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SPECTRAL EXPANSION FORMULA FOR A DISCONTINUOUS
STURM-LIOUVILLE PROBLEM

KHANLAR R. MAMEDOV

In memory of M. G. Gasymov on his T5th birthday

Abstract. In this paper, a self adjoint boundary value problem with a
piecewise continuous coefficient on the positive half line [0, c0) is consid-
ered. The resolvent operator is constructed and the expansion formula
with respect to eigenfunctions is obtained.

1. Introduction

On the semi axis 0 < z < oo we consider the boundary value problem by the
differential equation

—y" +q(z)y = Np(a)y (1.1)
and the boundary condition

— [o1y(0) — a2y’ (0)] = A* [B1y(0) — B2y (0)] , (1.2)

where A is the spectral parameter and ¢(z) is the real function satisfying the
condition

/000(1 +z) |q(z)| dx < 0o (1.3)

and

a?, 0<z<a,
plz) = 1, x>a.

Here «;, f§; (i = 1,2) are real numbers and v = ay 82 — S1a2 > 0.

In this paper, we obtain the expansion formula for the (1)-(3) boundary value
problem in the half line. Similar problem for classical Sturm-Liouville equation,
i.e. when p(x) =1 is studied in [15, 6, 13, 14, 2, 3]. When p(x) # 1 direct and
inverse problems of spectral anlaysis are investigated in Gasymovs’ (see [4]) and
his students works (see [1, 5, 7, 8, 9]).

In this study we used the integral expression for the Jost solution of the equa-
tion (1.1) as in [5] and differently from the classical boundary conditions, a bound-
ary condition with dependence of eigenvalue has taken into account.
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In this work, operator theoratic formulation is given for the boundary value
problem (1.1), (1.2); resolvent operator is constructed and expansion formula
with respect to eigenfunctions is obtained.

It is known from [5] that for all A from the closed upper half plane equation
(1.1) has a unique solution f(z, A) which satisfies the condition

. —IAT __
xlz_)ngof(m,)\)e =1

and that can be represented in the form

+oo )
flx,A) = fo(z, \) +/ K(at,t)e“\tdt, (1.4)
pt ()
where
ei)\x’ > a,
fo(z,A) = 1 1 At 1 1 AL~
L4 A e @4l L e (@ (<g<a,
2|+t NG t3 V@ ) € =T

is the Jost solution of equation (1.1) when ¢(x) = 0 and

p () = /p(@) + a1 F v/p(@)).

Moreover, the kernel K (z,t) satisfies the estimate

+o0 +oo
/ | K (x,t)| dt < c/ tq(t)| dt, 0 < ¢ = const.
I T

*(z)

For real A # 0, the functions f(x,\), f(z,A) form the fundamental system of
solutions of equation (1.1) and the Wronskian of this system is equal to 2iA:

W {F@. ), F@ N | = £/@ N F @) = f NP @A) = 20
By w(z, A) we denote the solutions of equation (1.1) satisfying the initial data
w(0,\) = ag + A2By, w'(0,)) = ai + N2
and define
p(A) = [a1f(0,A) = a2 f'(0, )] = X* [B1£(0, ) = Bf'(0, )] .
Using (1.4), it can be seen that ¢(\) may have only a finite number of zeros

in the half plane ImA > 0. Moreover, all these zeros are simple and lie on the

imaginary axis. These assertions can be proved with the same method in Lemma
3.1.6 in [13] (see [9]).

2. The operator theoretic formulation of the boundary value
problem (1.1), (1.2)

In the Hilbert space H, = Lo (0, 00; p(z)) x C, let us define an inner product
by

(F,G) := /000 Fi(2)Gi(x)p(x)dx + '1yF2G2

F= (ﬁf?) G= <G1G(2m)> € H,

for
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For convenience we put
Fy = 1 F1(0) — B2F1(0) = Ry [F1]
and define the operator L with

[ (F1) )
LF = ,
(Ro (F1)
in the domain

D(L)={F € H,: Fi(z), F(z) € AC[0,b] for every b,l(F}) € Lz (0,+00),

Fy = f1F1(0) — B2F[(0) = Ry (F1)},
where

L(F) = p&) [—F! 4 q(z)Fy ).

We note that, the operator L is selfadjoint in the Hilbert space H, and the
boundary value problem (1.1), (1.2) is equivalent to the equation LF = \2F.

