lq(G)))

)
,∥∥∥∂u(t, x, y)

∂t

∥∥∥
Lp((0,1);Lq(G))

≤ C
(
‖u0(x, y)‖W 2

p ((0,1);W 2
q (G),Lq(G))

+ t−µ‖f‖Cγµ((0,t];Lp((0,1);Lq(G)))

)
,

(2.14)

where C does not depend on t.

Proof. Let us denote E := Lq(G) and consider an operator A which is defined by
the equalities

D(A) := W 2
q (G;L0u = 0), Au := −

r∑
s,j=1

asj(y)DsDju(y) + λ0u(y),

where, by [4, Theorem 8.2], there exists λ0 > 0 such that A is an R-sectorial
operator in E with the R-angle φRA < π. For x ∈ [0, 1], also consider operators

B(x)u := b(x, y)u(y) +

∫
G
c(x, y, z)u(z)dz,

A1(x)u :=

r∑
j=1

bj(x, y)Dju(y) + b0(x, y)u(y)

+
1∑
`=0

r∑
j=1

∫
G
c`j(x, y, z)D

`
zju(z)dz − λ0u(y).

Then, problem (2.7)–(2.10) can be rewritten in the form

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x) +A1(x)u(t, x)

= f(t, x), (t, x) ∈ (0, T )× (0, 1),

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk∑
s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2,

u(0, x) = u0(x), x ∈ (0, 1),
(2.15)

where u(t, x) := u(t, x, ·), f(t, x) := f(t, x, ·), and u0(x) = u0(x, ·) are functions
with values in the UMD Banach space E := Lq(G), i.e., in the form of problem
(2.1)–(2.3). We want now to apply Theorem 2.1 to problem (2.15). Conditions
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(7)-(8) of Theorem 2.1 follow from conditions (6)-(7). Conditions (1)-(6) of Theo-
rem 2.1 follow from conditions (1)-(5) and it was shown in the proofs of Theorems
7 and 8 in [8]. �

Examples of Tks (at least for ∂G ∈ C∞) satisfying condition (5) of Theorem
2.3 and the corresponding conditions of all further application theorems (for the
proof see [8, p. 52]):

1) (Tksu)(y) := γksu(y), where γks ∈ C;

2) (Tksu)(y) :=
∫
G

∑
|`|≤1 Tks`(x, y) ∂|`|u(x)

∂x
`1
1 ···∂x

`r
r

dx, where Tks` ∈ Lt′(G×G), 1
t′ +

1
t = 1, t = min(q, q′), 1

q′ + 1
q = 1, and Tks`(x, y) are continuously differentiable

with respect to yj , j = 1, . . . , r and ∂
∂yj

Tks` ∈ Lt′(G × G). So, we consider, in

particular, integro-differential boundary conditions.

3. Completeness of a system of root functions of abstract elliptic
boundary value problems and application to elliptic boundary

value problems

Consider the corresponding spectral problem to problem (2.1)-(2.2) in a Ba-
nach space E, i.e.,

L(λ)u := λu(x)−u′′(x)+B(x)u′(x)+Au(x)+A1(x)u(x) = 0, x ∈ (0, 1), (3.1)

Lku := αku
(mk)(0) + βku

(mk)(1) +

Nk∑
s=1

Tksu(xks) = 0, k = 1, 2, (3.2)

where λ is a complex parameter, mk ∈ {0, 1}; αk, βk are complex numbers;
xks ∈ [0, 1]; B(x), A1(x), for x ∈ [0, 1], and A, Tks are, generally speaking,
unbounded operators in E. A number λ0 is called an eigenvalue of problem
(3.1)-(3.2) if the problem

L(λ0)u = 0, Lku = 0, k = 1, 2,

has a non-trivial solution u0(x) that belongs to W 2
p ((0, 1);E(A), E), for some

1 < p < ∞, and u0(x) is called an eigenfunction of problem (3.1)-(3.2) corre-
sponding to the eigenvalue λ0. A solution um(x), for a natural number m ≥ 1,
of the problem

L(λ0)um + um−1 = 0, Lkum = 0, k = 1, 2,

belonging to W 2
p ((0, 1);E(A), E), is called an m-th associated function to

the eigenfunction u0(x) of problem (3.1)-(3.2). We combine the eigenfunctions
and associated functions of problem (3.1)-(3.2) under the general name of root
functions of problem (3.1)-(3.2).

