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AN INVERSE SCATTERING PROBLEM FOR A SYSTEM OF

DIRAC EQUATIONS WITH DISCONTINUITY CONDITIONS

HIDAYAT M. HUSEYNOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. We solve an inverse scattering problem for the Dirac system
with discontinuity conditions at a point.

1. Introduction

Let’s consider a system of Dirac equations

By′ + Ω (x) y = λy, 0 < x <∞, (1)

with discontinuity conditions at some point a ∈ (0,∞)

y (a− 0) = My (a+ 0) (2)

and with the boundary condition

y1 (0) = 0. (3)

Here

B =

(
0 1
−1 0

)
, M =

(
α 0
β α−1

)
,Ω (x) =

(
p (x) q (x)
q (x) − p (x)

)
, y =

(
y1
y2

)
,

(4)
α, β are real numbers α 6= 0, p (x), q (x) are real-valued functions, satisfying the
condition

∞∫
0

‖Ω (x)‖ dx <∞, (5)

where ‖·‖ is the operator norm in the Euclidean space C2.
There exists the solution of problem (1)-(3) (see formula (16)) u (x, λ) such

that it holds the Parseval equality

1

π

∞∫
−∞

u (x, λ)u∗ (t, λ) dλ = δ (x− t)E2,
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where E2 =

(
1 0
0 1

)
, δ is the Dirac delta-function, and as x→ +∞

u (x, λ) =

{(
1
−i

)
eiλx −

(
1
i

)
e−iλxS (x)

}
[1 + o (1)] ,

the function S (λ) is called a scattering function of boundary value problem (1)-
(3).

Obviously, for determining asymptotic behavior of the normed generalized
eigen function u (x, λ) it suffices to know the scattering function . Therefore,
the inverse problem of the scattering theory for a boundary value problem is
formulated as follows. Knowing the scattering function S (x) show the way for
determining the potential Ω (x) and find necessary and sufficient conditions for
the pregiven function be the scattering function of the problem as (1)-(3). In the
present paper this problem is completely solved.

When there are no discontinuity conditions i.e. when M = E2, the inverse
scattering problems for the system of Dirac equations of mass, and also for the
system of order 2n Dirac equations with general self-adjoint boundary conditions
were solved in the papers [1], [4]. Note also the papers [2], [3] and others where
the inverse problems for the system of Dirac equations are considered in other
statements.

2. On the Jost solution

We call the matrix function E (x, λ) satisfying equation (1), condition (2) and
the condition at infinity lim

x→+∞
E (x, λ) eλBx = E2 the Jost solution. It is easy to

show that if Ω (x) ≡ 0, then the Jost solution is the function

E0 (x, λ) =

{
e−λBx, x > a,

M−e−λBx +M+e−λ(2a−x)B, 0 < x < a,

where

M± =
1

2
(M ±BMB) =

(
α∓ ±B
β ∓ α∓

)
, α± =

1

2

(
α± α−1

)
.

Theorem 1. Under condition (5) equation (1) with discontinuity condition
(2) for all real λ has the Jost solution E (x, λ) representable in the form

E (x, λ) = E0 (x, λ) +

+∞∫
x

K (x, t) e−λBtdt, (6)

and the kernel K (x, t) satisfies the inequality

+∞∫
x

‖K (x, t)‖ dt ≤ e2Cσ(x) − 1, (7)

where

C = max
(
1,
∥∥M−∥∥ , ∥∥M+

∥∥) , σ (x) =

+∞∫
x

‖Ω (s)‖ ds.
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Furthermore, the following relations are fulfilled

lim
t→+0

+∞∫
a

‖BK (x, x+ t)−K (x, x+ t)B − Ω (x)‖ dx = 0,

lim
t→+0

a∫
0

∥∥BK (x, x+ t)−K (x, x+ t)B − Ω (x)M−
∥∥ dx = 0, (8)

lim
δ→+0

a∫
a

∥∥∥ [B,K (x, t)]|2a−x+δt=2a−x−δ − Ω (x)M+
∥∥∥ dx = 0.