3. Resolvent operator

If we assume that A2 is not a spectrum point of the operator L we can easily

say that the resolvent operator Ry2(L) = (L — A*I )_1 exists. Now, let us find
the expression of the operator Ry2(L).

Theorem 3.1. All numbers of the form \* (ImX\ > 0, ¢ (\) # 0) belong to the
resolvent set of the operator L. The resolvent Ryz2 is the integral operator

e )

P

where
TR G @ V) T\ @)
1 w(z,\) f(y,\), z<y<+o0
G ) 7)\ = - ’ ! ’ ’
) 80()\){ [z, Nw(y,A), 0<y<uwz
Proof. Assume that F' = (F};(:)) € D(L) and Fi(z) is zero in exterior of every

interval. To construct the resolvent operator of L we need to solve the boundary
problem

—y" +a(x)y = Np(a)y + p(x) Fi(w), (3.1)
— [a1y(0) — a2y (0)] = A [B1y(0) — B2y (0)] + Fo. (3.2)

Let us find the solutions of the problem (3.1), (3.2) which have the form
y(qu) - Cl(flﬁ,/\)QU(qf,A) +CQ($7A)f([B7/\) (33)

by noting that the functions w(x, A\) and f(z, \) are the solutions of homogeneous
problem for I'mA > 0.
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By applying the method of variation of constants, we have the system of equa-

tions
{ ‘) ( ) (.’E /\)+C2([E,/\)f($,)\) =0, (3 4)
d(z, )\)w (x A) + h(x, N f(z,N) = —p(x) Fi (). '

Since y(x,A) € Lg,(0,00), then ¢i(co,\) = 0. Using this relation and the
system of equations (3.4) we get

RACRY

(t)p(t)dt,

(@, ) = e5(0, ) — /0 ’ wso(f’/\;\)Fl(t)p(t)dt. (3.5)

Taking into consideration (3.5) into (3.3) we obtain

o) = | " G t, VR (B)p(0)dt + (0, 0) (N,

c1(z, A)

where . (e A )
fy,A), x<y<+oo,
Gz, t,\) = ——
=5 { Al Y, 0y <
Using formula (3.2) we have c3(0,\) = (p()\), thus

Wah) = [T Gt VR0 + 5w ) = (G F)

Gor= (5o )

Theorem is proved. O

where

Lemma 3.1. Let the function Fy(x) is continuosly differentiable two times and
finite at infinity. Then as || — oo, ImA > 0 the following equation holds:

e F. _ Fi(x) 1
(G,F)—/O G(:r,t,)\)Fl(t)p(t)dt—I—(p&)f(:n,)\)—— X +0<A2>. (3.6)

Proof. Using Theorem 1 and integrating by parts, we write

A2 B )pte)ar -

/OOOG(m,t,)\)Fl(t)p(t)dt = —/:o wl

= 3 o0 {f”t)\—q( (t, A} Fi(t)dt +

> f@, )

{w"(t,\) = q(t)w(t, N} Fi(t)dt =
DN )
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where )
Fi(t) = F{'(t) + ¢(t) F(t).
Thus (3.6) holds. Lemma is proved. O
4. Expansion formula
Put

Gen, F),  ImA>0,

F(z,\) = _ _
G, F), Imr<o.

Let us I'r denote the circle of radius R and center is zero which boundary con-
tour is positive oriented. Let us I'g . denote boundary contour positive orinented
in plane D = {z : 2| < R, Imz > €} and I/ . denote boundary contour negative
oriented in the plane D = {z : |z| < R,Imz < €} . Then we can use the property

of the integration
/ = / + / . (4.1)
TR, I JTp,

Now multiplying both sides of equality (3.6) by ﬁ)\ and integrating over A
the contour I'g . we obtain

1 1 F 1 1
— [ AF(z, N\ = —,/ Ao L[ o <> dr. (4.2)
21 Jrp. 21 Jr, A 2mi Jr,, . A
According to the equation (4.1) we get
1 1 1
— AF (2, \)d\ = — AF (2, \)d\ + — AF (z, N)dA. (4.3)
27TZ FR . 27TZ T'r 271'2 FR’,e

Using (4.2) let us calculate the integral on the right hand side

1 1 [ R . 1 1
— AF(x, \)d\ = —— dA+— — | d\ = —F
2mi Jr, (2,2) 2mi Jr, A +2m T © <)\> = —Fiz) (B=00),

taking into account (4.3) we have

1
lz’me_>07R_>oo2,/ AF(x, \)d\N = —Fi(2)
T I
1 Foo
= F 0) — F(z, A — i0)] dA.
5.7 A[F (x, A+ 10) (x, A —i0)] dX

—0o0

On the other hand using the residue calculus we get

! AF (2, \)d\ = Z Res [AF(x, \) +Z Res [AF(x,))].