Let us, first, formulate and prove a completeness theorem in the framework of
Hilbert spaces.

Let an operator C from a Hilbert space H into a Hilbert space H1 be bounded.
Then its adjoint operator C∗ from H1 into H is bounded and, for u ∈ H,
u1 ∈ H1, we have

(Cu, u1)H1 = (u,C∗u1)H .
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Since (C∗C)∗ = C∗C∗∗ = C∗C, the operator C∗C in H is selfadjoint. From
(C∗Cu, u)H = (Cu,Cu)H ≥ 0 it follows that the operator C∗C in H is non-
negative. In turn, it implies that there exists a unique non-negative selfadjoint

operator T := (C∗C)
1
2 in H. If C from a Hilbert space H into a Hilbert space

H1 is compact, then, in addition to the above, the operator T = (C∗C)
1
2 in H is

compact. The eigenvalues of the operator T are called singular numbers of the
compact operator C and are denoted by sj(C;H,H1). Enumerate the singular
numbers in decreasing order, taking into account their multiplicities, so that

sj(C;H,H1) := λj(T ), j = 1, . . . ,∞.

Theorem 3.1. Let the following conditions be fulfilled:

(1) αk, βk are complex numbers; (−1)m1α1β2 − (−1)m2α2β1 6= 0; xks ∈ [0, 1];
(2) the embedding H(A) ⊂ H is compact and for some t > 0, for the embed-

ding operator J , it holds that sj(J ;H(A), H) ≤ Cj−t, j = 1, 2, ...;
(3) the operator A is closed, densely defined in a Hilbert space H and, for

some ϕ such that 2π
2+t < ϕ < π,

‖R(λ,A)‖ ≤ C(1 + |λ|)−1, | arg λ| ≥ π − ϕ;

(4) for any ε > 0 and for almost all x ∈ [0, 1],

‖B(x)u‖ ≤ ε‖A
1
2u‖+ C(ε)‖u‖, u ∈ D(A

1
2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1
2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u

are measurable on [0, 1] in H;
(5) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (H(A), H) 1

4
,2,

‖Tksu‖(H(A),H) 3
4 ,2
≤ ε‖u‖(H(A),H) 1

4 ,2
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(H(A),H) 1
2 ,2

+ C(ε)‖u‖.

Then, the spectrum of problem (3.1)-(3.2) is discrete and a system of root func-
tions of problem (3.1)-(3.2) is complete in the spaces W 2

2

(
(0, 1);H(A), H;Lku =

0, k = 1, 2
)

and L2 ((0, 1);H).

Proof. In the space H := L2((0, 1);H), consider an operator A which is defined
by the equalities

D(A) := W 2
2

(
(0, 1);H(A), H;Lku = 0, k = 1, 2

)
,

Au = −u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x).
(3.3)

Apply [13, Theorem 2.2.2/1] to the operator A in H.
Using the same technique as in the proof of [12, Theorem 4], one can show

that W 2
2

(
(0, 1);H(A), H; Lku = 0, k = 1, 2

)
is dense in L2 ((0, 1);H), i.e., the

first condition of [13, Theorem 2.2.2/1] is fulfilled.
By [13, Theorem 5.2.1/1], the embeddingW 2

2 ((0, 1);H(A), H) ⊂ L2((0, 1);H) =
H is compact, i.e., the embedding H(A) ⊂ H is also compact. By [13, Lemmas
1.2.10/3 and 1.7.8/6],

sj (J ;H(A),H) ≤ C sj
(
J ;W 2

2 ((0, 1);H(A), H) , L2 ((0, 1);H)
)
≤ Cj−

2t
2+t ,
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i.e., the second condition of [13, Theorem 2.2.2/1] is also fulfilled (with p = 2t
2+t

in [13, Theorem 2.2.2/1]).
By [8, Theorem 6] (in the framework of Hilbert spaces and for p = 2 in [8,