Proof. It is easy to show that the Jost solution (if it exists) satisfies the
integral equation

E (x, λ) = E0 (x, λ)−
+∞∫
x

E0 (x, λ)E−10 (t, λ)BΩ (t)E (t, λ) dt.

Substituting here instead of E (x, λ) its representation of the form (6), we get

+∞∫
x

K (x, t) e−λBtdt = −
+∞∫
x

E0 (x, λ)E−10 (t, λ)BΩ (t)E0 (t, λ) dt−

+∞∫
x

E0 (x, λ)E−10 (t, λ)BΩ (t)

+∞∫
t

K (x, λ) e−λBsdsdt (λ ∈ R) . (9)

Suppose x > 0. Then relation (9) takes the form:

+∞∫
x

K (x, t) e−λBtdt = −
+∞∫
x

e−λB(x−t)BΩ (t) e−λBtdt−

+∞∫
x

e−λB(x−t)BΩ (t)

+∞∫
t

K (t, s) e−λBssdsdt.

Hence it is easy to get the following relations for the functions K± (x, t) =
1
2 (K (x, t)±BK (x, t)B):

+∞∫
x

K+ (x, t) e−λBtdt =
1

2

+∞∫
x

Ω

(
x+ t

2

)
Be−λBtdt+

+∞∫
x

e−λB(x−t)Ω (t)

+∞∫
t

K− (t, s) e−λBsdsdt,

+∞∫
x

K− (x, t) e−λBtdt = −
+∞∫
x

e−λB(x−t)BΩ (t)

+∞∫
x

K+ (t, s) e−λBsdsdt.
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Hence, using

BK± (x, t) = ∓K± (x, t)B, e−λBxK± (x, t) = K± (x, t) e±λBx,

we finally get integral equations for the matrix-functions K± (x, t) for x > a:
K+ (x, t) = 1

2Ω
(
x+t
2

)
B +

x+t
2∫
x

Ω (ξ)BK− (ξ, t+ x− ξ) dξ,

K− (x, t) =
+∞∫
x

Ω (ξ)BK+ (ξ, t− x+ ξ) dξ.

(10)

Now consider the case 0 < x < a. In this case we have

E0 (x, λ) = M−e−λBx +M+e−λ(2a−x)B,

E0 (x, λ)E−10 (t, λ) =

{
e−λB(x−t), for a < x < t or x < t < a,

M−e−λB(x−t) +M+e−λB(2a−x−t), for x < a < t.

Therefore, proceeding from relation (9), similar to the case mentioned above for
the matrix-function K± (x, t) we get the integral equations:

K+ (x, t) = −1
2BΩ

(
x+t
2

)
M− −

x+t
2∫
x
BΩ (s)K− (s, t+ x− s) ds,

K− (x, t) = −1
2BΩ

(
x+2a−t

2

)
M+ − 1

2M
+BΩ

(
t−x+2a

2

)
−

a∫
x
BΩ (s)K+ (s, t− x+ s) ds−

+∞∫
a
M−BΩ (s)K+ (s, t− x+ s) ds−

t+2a−x
2∫
a

M+BΩ (s)K− (s, t+ 2a− x− s) ds, 0 < x < a, x < t < 2a− x,

K+ (x, t) = −1
2M

−BΩ
(
x+t
2

)
−

t+x
2∫
a
M−BΩ (s)K− (s, t+ x− s) ds−

a∫
x
BΩ (s)K− (x, t+ x− s) ds−

+∞∫
a
M+BΩ (s)K+ (s, t− 2a+ x+ s) ds,

K− (x, t) = −1
2M

+BΩ
(
t−x+2a

2

)
−

a∫
x
BΩ (s)K+ (s, t− x+ s) ds−

+∞∫
a
M−BΩ (s)K+ (s, t− x+ s) ds−

t+2a−x
2∫
a

M+BΩ (s)K− (s, t+ 2a− x− s) ds,

0 < x < a, 2a− x < t <∞.
(11)

