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ON CONSTRUCTION OF A QUADRATIC STURM-LIOUVILLE

OPERATOR PENCIL FROM SPECTRAL DATA

GUSEIN SH. GUSEINOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. Derivation of fundamental equations of the inverse spectral
problem for a quadratic Sturm-Liouville operator pencil is presented.
An algorithm for solving the inverse problem is offered.

1. Introduction

In [6] two versions of the inverse spectral problem (the inverse problem from
eigenvalues and normalizing numbers and the inverse problem from two spec-
tra) were considered for the following Sturm-Liouville eigenvalue problem with
quadratic dependence on the spectral parameter:

−y′′ + [q(x) + 2λp(x)]y = λ2y, 0 ≤ x ≤ π, (1.1)

y′(0)− hy(0) = 0, y′(π) +Hy(π) = 0. (1.2)

Here q(x), p(x) are real-valued functions, h, H are real numbers, and λ is a
spectral parameter.

As is known, at present more completely are studied inverse spectral prob-
lems for the Sturm-Liouville and Dirac operators and for their discrete (finite-
difference) analogs (see [1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 21]). It turns out
that for Eq. (1.1) considered on a finite or infinite interval the inverse spectral
problems can also be investigated enough completely since there are the kernels
of transformation opeartors for this equation (see [4, 6, 15, 16, 17, 18, 19, 20]).
It is remarkable that for Eq. (1.1) the inverse spectral problems in their usual
formulations are solvable uniquely: the two functions q(x) and p(x) are deter-
mined uniquely from the spectral measure (in particular, from the eigenvalues
and normalizing numbers) or from the two spectra.

In the present paper, we display some key points of the inverse spectral problem
for (1.1), (1.2), presented in [6] without any proof.

This paper is organized as follows. In Section 2, following [6] we bring out the
facts on the problem (1.1), (1.2) needed in the subsequent sections. In Section
3, we derive the so-called fundamental equations of the inverse problem. The
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idea of this derivation belongs to M. G. Gasymov. Afterwards, in Section 4, we
indicate an algorithm for constructing boundary value problem (1.1), (1.2) from
its spectral data consisting of the eigenvalues and normalizing numbers.

2. Preliminaries

In this section, following [6], we present the facts on the problem (1.1), (1.2),
needed in the subsequent sections.

Denote by Wn
2 [0, π] the Sobolev space consisting of complex-valued functions

on [0, π] having n− 1 absolutely continuous derivatives and nth order derivative
that is square-integrable on [0, π]. Note that W 0

2 [0, π] = L2[0, π].
The following theorem shows that for Eq. (1.1) there exists the so-called

transformation operator which is crucial in the inverse spectral theory.

Theorem 2.1. Let q(x) ∈Wm
2 [0, π], p(x) ∈Wm+1

2 [0, π] (m ≥ 0), and ϕ(x, λ) be
the solution of Eq. (1.1) satisfying the initial conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = h. (2.1)

Then there exist real-valued functions A(x, t) and B(x, t) having m + 1 square-
integrable derivatives with respect to the both variables such that

ϕ(x, λ) = cos[λx− α(x)] +

∫ x

0
A(x, t) cosλtdt+

∫ x

0
B(x, t) sinλtdt, (2.2)

α(x) = xp(0) + 2

∫ x

0
[A(ξ, ξ) sinα(ξ)−B(ξ, ξ) cosα(ξ)]dξ, (2.3)

q(x) = −p2(x) + 2
d

dx
[A(x, x) cosα(x) +B(x, x) sinα(x)], (2.4)

A(0, 0) = h,
∂A(x, t)

∂t

∣∣∣∣
t=0

= 0, B(x, 0) = 0, (2.5)

where

α(x) =

∫ x

0
p(t)dt. (2.6)

Next, if m ≥ 1 then

∂2A(x, t)

∂x2
− 2p(x)

∂B(x, t)

∂t
− q(x)A(x, t) =

∂2A(x, t)

∂t2
, (2.7)

∂2B(x, t)

∂x2
+ 2p(x)

∂A(x, t)

∂t
− q(x)B(x, t) =

∂2B(x, t)

∂t2
. (2.8)

Conversely, if given functions A(x, t) and B(x, t) have second order square-
integrable partial derivatives satisfying equations (2.7), (2.8) and satisfy condi-
tions (2.3)–(2.6), then the function ϕ(x, λ) constructed by formula (2.2) is the
solution of Eq. (1.1) subject to initial conditions (2.1).