Theorem 6]; see Theorem 5.3 in the Appendix), in view of that in Hilbert spaces
R-boundedness is just norm-boundedness, for sufficiently large |λ| from the angle
|arg λ| ≤ ϕ < π, for a solution of the equation

λu+ Au = f

it holds the estimate

|λ| ‖u‖L2((0,1);H) +
∥∥u′′∥∥

L2((0,1);H)
+ ‖Au‖L2((0,1);H) ≤ C ‖f‖L2((0,1);H) .

From the last estimate, for sufficiently large |λ| from the angle |arg λ| ≤ ϕ < π,
we have

‖R (λ,−A)‖ ≤ C |λ|−1 .

Consequently,

‖R (−λ,A)‖ ≤ C |λ|−1 , |arg(−λ)| ≥ π − ϕ, |λ| → ∞.

Since ϕ > 2π
2+t then π − ϕ < πt

2+t . Therefore, condition (3) of [13, Theorem

2.2.2/1] is also satisfied (with η = 1 and, previously chosen, p = 2t
2+t in [13,

Theorem 2.2.2/1]). �

In order to formulate a completeness theorem in the framework of Banach
spaces, we need a definition of approximation numbers (of a compact operator)
which coincide with (the operator’s) singular numbers in the framework of Hilbert
spaces (see, e.g., [13, Theorem 1.2.10/2]). Let C be a compact operator from a
Banach space E into a Banach space E1. Then,

s̃j(C;E,E1) := inf
dimR(K)<j
K∈B(E,E1)

‖C −K‖B(E,E1)

are said to be the approximation numbers of C.
Consider now problem (3.1)-(3.2) in a separable, reflexive UMD Banach space

E and in the space E := Lp((0, 1);E), which is also a separable, reflexive UMD
Banach space (for reflexivity see [10, Theorem 5.7]), introduce an operator A
defined by the equalities

D(A) := W 2
p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
,

Au = −u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x).

Theorem 3.2. Let the spectrum of the operator A be non empty; for some s > 0,

s̃j(J ;W 2
p ((0, 1);E(A), E), Lp((0, 1);E)) ≤ Cj−s;

and let all conditions of [8, Theorem 6] (see Theorem 5.3 in the Appendix) be
satisfied. Moreover, condition (2) of [8, Theorem 6] is satisfied for some 2−s

2 π <
ϕ < π if 0 < s ≤ 2 and for some 0 ≤ ϕ < π if s > 2.

Then, the spectrum of problem (3.1)-(3.2) in E is discrete and a system of root
functions of problem (3.1)-(3.2) is complete in the spaces W 2

p

(
(0, 1);E(A), E;Lku =

0, k = 1, 2
)

and Lp ((0, 1);E).
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Proof. The proof repeats the steps of the proof of Theorem 3.1, but one has to
use, instead of [13, Theorem 2.2.2/1], the Burgoyne’s theorem [3, Theorem 4.5],
which is also presented in a more convenient form, for using in application, in
[14, Theorem 1]. As well, one should use [14, Lemma 2] instead of [13, Lemma
1.2.10/3]. �

Let us show an application of Theorem 3.1. We will use the same differential
operators from the application part of section 2 since (almost) all conditions of
Theorem 3.1 for them have been already checked there. Our purpose here is just
to demonstrate to the reader a possible application of abstract settings to PDEs
and do not give various problems of ordinary and partial differential equations to
which our abstract methods can be applied.