For proving the existence of the solution E (x, λ) it suffices to show that the
systems of equations (10), (11) have the solutions K± (x, t) satisfying the inequal-
ities

+∞∫
x

∥∥K± (x, t)
∥∥ dt ≤ 1

2

{
e2Cσ(x) − 1

}
, (12)

and hence for the kernel K (x, t) = K+ (x, t)+K− (x, t) estimation (7) will follow.
Assume

K+
0 (x, t) =


1
2Ω
(
x+t
2

)
B, x > a, t > s,

1
2Ω
(
x+t
2

)
BM−, 0 < x < a, x < t < 2a− x,

1
2M

−Ω
(
x+t
2

)
B, 0 < x < a, t > 2a− x,
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K−0 (x, t) =
0, x > a, t > s,

1
2Ω
(
x+2a−t

2

)
BM+ + 1

2M
+Ω
(
t+2a−x

2

)
B, 0 < x < a, x < t < 2a− x,

1
2M

+Ω
(
t+2a−x

2

)
B, 0 < x < a, t > 2a− x,

K+
n (x, t) =

x+t
2∫
x

Ω (s)BK−n−1 (s, t+ x− s) ds, x > a, t > x or 0 < x < a, x < t < 2a− x,
t+x
2∫
a
M−Ω (s)BK−n−1 (s, t+ x− s) ds+

a∫
x

Ω (s)BK−n−1 (s, t+ x− s) ds+

+
+∞∫
a
M+Ω (s)BK+

n−1 (s, t− 2a+ x+ s) ds, 0 < x < a, t > 2a− x,

K−n (x, t) =

+∞∫
x

Ω (s)BK+
n−1 (s, t− x+ s) ds, x > a, t > x,

a∫
x

Ω (s)BK+
n−1 (s, t− x+ s) ds+

+∞∫
a
M−Ω (s)BK+

n−1 (s, t− x+ s) ds+

+

t+2a−x
2∫
a

M+Ω (s)BK−n−1 (s, t+ 2a− x− s) ds, 0 < x < a, x < t < 2a− x,
a∫
x

Ω (s)BK+
n−1 (s, t− x+ s) ds+

+∞∫
a
M−Ω (s)BK+

n−1 (s, t− x+ s) ds+

+

t+2a−x
2∫
a

M+Ω (s)BK−n−1 (s, t+ 2a− x− s) ds, 0 < x < a, t > 2a− x,

From the definition K±n (x, t) (n = 0, 1, 2, ...) it follows

+∞∫
x

∥∥K±0 (x, t)
∥∥ dt ≤ C +∞∫

x

‖Ω (s)‖ ds = Cσ (x) ,

+∞∫
x

∥∥K±n (x, t)
∥∥ dt ≤ C +∞∫

x

‖Ω (s)‖

 ∞∫
s

∥∥K+
n−1 (s, ξ)

∥∥ dξ +

∞∫
s

∥∥K−n−1 (s, ξ)
∥∥ dξ

 dξ.

Applying the mathematical induction method, we have

+∞∫
x

∥∥K±n (x, t)
∥∥ dt ≤ 2nCn+1 {σ (x)}n+1

(n+ 1)!
.

Hence it follows that the matrix series
∞∑
n=0

K±n (x, ·) = K± (x, ·) converge uni-

formly with respect to x ∈ (0,∞) in the space L1 and estimations (12) are
fulfilled.
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Now prove relations (8). Write the first equation from the system (10) in the
form

−2BK+ (x, t) = Ω

(
x+ t

2

)
+ 2

x+t
2∫
x

Ω (s)K− (s, t+ x− s) ds

or having made a substitution t→ x+ t, in the form

−BK (x, x+ t) +K (x, x+ t)B = Ω

(
x+

t

2

)
+ 2

x+ t
2∫

x

Ω (s)K− (s, 2x+ t− s) ds.