Let us denote by D the subspace of space W 2
2 [0, π], consisting of functions

y(x) ∈W 2
2 [0, π] satisfying the boundary conditions in (1.2).

Further we will assume that q(x), p(x) are real-valued functions with q(x) ∈
L2[0, π], p(x) ∈W 1

2 [0, π] and h, H are real numbers such that

h |y(0)|2 +H |y(π)|2 +

∫ π

0
{
∣∣y′(x)

∣∣2 + q(x) |y(x)|2}dx > 0 (2.9)



ON CONSTRUCTION OF A QUADRATIC STURM-LIOUVILLE OPERATOR . . . 205

for all functions y(x) ∈ D being not identically zero (the last condition is au-
tomatically satisfied if h ≥ 0, H ≥ 0, and q(x) > 0). Under these conditions
boundary value problem (1.1), (1.2) possesses the following spectral properties.

(1) The eigenvalues of boundary value problem (1.1), (1.2) are real, different
from zero, and simple. This problem does not have associated functions
attached to the eigenfunctions. (Note that without condition (2.9) prob-
lem (1.1), (1.2) may have a finite number of nonreal eigenvalues.)

(2) The eigenfunctions y(x) and z(x) of problem (1.1), (1.2) corresponding to
the different eigenvalues λ and µ, respectively, satisfy the “orthogonality”
relation

(λ+ µ)

∫ π

0
y(x)z(x)dx− 2

∫ π

0
p(x)y(x)z(x)dx = 0.

(3) The problem (1.1), (1.2) has countably many eigenvalues which can be
arranged in the sequence

. . . < λ−2 < λ−1 < λ−0 < 0 < λ+0 < λ1 < λ2 < . . .

so that for large negative and positive values of n the asymptotic formula

λn = n+ c0 +
c1

n
+
c1,n

n
(2.10)

holds, where

c0 =
1

π

∫ π

0
p(x)dx,

∑
n

|c1,n|2 <∞,

c1 =
1

π

(
h+H +

1

2

∫ π

0
[q(x) + p2(x)]dx

)
. (2.11)

(Recall that λ = 0 is not an eigenvalue of (1.1), (1.2). Note also that the
notations n = −0 and n = +0 are used for the eigenvalues λn to have the
asymptotic formula just in the form (2.10).)

(4) Obviously, ϕn(x) = ϕ(x, λn) is an eigenfunction of (1.1), (1.2), corre-
sponding to the eigenvalue λn. Let us set

an =

∫ π

0
ϕ2
n(x)dx− 1

λn

∫ π

0
p(x)ϕ2

n(x)dx.

The numbers an we call the normalizing numbers of problem (1.1), (1.2).
(5) The normalizing numbers an are positive and for large negative and pos-

itive values of n the asymptotic formula

an =
π

2
+
α1

n
+
α1,n

n

holds, where

α1 = −π
2
p(0),

∑
n

|α1,n|2 <∞. (2.12)

(6) For arbitrary function f(x) in L2[0, π] the “two-fold” expansion formulas∑
n

1

λnan
ϕ(x, λn)

∫ π

0
f(t)ϕ(t, λn)dt = 0, (2.13)
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1

2an
ϕ(x, λn)

∫ π

0
f(t)ϕ(t, λn)dt = f(x) (2.14)

hold, where the series converge in the metric of space L2[0, π]. Everywhere
in the infinite sums n runs all the values n = ±0,±1,±2, . . . .

(7) The equality ∑
n

1

λnan
= 0

holds, where the infinite sum is understood in the sense of a principial
value, i.e. as the limit of sums

∑N
−N as N →∞.

The inverse spectral problem consists in recovering the coefficient functions
q(x), p(x) in Eq. (1.1) and the coefficient numbers h, H in boundary conditions
(1.2) from the spectral data {λn, an} of problem (1.1), (1.2).

In [6] the following theorem is stated on solution of the inverse spectral prob-
lem.