So, again, let Ω := (0, 1)×G, where G ⊂ Rr, r ≥ 2 be a bounded open domain
with an (r− 1)-dimensional boundary ∂G which locally admits rectification, and
let us consider in the domain a very nonclassical elliptic boundary value problem
(with integro-differential terms in the equation and unbounded operators and the
values of the unknown function in intermediate points in boundary conditions)

λu(x, y)−D2
xu(x, y) + b(x, y)Dxu(x, y) +

∫
G
c(x, y, z)Dxu(x, z)dz

−
r∑

s,j=1

asj(y)DsDju(x, y) +
r∑
j=1

bj(x, y)Dju(x, y) + b0(x, y)u(x, y)

+

1∑
`=0

r∑
j=1

∫
G
c`j(x, y, z)D

`
zju(x, z)dz = 0, (x, y) ∈ Ω, (3.4)

Lku := αkD
mk
x u(0, y) + βkD

mk
x u(1, y) +

Nk∑
s=1

Tksu(xks, ·) = 0, y ∈ G,

k = 1, 2, (3.5)

L0u :=
r∑
j=1

cj(y
′)Dju(x, y′) + c0(y′)u(x, y′) = 0, (x, y′) ∈ (0, 1)× ∂G, (3.6)

where Dx := ∂
∂x , Dzj := ∂

∂zj
, Dj := −i ∂

∂yj
, Dy := (D1, . . . , Dr), mk ∈ {0, 1},

αk, βk are complex numbers, y := (y1, . . . , yr), xks ∈ [0, 1] , Tks are, generally
speaking, unbounded operators in L2(G). Let m be the order of the differential
boundary operator L0 in (3.6), i.e., m = 0 if all cj(y

′) ≡ 0, j = 1, . . . , r (and then
c0(y′) 6= 0, ∀y′ ∈ ∂G), and m = 1 if at least one of cj(y

′), j = 1, . . . , r, is not
identically zero.

Theorem 3.3. Assume that conditions (1)-(5) (with p = q = 2) of Theorem 2.3
are fulfilled (conditions (2)-(3) with some 0 < β < π − 2πr

2r+2).

Then, the spectrum of problem (3.4)–(3.6) is discrete and a system of root func-
tions of problem (3.4)–(3.6) is complete in the spaces W 2

2

(
(0, 1);W 2

2 (G;L0u =

0), L2(G);Lku = 0, k = 1, 2, y ∈ G
)

and L2(Ω).

Proof. We are going to use Theorem 3.1. Construction of all operators and all
necessary explanations are the same as in the proof of Theorem 2.3. The only
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additional checking is of condition (2) and the corresponding restriction on ϕ in
condition (3) of Theorem 3.1. From, e.g., [11, formula 4.10.2/(14)], it follows that

sj(J ;W 2
2 (G;L0u = 0), L2(G)) ≤ Cj−

2
r , j = 1, 2, . . . ,

i.e, condition (2) of Theorem 3.1 is fulfilled with t = 2
r . In turn, this implies the

restriction on ϕ in condition (3) of Theorem 3.1 for ϕ = π − β. Note that in
the proof of Theorem 2.3 it is mentioned that for the constructed operator A the
corresponding R-boundedness for the resolvent has been proved in [8]. In the
framework of Hilbert spaces, this coincides with the just norm-boundedness in
condition (3) of Theorem 3.1. �

4. Completeness of elementary solutions of initial abstract
parabolic boundary value problems and application to

parabolic initial boundary value problems

Consider problem (2.1)–(2.3) with the homogeneous equation (2.1), i.e.,

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+B(x)

∂u(t, x)

∂x
+Au(t, x)

+A1(x)u(t, x) = 0, (t, x) ∈ (0, T )× (0, 1), (4.1)

αk
∂mku(t, 0)

∂xmk
+ βk

∂mku(t, 1)

∂xmk
+

Nk∑
s=1

Tksu(t, xks) = 0, t ∈ (0, T ), k = 1, 2, (4.2)

u(0, x) = u0(x), x ∈ (0, 1), (4.3)

where mk ∈ {0, 1}; αk, βk are complex numbers; xks ∈ [0, 1]; B(x), A1(x), for
x ∈ [0, 1], and A, Tks are, generally speaking, unbounded operators in E.