Hence

+∞∫
x

‖K (x, x+ t)B −BK (x, x+ t)− Ω (x)‖ dx ≤
∞∫
0

∥∥∥∥Ω

(
x+

t

2

)
− Ω (x)

∥∥∥∥ dx

+2

+∞∫
0

∥∥∥∥∥∥∥
x+ t

2∫
x

Ω (s)K− (s, 2x+ t− s) ds

∥∥∥∥∥∥∥ dx = I1 (t) + I2 (t) .

In order to set up the first relation from (8), it suffices to show that

lim
t→+0

I2 (t) = 0. (13)

Changing the integration order and making change of variables ξ = 2x + t − s,
we get

I2 (t) ≤ 2

+∞∫
0

 x+ t
2∫

x

‖Ω (s)‖
∥∥K− (s, 2x+ t− s)

∥∥ ds
 dx =

t
2∫

0

‖Ω (s)‖

 t+s∫
t−s

∥∥K− (s, ξ)
∥∥ dξ

 ds+

∞∫
t
2

‖Ω (s)‖

 s+t∫
s

∥∥K− (s, ξ)
∥∥ dξ

 ds. (14)

According to estimations (12), we have:

t
2∫

0

‖Ω (s)‖
t+s∫
t−s

∥∥K− (s, ξ)
∥∥ dξds ≤

t
2∫

0

‖Ω (s)‖
∞∫
s

∥∥K− (s, ξ)
∥∥ dξds ≤ 1

2

{
e2Cσ(0) − 1

} t
2∫

0

‖Ω (s)‖ ds,

thus, the first summand from the right hand side of (14) tends to zero as t→ +0.



AN INVERSE SCATTERING PROBLEM FOR A SYSTEM . . . 221

In the sequel, since ϕt (s) = ‖Ω (s)‖
s+t∫
s
‖K− (s, ξ)‖ dξ → 0 as t → +0 and

according to (12)

ϕt (s) ≤ ‖Ω (s)‖
∞∫
s

∥∥K− (s, ξ)
∥∥ dξ ≤ C1 ‖Ω (s)‖ ,

then by the theorem on limit passage under the sign of integral, we have

lim
t→+0

∞∫
t
2

ϕt (s) ds = 0.

Thus, (13) is valid, and so the first equality from (8) is valid as well. Proceeding
from equations (10), (11), the remaining relations from (8) are proved in the same
way. The theorem is proved.

Corollary 1. The vector-function e (x, λ) and e (x, λ), where

e (x, λ) = e0 (x, λ) +

+∞∫
x

K (x, t)

(
1
−i

)
eiλtdt, (15)

e0 (x, λ) =


(

1
−i

)
eiλx, x > a,

M−eiλx
(

1
−i

)
+M+eiλ(2a−x)

(
1
−i

)
, 0 < x < a,

are a fundamental system of solutions of problem (1), (2).

3. Basic equations of the inverse problem

Let’s consider the boundary value problem (1)-(3).
Denote by ϕ (x, λ) the solution of equation (1) with discontinuity conditions

(2) and initial conditions

ϕ1 (0, λ) = 0, ϕ2 (0, λ) = 1.

Lemma 1. For all λ ∈ R the following identity is valid

u (x, λ) =
2iϕ (x, λ)

e1 (0, λ)
= e (x, λ)− S (λ) e (x, λ) , (16)

where S (λ) = e1(x,λ)
e1(x,λ)

is the scattering function of problem (1)-(3) continuous on

the whole axis, and S (λ)− S0 (λ) ∈ L2 (−∞,+∞). Here

S0 (λ) =
α+ − iβ + (α− + iβ) e−2iaλ

α+ + iβ + (α− − iβ) e2iaλ
(17)

is the scattering function of problem (1)-(3), when Ω (x) ≡ 0.
Theorem 2. The kernel of the representation (6) satisfies the functional-

integral equation (the basic equation of the inverse problem)

F1 (x, y) +K (x, y)−K (x, 2a− y)

{
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)
+
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2βα−1

α+2 + β

(
0 1
1 0

)
+

+∞∫
x

K (x, t)Fs (t+ y) dt = 0, (18)

Fs (x) = Re
1

2π

∞∫
−∞

[S0 (λ)− S (λ)]

(
1 − i
−i − 1

)
eiλxdλ, (19)

F1 (x, y) =

{
Fs (x+ y) , x > a,
M−Fs (x+ y) +M+Fs (2a− x+ y) , 0 < x < a.