Theorem 2.2. In order for real numbers {λn} and {an} (n = ±0,±1,±2, . . . )
with an > 0 and

. . . < λ−2 < λ−1 < λ−0 < 0 < λ+0 < λ1 < λ2 < . . . (2.15)

to be the eigenvalues and the normalizing numbers, respectively, of a bound-
ary value problem of the form (1.1), (1.2) with real-valued functons q(x) ∈
L2[0, π], p(x) ∈W 1

2 [0, π] and real numbers h, H it is sufficient that the following
conditions are satisfied:

(i) The equality ∑
n

1

λnan
= 0 (2.16)

holds, where the infinite sum is understood in the sense of a principial value.
(ii) The asymptotic formulas

λn = n+ c0 +
c1

n
+
c1,n

n
, (2.17)

an =
π

2
+
α1

n
+
α1,n

n
(2.18)

hold, where c0, c1, α1 are costants and∑
n

(c2
1,n + α2

1,n) <∞. (2.19)

The boundary value problem (1.1), (1.2) is uniquely restored from the spectral
data {λn, an}.

In the next section we will derive the so-called fundamental equations of the
invese problem, which allow to indicate a procedura for reconstruction of problem
(1.1), (1.2) from the spectral data {λn, an}.
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3. Fundamental equations of the inverse problem

Assume that for problem (1.1), (1.2) the conditions stated above in Section 2
are satisfied (see (2.9)). Let {λn} be the eigenvalues and {an} be the correspond-
ing normalizing numbers of problem (1.1), (1.2), where n = ±0,±1,±2, . . . . In
this section we will derive some equations which allow formally solve the inverse
spectral problem.

Let us set

H(x, t) =
∑
n

1

2λnan
ϕ(x, λn)eiλnt, (3.1)

where n in the sum runs all the values ±0,±1,±2, . . . .

Lemma 3.1. The equality

H(x, t) = 0 for 0 ≤ t < x (3.2)

holds.

Proof. We will handle with the function H(x, t) defined by (3.1) as with a distri-
bution. The formulas (2.13), (2.14) can be written as∑

n

1

λnan
ϕ(x, λn)ϕ(t, λn) = 0,

∑
n

1

2an
ϕ(x, λn)ϕ(t, λn) = δ(x− t),

where δ(x) is the Dirac delta function. Putting here t = 0 and taking into account
that ϕ(0, λ) = 1, we conclude by definition (3.1) of H(x, t) that

H(x, 0) = 0,
∂H(x, t)

∂t

∣∣∣∣
t=0

= iδ(x).

Next, we have
∂2H(x, t)

∂x2
=
∑
n

1

2λnan
ϕ′′(x, λn)eiλnt

=
∑
n

1

2λnan
{2λnp(x)ϕ(x, λn) + q(x)ϕ(x, λn)− λ2

nϕ(x, λn)}eiλnt

= −2ip(x)
∂H(x, t)

∂t
+ q(x)H(x, t) +

∂2H(x, t)

∂t2
.

Therefore H(x, t) is the solution of the following Cauchy problem (initial value
problem)

∂2H(x, t)

∂t2
=
∂2H(x, t)

∂x2
+ 2ip(x)

∂H(x, t)

∂t
− q(x)H(x, t), (3.3)

H(x, 0) = 0,
∂H(x, t)

∂t

∣∣∣∣
t=0

= iδ(x). (3.4)

Let us reduce the problem (3.3), (3.4) to an integral equation for H(x, t).
For p(x) ≡ q(x) ≡ 0 Eq. (3.3) takes the form

∂2H(x, t)

∂t2
=
∂2H(x, t)

∂x2
. (3.5)
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As is known (D’Alembert’s formula) the solution of problem (3.5), (3.4) has the
form

H0(x, t) =
i

2

∫ x+t

x−t
δ(y)dy. (3.6)

Consider now the non-homogeneous equation

∂2H(x, t)

∂t2
− ∂2H(x, t)

∂x2
= g(x, t) (3.7)

with a known function g(x, t). Denote by H̃(x, t) the solution of Eq. (3.7) satis-
fying the initial conditions

H̃(x, 0) = 0,
∂H̃(x, t)

∂t

∣∣∣∣∣
t=0

= 0.

It is known that

H̃(x, t) =
1

2

∫∫
∆x,t

g(y, τ)dydτ, (3.8)

where ∆x,t the triangle in the (y, τ) plane with the vertices at the points (x−t, 0),
(x, t), and (x+ t, 0).