Combining Theorem 2.1 and Theorem 3.1 (or Theorem 3.2), we can get the
following theorems about an approximation of the unique solution of problem
(4.1)–(4.3) by linear combinations of elementary solutions of (4.1)–(4.2). Remind
that, e.g., by [13, Lemma 2.1/1], a function of the form

ui(t, x) := eλit
(
tki

ki!
ui0(x) +

tki−1

(ki − 1)!
ui1(x) + · · ·+ uiki(x)

)
(4.4)

becomes the elementary solution of (4.1)–(4.2) if and only if ui0(x), ui1(x),...,
uiki(x) is a chain of root functions of problem (3.1)–(3.2) corresponding to the
eigenvalue λi.

First, consider the Hilbert spaces setting, i.e., we will use Theorems 2.1 and
3.1.

Theorem 4.1. Let the following conditions be fulfilled:

(1) αk, βk are complex numbers; (−1)m1α1β2 − (−1)m2α2β1 6= 0; xks ∈ [0, 1];
(2) the embedding H(A) ⊂ H is compact and for some t > 0, for the embed-

ding operator J , it holds that sj(J ;H(A), H) ≤ Cj−t, j = 1, 2, ...;
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(3) the operator A is closed, densely defined in a Hilbert space H and for
some ϕ, such that max

{
2π
2+t ,

π
2

}
< ϕ < π,

‖R(λ,A)‖ ≤ C(1 + |λ|)−1, | arg λ| ≥ π − ϕ;

(4) for any ε > 0 and for almost all x ∈ [0, 1],

‖B(x)u‖ ≤ ε‖A
1
2u‖+ C(ε)‖u‖, u ∈ D(A

1
2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1
2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u

are measurable on [0, 1] in H;
(5) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (H(A), H) 1

4
,2,

‖Tksu‖(H(A),H) 3
4 ,2
≤ ε‖u‖(H(A),H) 1

4 ,2
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(H(A),H) 1
2 ,2

+ C(ε)‖u‖;

(6) u0 ∈ W 2
2

(
(0, 1);H(A), H;Lk = 0, k = 1, 2

)
, where Lku := αku

(mk)(0) +

βku
(mk)(1) +

∑Nk
s=1 Tksu(xks), k = 1, 2.

Then, problem (4.1)–(4.3) has a unique solution u(t, x) in

C
(
[0, T ];L2((0, 1);H)

)
∩ C1

(
(0, T ];W 2

2

(
(0, 1);H(A), H;

Lku = 0, k = 1, 2
)
, L2((0, 1);H)

)
and there exist numbers Cin such that for the solution it holds

lim
n→∞

max
t∈[0,T ]

∥∥∥u(t, ·)−
n∑
i=1

Cinui(t, ·)
∥∥∥
L2((0,1);H)

= 0,

lim
n→∞

sup
t∈(0,T ]

∥∥∥∂u(t, ·)
∂t

−
n∑
i=1

Cin
∂ui(t, ·)
∂t

∥∥∥
L2((0,1);H)

= 0,

(4.5)

where ui(t, x) are elementary solutions (4.4) of (4.1)–(4.2).

Proof. By Theorem 3.1, a system of root functions of problem (3.1)–(3.2) is com-
plete in W 2

2

(
(0, 1); H(A), H;Lku = 0, k = 1, 2

)
. Hence, there exist numbers Cin

such that

lim
n→∞

∥∥∥u0(·)−
n∑
i=1

Cinui(0, ·)
∥∥∥
W 2

2 ((0,1);H(A),H)
= 0, (4.6)

where ui(t, x) are elementary solutions (4.4) of (4.1)–(4.2). On the other hand,
from Theorem 2.1 (remind, in the framework of Hilbert spaces, R-boundedness
is just norm-boundedness), we get that problem (4.1)–(4.3) has a unique solution
u(t, x) in

C
(
[0, T ];L2((0, 1);H)

)
∩ C1

(
(0, T ];W 2

2

(
(0, 1);H(A), H;

Lku = 0, k = 1, 2
)
, L2((0, 1);H)