Proof. Write equality (16) in the case Ω (x) ≡ 0 (λ ∈ R):

2iϕ0 (x, λ)

e10 (x, λ)
= e0 (x, λ)− S0 (λ) e0 (x, λ) . (160)

From relations (16), (160), (13) we have

2iϕ (x, λ)

ei (0, λ)
− 2iϕ0 (x, λ)

e10 (0, λ)
=

+∞∫
x

K (x, t)

(
1
i

)
e−iλtdt+

[S0 (λ)− S (λ)] e0 (x, λ) +

+∞∫
x

K (x, t) [S0 (λ)− S (λ)]

(
1
−i e

iλt

)
dt−

S0 (λ)

+∞∫
x

K (x, t)

(
1
−i

)
eiλtdt.

Multiply the both hand sides of equality at first by 1
2π (1,−i) eiλy, where y > x,

and integrate with respect to λ within −∞ and +∞:

1

2π

∞∫
−∞

{
2iϕ (x, λ)

e1 (0, λ)
− 2iϕ0 (x, λ)

e10 (0, λ)

}
(1,−i) eiλydϕ =

K (x, y)

(
1 − i
i − 1

)
+

1

2π

∞∫
−∞

[S0 (λ)− S (λ)] e0 (x, λ) (1,−i) eiλydλ+

+∞∫
x

K (x, t)
1

2π

+∞∫
−∞

[S0 (λ)− S (λ)]

(
1
−i

)
(1,−i) eiλ(t+y)dλdt−

−∞∫
x

K (x, t)
1

2π

+∞∫
−∞

S0 (λ)

(
1
−i

)
(1,−i) eiλ(t+y)dλdt. (20)

On the other hand, according to formula (17) we have

S0 (λ) =

α+ − iβ + (α− + iβ) e−2iaλ

α+ + iβ

[
1− α− − iβ

α+ + iβ
e2iaλ +

(
α− − iβ
α+ + iβ

)2

e4iaλ + ...

]
.
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Consequently,

1

2π

∞∫
−∞

S0 (λ) eiλ(t+y)dy =

[
α+ − iβ
α+ + iβ

− α−2 + β2

(α+ + iβ)2

]
δ (t+ y) +

α− + iβ

α+ + iβ
δ (t+ y − 2a)− (α+ − iβ) (α− + iβ)

(α+ + iβ)2
δ (t+ y + 2a) + ...,

and since for y > x K (x,−y) = 0, K (x,−2la− y) = 0, l = 1, 2, ..., then the last
summand in the right-hand side of equation (20) takes the form

α− + iβ

α+ + iβ
K (x, 2a− y)

(
1 − i
−i − 1

)
.

In what follows, the subintegrand matrix-function in the left-hand side of equal-
ity (20) is regular, bounded in the closed upper half-plane for y > x. Then,
applying the Jordan lemma, we get that this integral equals zero. Taking into
account the above stated ones, and also real-valuededness of the elements of the
matrix-function, from relation (20) we get the basic equation (18) of the inverse
problem. The theorem is proved.

4. Solvability of the basic equation. The uniqueness theorem of
the solution of the inverse problem

Theorem 3. For any fixed x ≥ 0 the basic equation (18) has the matrix
solution K (x, ·) with the elements from L2 (x,∞).