Then the solution H(x, t) of Eq. (3.7) subject to the initial conditions (3.4) is
obtained by the formula

H(x, t) = H0(x, t) + H̃(x, t)

=
i

2

∫ x+t

x−t
δ(y)dy +

1

2

∫∫
∆x,t

g(y, τ)dydτ. (3.9)

Using the formula (3.9) it is not difficult to get an integral equation for the

solution of problem (3.3), (3.4). Indeed, regarding the function 2ip(x)∂H(x,t)
∂t −

q(x)H(x, t) in Eq. (3.3) as a known function and applying the formula (3.9) we
obtain the following integro-differential equation which is equivalent to problem
(3.3), (3.4):

H(x, t) =
i

2

∫ x+t

x−t
δ(y)dy

+
1

2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)

{
2ip(y)

∂H(y, τ)

∂τ
− q(y)H(y, τ)

}
dy. (3.10)

Further, taking into account that

∂

∂τ

∫ x+(t−τ)

x−(t−τ)
ip(y)H(y, τ)dy = −ip(x+ t− τ)H(x+ t− τ, τ)

−ip(x− t+ τ)H(x− t+ τ, τ) +

∫ x+(t−τ)

x−(t−τ)
ip(y)

∂H(y, τ)

∂τ
dy,

we have∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
ip(y)

∂H(y, τ)

∂τ
dy = i

∫ t

0
p(x+ t− τ)H(x+ t− τ, τ)dτ

+i

∫ t

0
p(x− t+ τ)H(x− t+ τ, τ)dτ +

∫ x+(t−τ)

x−(t−τ)
ip(y)H(y, τ)dy

∣∣∣∣∣
τ=t

τ=0

.
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Besides ∫ x+(t−τ)

x−(t−τ)
ip(y)H(y, τ)dy

∣∣∣∣∣
τ=t

τ=0

= −
∫ x+t

x−t
ip(y)H(y, 0)dy = 0

by (3.4). Substituting these in the right-hand side of (3.10), we get

H(x, t) =
i

2

∫ x+t

x−t
δ(y)dy + i

∫ t

0
p(x+ t− τ)H(x+ t− τ, τ)dτ

+i

∫ t

0
p(x− t+ τ)H(x− t+ τ, τ)dτ − 1

2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
q(y)H(y, τ)dy. (3.11)

If t < x, then x− t > 0 and hence∫ x+t

x−t
δ(y)dy = 0.

Consequently, we get from (3.11) that

H(x, t) = i

∫ t

0
p(x+ t− τ)H(x+ t− τ, τ)dτ + i

∫ t

0
p(x− t+ τ)H(x− t+ τ, τ)dτ

−1

2

∫ t

0
dτ

∫ x+(t−τ)

x−(t−τ)
q(y)H(y, τ)dy for 0 ≤ t < x.

The last equation is a Volterra type linear homogeneous integral equation for fixed
x and, therefore, it has only the trivial solution, i.e. H(x, t) = 0 for 0 ≤ t < x. �

Theorem 3.1. The kernels A(x, t) and B(x, t) involved in the representation
(2.2) of ϕ(x, λ) satisfy the following system of linear integral equations:

F11(x, t) cosα(x) + F12(x, t) sinα(x) +A(x, t)

+

∫ x

0
A(x, ξ)F11(ξ, t)dξ +

∫ x

0
B(x, ξ)F12(ξ, t)dξ = 0, 0 ≤ t < x, (3.12)

F21(x, t) cosα(x) + F22(x, t) sinα(x) +B(x, t)

+

∫ x

0
A(x, ξ)F21(ξ, t)dξ +

∫ x

0
B(x, ξ)F22(ξ, t)dξ = 0, 0 ≤ t < x, (3.13)

where

F11(x, t) =
1

π
cos c0x cos c0t

+
∑
n

{
1

2an
cosλnx cosλnt−

1

π
cos(n+ c0)x cos(n+ c0)t

}
, (3.14)

F12(x, t) =
1

π
sin c0x cos c0t

+
∑
n

{
1

2an
sinλnx cosλnt−

1

π
sin(n+ c0)x cos(n+ c0)t

}
, (3.15)

F21(x, t) =
1

π
cos c0x sin c0t

+
∑
n

{
1

2an
cosλnx sinλnt−

1

π
cos(n+ c0)x sin(n+ c0)t

}
, (3.16)
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F21(x, t) =
1

π
sin c0x sin c0t

+
∑
n

{
1

2an
sinλnx sinλnt−

1

π
sin(n+ c0)x sin(n+ c0)t

}
(3.17)

in which in infinite sums n runs all the values ±0,±1,±2, . . . and we take con-
vention that (±0)a = 0 for any number a.