)
and for the solution the corresponding estimates in (2.4), with f = 0, are fulfilled.
Then, u(t, x) −

∑n
i=1Cinui(t, x) is a unique solution of problem (4.1)–(4.3) but
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with the initial function is equal to u0(x)−
∑n

i=1Cinui(0, x) and the corresponding
estimates in (2.4) will be

‖u(t, ·)−
n∑
i=1

Cinui(t, ·)‖L2((0,1);H) ≤ C‖u0(·)−
n∑
i=1

Cinui(0, ·)‖W 2
2 ((0,1);H(A),H),

∥∥∥∂u(t, ·)
∂t

−
n∑
i=1

Cin
∂ui(t, ·)
∂t

∥∥∥
L2((0,1);H)

≤ C‖u0(·)−
n∑
i=1

Cinui(0, ·)‖W 2
2 ((0,1);H(A),H),

(4.7)
where C does not depend on t ∈ (0, T ]. From (4.6) and (4.7) we get (4.5). �

Consider now problem (4.1)-(4.3) in a separable, reflexive UMD Banach space
E and in the space E := Lp((0, 1);E), which is also separable, reflexive UMD
Banach space (for reflexivity see [10, Theorem 5.7]), introduce an operator A
defined by the equalities

D(A) := W 2
p

(
(0, 1);E(A), E;Lku = 0, k = 1, 2

)
,

Au = −u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x).

Theorem 4.2. Let the spectrum of the operator A be non empty; for some s > 0,

s̃j(J ;W 2
p ((0, 1);E(A), E), Lp((0, 1);E)) ≤ Cj−s;

and let all conditions of [8, Theorem 6] (see Theorem 5.3 in the Appendix)
be satisfied. Moreover, condition (2) of [8, Theorem 6] is satisfied for some
2−s

2 π < ϕ < π if 0 < s ≤ 1 and for some π
2 < ϕ < π if s > 1; finally, u0 ∈

W 2
p

(
(0, 1);E(A), E;Lk = 0, k = 1, 2

)
, where Lku := αku

(mk)(0) + βku
(mk)(1) +∑Nk

s=1 Tksu(xks), k = 1, 2.
Then, problem (4.1)–(4.3) has a unique solution u(t, x) in

C
(
[0, T ];Lp((0, 1);E)

)
∩ C1

(
(0, T ];W 2

p

(
(0, 1);E(A), E;

Lku = 0, k = 1, 2
)
, Lp((0, 1);E)

)
and there exist numbers Cin such that for the solution it holds

lim
n→∞

max
t∈[0,T ]

∥∥∥u(t, ·)−
n∑
i=1

Cinui(t, ·)
∥∥∥
Lp((0,1);E)

= 0,

lim
n→∞

sup
t∈(0,T ]

∥∥∥∂u(t, ·)
∂t

−
n∑
i=1

Cin
∂ui(t, ·)
∂t

∥∥∥
Lp((0,1);E)

= 0,

(4.8)

where ui(t, x) are elementary solutions (4.4) of (4.1)–(4.2).

Proof. The proof is the same as that of Theorem 4.1. We only use Theorem 3.2
instead of Theorem 3.1. �

Show an application of Theorem 4.1. In fact, all necessary data are given in the
application part of section 2. We just take the homogeneous equation (instead of
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the nonhomogeneous equation (2.7))

Dtu(t, x, y)−D2
xu(t, x, y) + b(x, y)Dxu(t, x, y) +

∫
G
c(x, y, z)Dxu(t, x, z)dz

−
r∑

s,j=1

asj(y)DsDju(t, x, y) +

r∑
j=1

bj(x, y)Dju(t, x, y) + b0(x, y)u(t, x, y)

+
1∑
`=0

r∑
j=1

∫
G
c`j(x, y, z)D

`
zju(t, x, z)dz = 0, (t, x, y) ∈ (0, T )× (0, 1)×G,

(4.9)

with boundary conditions (2.8)–(2.9) and initial condition (2.10).