Proof. Note that for any fixed x ≥ 0 the operation

Mx (f) = f (y)E2, x > a,

f (y)E2 − f (2a− y)

[
α+α−+β2

α+2+β2

(
1 0
0 − 1

)
+ 2βα−1

α+2+β2

(
0 1
1 0

)]
, 0 < x < a,

is invertible in the space L2

(
x,∞;C2

)
. Therefore the basic equation (18) is

equivalent to the following equation with a completely continuous operator:

K (x, y) + (Mx)−1 F1 (x, y) + (Mx)−1FK (x, ·) (y) = 0, y > x.

Consequently, in order to prove the theorem, it suffices to show that the ho-
mogeneous equation

fx (y)− fx (2a− y)

[
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)
+

2βα−1

α+2 + β2

(
0 1
1 0

)]

+

+∞∫
x

fx (t)Fs (t+ y) dt = 0, y > x, (21)

has only a trivial solution fx (·) ∈ L2

(
x,∞;C2

)
. Multiply scalarly the equation

(21) by fx (y) and integrate with respect to in the interval (x,∞). As a result we
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get

+∞∫
x

(fx (y) , fx (y)) dy +

+∞∫
x

(fx (y) , fx (2a− y)) dy

[
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)

+
2βα−1

α+2 + β2

(
0 1
1 0

)]
+

+∞∫
x

(fx (y) , fx (t)Fs (t+ y)) dt = 0. (22)

In this equation, instead of Fs (t+ y) substitute its expression from formula (19)
and take into account the relation

+∞∫
x

(fx (y) , fx (2a− y)) dy

[
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)
+

2βα−1

α+2 + β2

(
0 1
1 0

)]
=

Re
1

2π

∞∫
−∞

S0 (λ) Φ (λ) Φ̃ (λ) dλ,

where

Φ (λ) =

∞∫
x

fx (t)

(
1
−i

)
eiλtdt,

and the Parseval formula
+∞∫
x

(fx (y) , fx (y)) dy =
1

2π

∞∫
−∞

Φ (λ) Φ∗ (λ) dλ.

Then equality (22) will take the form

1

4π

∞∫
−∞

{
Φ (λ)− Φ (λ)S (λ)

}{
Φ∗ (λ)− Φ̃ (λ)S (λ)

}
dλ = 0.

Hence we have

Φ (λ) = Φ (λ)S (λ) .

By definition

S (λ) =
e1 (0, λ)

e1 (0, λ)
.

Then the vector-function Z (λ) = Φ (λ) e1 (0, λ) is regular in the half-plane Imλ >
0 continuous up to the real axis and satisfies the condition

Z (λ) = Z (λ) , −∞ < λ <∞.

Consequently, Z (λ) is an entire vector-function. From the definition of the vector-
function Z (λ) it follows that it converges to zero as λ → ∞. Therefore, by the
Liouville theorem Z (λ) ≡ 0, Φ (λ) ≡ 0 and so fx (y) = 0. The theorem is proved.

Corollary 2. The potential Ω (x) is uniquely determined from the given scat-
tering function S (λ).

The solution of the inverse scattering problem in the class (5) gives
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Theorem 4. For the function S (λ), −∞ < λ <∞ to be a scattering function
of the problem of the form (1)-(4) with real p (x) and q (x), satisfying inequality
(5) it is necessary and sufficient that the following conditions to be fulfilled:

10. the function S (λ) is continuous on the whole axis, S (λ) = S−1 (λ), each
element of the matrix function Fs (x) belongs to L2 (−∞,∞) and

∞∫
0

‖Fs (x)‖ dx <∞;

20. homogeneous equation

f (y)− f (2a− y)

[
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)
+

2βα−1

α+2 + β2

(
0 1
1 0

)]
+

∞∫
0

f (t)Fs (t+ y) dt = 0

has only a zero vector-solution with the components from L2 (0,∞);
30. the homogeneous equation

−f (y) + f (2a− y)

[
α+α− + β2

α+2 + β2

(
1 0
0 − 1

)
+

2βα−1

α+2 + β2

(
0 1
1 0

)]
+

0∫
−∞

f (t)Fs (t+ y) dt = 0

has only a zero solution with the components from L2 (−∞, 0).
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