Proof. To derive integral equations for the functions A(x, t) and B(x, t) we use
the equality

∂H(x, t)

∂t
= 0 for 0 ≤ t < x,

which follows from (3.2). From this equality we get, by (3.1),∑
n

1

2an
ϕ(x, λn)eiλnt = 0 for 0 ≤ t < x,

which is understood in the sense of distributions (because the series in this equal-
ity does not converge in ordinary sense). Substituting here for ϕ(x, λn) the ex-
pression

ϕ(x, λn) = cosλnx cosα(x) + sinλnx sinα(x)

+

∫ x

0
A(x, t) cosλntdt+

∫ x

0
B(x, t) sinλntdt

obtained from (2.2) and equating then to zero the real and imaginary parts of
obtained equation, we get∑

n

1

2an
{[cosλnx cosα(x) + sinλnx sinα(x)] cosλnt

+

∫ x

0
A(x, ξ) cosλnξ cosλntdξ +

∫ x

0
B(x, ξ) sinλnξ cosλntdξ} = 0,∑

n

1

2an
{[cosλnx cosα(x) + sinλnx sinα(x)] sinλnt

+

∫ x

0
A(x, ξ) cosλnξ sinλntdξ +

∫ x

0
B(x, ξ) sinλnξ sinλntdξ} = 0,

for 0 ≤ t < x. To have in the last equations series convergent in ordinary sense
we rewrite these equations in the form∑

n

{
1

2an
cosλnx cosλnt−

1

π
cos(n+ c0)x cos(n+ c0)t

}
cosα(x)

+
∑
n

{
1

2an
sinλnx cosλnt−

1

π
sin(n+ c0)x cos(n+ c0)t

}
sinα(x)

+

∫ x

0
A(x, ξ)

{∑
n

[
1

2an
cosλnξ cosλnt−

1

π
cos(n+ c0)ξ cos(n+ c0)t

]}
dξ

+

∫ x

0
B(x, ξ)

{∑
n

[
1

2an
sinλnξ cosλnt−

1

π
sin(n+ c0)ξ cos(n+ c0)t

]}
dξ
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+

{∑
n

1

π
cos(n+ c0)x cos(n+ c0)t

}
cosα(x)

+

{∑
n

1

π
sin(n+ c0)x cos(n+ c0)t

}
cosα(x)

+

∫ x

0
A(x, ξ)

{∑
n

1

π
cos(n+ c0)ξ cos(n+ c0)t

}
dξ

+

∫ x

0
B(x, ξ)

{∑
n

1

π
sin(n+ c0)ξ cos(n+ c0)t

}
dξ, (3.18)

∑
n

{
1

2an
cosλnx sinλnt−

1

π
cos(n+ c0)x sin(n+ c0)t

}
cosα(x)

+
∑
n

{
1

2an
sinλnx sinλnt−

1

π
sin(n+ c0)x sin(n+ c0)t

}
sinα(x)

+

∫ x

0
A(x, ξ)

{∑
n

[
1

2an
cosλnξ sinλnt−

1

π
cos(n+ c0)ξ sin(n+ c0)t

]}
dξ

+

∫ x

0
B(x, ξ)

{∑
n

[
1

2an
sinλnξ sinλnt−

1

π
sin(n+ c0)ξ sin(n+ c0)t

]}
dξ

+

{∑
n

1

π
cos(n+ c0)x sin(n+ c0)t

}
cosα(x)

+

{∑
n

1

π
sin(n+ c0)x sin(n+ c0)t

}
sinα(x)

+

∫ x

0
A(x, ξ)

{∑
n

1

π
cos(n+ c0)ξ sin(n+ c0)t

}
dξ

+

∫ x

0
B(x, ξ)

{∑
n

1

π
sin(n+ c0)ξ sin(n+ c0)t

}
dξ, (3.19)

for 0 ≤ t < x. Next, since ∑
n

cosnx sinnt = 0,

− 1

π
+
∑
n

1

π
cosnx cosnt = δ(x− t),

∑
n

1

π
sinnx sinnt = δ(x− t),

it is easy to show that∑
n

1

π
cos(n+ c0)x cos(n+ c0)t =

1

π
cos c0x cos c0t+ δ(x− t) cos c0(x− t), (3.20)

∑
n

1

π
cos(n+ c0)x sin(n+ c0)t =

1

π
cos c0x sin c0t+ δ(x− t) sin c0(x− t), (3.21)

∑
n

1

π
sin(n+ c0)x sin(n+ c0)t =

1

π
sin c0x sin c0t+ δ(x− t) cos c0(x− t)). (3.22)
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From (3.18) and (3.19), taking into account equations (3.20)–(3.22) and notations
(3.14)–(3.17) we get the statement of the theorem. �

4. Algorithm for solving the inverse problem

The equations (3.12), (3.13) are called the fundamental equations of the inverse
problem. They allow to solve the inverse problem and prove Theorem 2.2 as
follows.