Theorem 4.3. Assume that conditions (1)-(5) and (7) (with p = q = 2) of
Theorem 2.3 are fulfilled (conditions (2)-(3) with some 0 < β < π − 2πr

2r+2).

Then, problem (4.9), (2.8)–(2.10) has a unique solution u(t, x, y) in

C
(
[0, T ]; L2((0, 1);L2(G))

)
∩ C1

(
(0, T ];W 2

2

(
(0, 1);W 2

2 (G;L0u = 0), L2(G);

Lku = 0, k = 1, 2, y ∈ G
)
, L2((0, 1);L2(G))

)
and there exist numbers Cin such that for the solution it holds

lim
n→∞

max
t∈[0,T ]

∥∥∥u(t, x, y)−
n∑
i=1

Cinui(t, x, y)
∥∥∥
L2((0,1);L2(G))

= 0,

lim
n→∞

sup
t∈(0,T ]

∥∥∥∂u(t, x, y)

∂t
−

n∑
i=1

Cin
∂ui(t, x, y)

∂t

∥∥∥
L2((0,1);L2(G))

= 0,

(4.10)

where ui(t, x, y) := eλit
(
tki
ki!
ui0(x, y) + tki−1

(ki−1)!ui1(x, y) + · · ·+ uiki(x, y)
)

are el-

ementary solutions of a system (4.9), (2.8)–(2.9), i.e., ui0(x, y), ui1(x, y),...,
uiki(x, y) is a chain of root functions of problem (3.4)–(3.6).

Proof. We use Theorem 4.1. Like to the proof of Theorem 3.3, we note that all
operators and all necessary explanations are the same as in the proof of Theorem
2.3. As in the proof of Theorem 3.3, the only thing is to check condition (2) and
the corresponding restriction on ϕ in condition (3) of Theorem 4.1. In our case,
they are the same as in Theorem 3.1 (which have been already checked in the
proof of Theorem 3.3) since max

{
2π
2+t ,

π
2

}
= 2π

2+t for t = 2
r and r ≥ 2. �

5. Appendix

Consider, in a Banach space X, the Cauchy problem

u′(t) = Lu(t) + f(t),

u(0) = u0.
(5.1)

Theorem 5.1. ([13, Theorem 7.2.2/1]) Let the following conditions be satisfied
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(1) L is a linear closed operator in X and, for some η ∈ (0, 1], α > 0,

‖R(λ, L)‖B(X) ≤M |λ|−η, | arg λ| ≤ π

2
+ α, |λ| → ∞;

(2) f ∈ Cγµ((0, T ];X), for some γ ∈ (1− η, 1], µ ∈ [0, η);
(3) u0 ∈ D(L).

Then, problem (5.1) has a unique solution in C([0, T ];X)∩C1((0, T ];X(L), X),
and the solution can be represented in the form

u(t) := etLu0 +

∫ t

0
e(t−τ)Lf(τ) dτ, (5.2)

where the semigroup etL := 1
2πi

∫
Γ e

λtR(λ, L)dλ and Γ is completely contained in
ρ(L) and coincides with the rays arg λ = ±(π2 + α), for large |λ|. Moreover, for
t ∈ (0, T ], the following estimates hold:

‖u(t)‖ ≤ C
(
‖Lu0‖+ ‖u0‖+ ‖f‖Cµ((0,t];X)

)
,

‖u′(t)‖+ ‖Lu(t)‖ ≤ C
[
tη−1

(
‖Lu0‖+ ‖u0‖

)
+ tη−µ−1‖f‖Cγµ((0,t];X)

]
,

(5.3)

where C does not depend on t.

Let us now formulate another theorem for problem (5.1) which is a corollary
of [7, Theorem 7.2].

Theorem 5.2. (a corollary of [7, Theorem 7.2]) Let the following conditions be
satisfied

(1) L is a linear closed operator in X and, for some η ∈ (0, 1], α > 0,

‖R(λ, L)‖B(X) ≤M |λ|−η, | arg λ| ≤ π

2
+ α, |λ| → ∞;

(2) f ∈ Cγ0 ([0, T ];X) with f(0) + Lu0 ∈ Wγ, for some γ ∈ (1 − η, 1), where
Wγ := {v ∈ X | ∃λ0 > 0 big enough such that sup

λ>λ0

(1 + λ)γ‖L(λI −

L)−1v‖X <∞};
(3) u0 ∈ D(L).

Then, problem (5.1) has a unique strict solution in C1([0, T ];X(L), X) with

the regularity Lu ∈ Cγ+η−1
0 ([0, T ];X) and u′ ∈ Cγ+η−1

0 ([0, T ];X).

Remark 5.1. In fact, if η = 1 then the theorem implies maximal Cγ-regularity.
On the other side, it is well-known that there is no maximal C-regularity for
problem (5.1)!

Consider, in a Banach space E, an abstract elliptic boundary value problem
with a patameter

L(λ)u := λu(x)− u′′(x) +B(x)u′(x) +Au(x) +A1(x)u(x) = f(x),

Lku := αku
(mk)(0) + βku

(mk)(1) +

Nk∑
s=1

Tksu(xks) = fk, k = 1, 2,
(5.4)

where λ is a complex parameter, mk ∈ {0, 1}; αk, βk are complex numbers;
xks ∈ [0, 1]; B(x), A1(x), for x ∈ [0, 1], and A, Tks are, generally speaking,
unbounded operators in E.
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Theorem 5.3. ([8, Theorem 6]) Let the following conditions be satisfied:

(1) an operator A is closed, densely defined in a UMD Banach space E;
(2) R{λR(λ,A) : | arg λ| ≥ π − ϕ} <∞ for some 0 ≤ ϕ < π;4

(3) the embedding E(A) ⊂ E is compact;
(4) (−1)m1α1β2 − (−1)m2α2β1 6= 0;
(5) for any ε > 0 and for almost all x ∈ [0, 1],

‖B(x)u‖ ≤ ε‖A
1
2u‖+ C(ε)‖u‖, u ∈ D(A

1
2 ),

‖A1(x)u‖ ≤ ε‖Au‖+ C(ε)‖u‖, u ∈ D(A);

for u ∈ D(A
1
2 ) the function B(x)u and for u ∈ D(A) the function A1(x)u

are measurable on [0, 1] in E;
(6) if mk = 0, then Tks = 0; if mk = 1, then for ε > 0 and u ∈ (E(A), E) 1

2p
,p,

where p ∈ (1,∞),

‖Tksu‖(E(A),E) 1
2+ 1

2p ,p
≤ ε‖u‖(E(A),E) 1

2p ,p
+ C(ε)‖u‖,

‖Tksu‖ ≤ ε‖u‖(E(A),E) 1
2 ,p

+ C(ε)‖u‖.

Then,

(a) the operator L(λ) : u → L(λ)u :=
(
L(λ)u, L1u, L2u

)
, for | arg λ| ≤ ϕ

and sufficiently large |λ|, is an isomorphism from W 2
p ((0, 1);E(A), E)

onto Lp((0, 1);E) u (E(A), E)θ1,p u (E(A), E)θ2,p, where θk = mk
2 + 1

2p ,

and for these λ, the following coercive estimate holds for the solution of
problem (5.4)

|λ|‖u‖Lp((0,1);E) + ‖u′′‖Lp((0,1);E) + ‖Au‖Lp((0,1);E)

≤ C
[
‖f‖Lp((0,1);E) +

2∑
k=1

(
‖fk‖(E(A),E)θk,p

+ |λ|1−θk‖fk‖
)]

;

(b) the operator u → (L1u, L2u), for | arg λ| ≤ ϕ and |λ| sufficiently large,
from W 2

p ((0, 1); E(A), E) into (E(A), E)θ1,pu(E(A), E)θ2,p, has a contin-
uous right-inverse; in other words, there exists such an operator R(f1, f2) =
u continuous from (E(A), E)θ1,pu(E(A), E)θ2,p into W 2

p ((0, 1);E(A), E),
where u is a solution of the system Lku = fk, k = 1, 2.
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