Let a collection of numbers {λn, an} be given that satisfies the conditions of
Theorem 2.2. Using this collection we construct the functions Fjk(x, t) (j, k =
1, 2) by (3.14)–(3.17) and consider for each fixed x the system of Fredholm linear
integral equations (3.12), (3.13) with respect to unknown functionsA(x, t), B(x, t)
assuming α(x) in these equations an arbitrarily given function. It turns out that
these equations are uniquely solvable and dependence of its solution on α(x) can
be expressed explicitly.

Theorem 4.1. For any continuous function α(x) the system of integral equa-
tions (3.12), (3.13) has a unique solution A(x, t), B(x, t) and dependence of this
solution on the function α(x) is expressed by the formulas

A(x, t) = A0(x, t) cosα(x) +A1(x, t) sinα(x), (4.1)

B(x, t) = B0(x, t) cosα(x) +B1(x, t) sinα(x), (4.2)

where A0(x, t), B0(x, t) form the solution of system (3.12), (3.13) with α(x) ≡ 0,

F11(x, t) +A0(x, t)

+

∫ x

0
A0(x, ξ)F11(ξ, t)dξ +

∫ x

0
B0(x, ξ)F12(ξ, t)dξ = 0, 0 ≤ t < x, (4.3)

F21(x, t) +B0(x, t)

+

∫ x

0
A0(x, ξ)F21(ξ, t)dξ +

∫ x

0
B0(x, ξ)F22(ξ, t)dξ = 0, 0 ≤ t < x, (4.4)

and A1(x, t), B1(x, t) form the solution of system (3.12), (3.13) with α(x) ≡ π/2,
F12(x, t) +A1(x, t)

+

∫ x

0
A1(x, ξ)F11(ξ, t)dξ +

∫ x

0
B1(x, ξ)F12(ξ, t)dξ = 0, 0 ≤ t < x, (4.5)

F22(x, t) +B1(x, t)

+

∫ x

0
A1(x, ξ)F21(ξ, t)dξ +

∫ x

0
B1(x, ξ)F22(ξ, t)dξ = 0, 0 ≤ t < x. (4.6)

We need to get an equation for α(x). In the part of direct spectral problem we
have relation (2.3). Substituting (4.1), (4.2) in this relation we get for α(x) the
nonlinear Volterra integral equation

α(x) = xp(0) +

∫ x

0
Φ(ξ, α(ξ))dξ, (4.7)

where

Φ(ξ, z) = 2A1(ξ, ξ) sin2 z − 2B0(ξ, ξ) cos2 z + [A0(ξ, ξ)−B1(ξ, ξ)] sin 2z. (4.8)

Thus we get the following algoritm for solution of the inverse problem.
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Given a collection of numbers {λn, an} satisfying the conditions of Theorem
2.2, we construct the functions Fjk(x, t) (j, k = 1, 2) by (3.14)–(3.17) and con-
sider the two sistems of equations (4.3), (4.4) and (4.5), (4.6) with respect to
A0(x, t), B0(x, t) and A1(x, t), B1(x, t), respectively. Solving these systems we
find A0(x, t), B0(x, t) and A1(x, t), B1(x, t). Then we form the function Φ(ξ, z) by
(4.8) and consider equation (4.7) for α(x) where the number p(0) is taken from
p(0) = −2α1/π according to (2.12) with α1 given in (2.18). Solving this equation
we find α(x) and then p(x) by p(x) = α′(x) according to (2.6). Next, define
A(x, t), B(x, t) by (4.1), (4.2) and then q(x) by (2.4). The number h is defined
by h = A(0, 0) according to (2.5) and the number H is defined from (2.11) with
c1 given in (2.17).

These reasonings prove, in particular, the uniqueness of solution of the in-
verse problem: the coefficient functions p(x), q(x) of Eq. (1.1) and the numbers
h, H in boundary conditions (1.2) are determined uniquely from the spectral
data {λn, an} of the boundary value problem (1.1), (1.2). A complete proof of
Theorem 2.2 will be presented by the author elsewhere.
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