271 TR A=i); A=—1i);

From the last two relations we get

Fi(z) = Z [Res [AF(x,)) +Z Res \F(x, )] +
1 [T
5 A[F (x, A +i0) — F(x, A — i0)] dA. (4.4)

—00
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Let t(x, A) be the solution of (1.1) satisfying the initial conditions

P(0,A) = B2, ¢P'(0,)) = B

It is clear that W {w(z, A),¢¥(x,\)} = v > 0. Then for ImA > 0, f(z,\) is
written as the linear combination of the solutions w(z, A) and ¥ (x, ), i.e.

f(z, A) = cow(z, A) + cap(z, A).
Since W {w(x, \), ¥ (z, \)} = c1y, W {w(z, N), f(z,N)} = cary

flz,\) = ot (0. ) 7_ G/ (0, )\)w(x, A) + Lp(j)dJ(x, A).
Thus
T _ _ﬁ2f/(0’ )‘) _Blf(()? )‘)w P w o
Glz,t,\) = oy (@, Nw(t, A)
L[ w(z, (), =<t <+oo,
oy { vz, Nw(t,\), 0<t<uwz.
Then for Im\ > 0 we obtain
. _ﬂ2f/(07>‘)_/61f(07/\)wx oow
Fla,)) = S @) [ wlt VE @t +
v(x,N) [* 1 x
+ P2 [ue WA+ 2w [ st DRG0+
FQ ’ F2
It follows that
i\ , . > :
)\]i%\sj AF(z,\)] = —Wf(o,l)\j)w(I,ZAj)/o w(t,i\j)F1(t)p(t)dt +
S (B2 0,03) = B (0.00)] . )

With the help of equalities (1.5) and (1.8) we get

F r _
;/\Jiffj [AF (2, \)]  + ;)\Eeg\j [AF(z,\)]

— o winy) [ in) FOpd+
0

i [52f’(0, i)\j) - ,31f(0, Z)\])] mJQf (.1‘, i)\j) F2 =
— —(F, Uj ()‘))Hp mjf (l’,i)\j), (4.6)

where

P= (") ww=m (52]”’(0,1‘];\5 ’—iﬁ)f(o?m)’ J=beon D

Now let us calculate
1 [t
AF (z, A +1i0) — F(z, A — i0)] dA.

21 J_
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From formula (3.5) and equality F' (z, A —i0) = F (x, A + i0) we have

F(z,\A+1i0) — F (z,\ —1i0) =

ﬁ2f,(0’ )‘) _61f(07 )‘) _ B2f/(07>‘) _/BIf(Ov)‘) w(x oow
[ e o ] @A) [ w0

Fy
5

ﬁQf/(Oa)‘) _Blf(oa >‘) o 52]”(0’)‘) _/Blf(ov)‘) _
w(z, \)
Ye(A) ()

| {(alﬁg — Braz) [ £ (0,0) FO, 3] = £ (0,%) F(0, ]

P ] A

X /U T wlt, VFL ()p(t)dt+

Fy (a1f2 — frag) ToN — f TN =
H S [ ONTON - 1 0N FON] wie ) =

2P,
(V)

20 S
- ) /O w(t, \VFy (8)p(t)dt —

It follows that
1 oo

— AFE (2, A+10) — F(z, A —i0)]dX\ =
2mi J_

w(z, ).

2 [e%e) )\2 o0
-2 /0 oY /0 w(t, A Fy (8)p(t)dtdA—

2F [ A

o /0 T, >f[<w N = SO f(, ) d(z,S)

where

21)\ 2i\y?
T(F,)) = m/ w(t NVF (o0 + P 7

Taking (4.6) and (4.8) into (4.4) we get the expansion formula with respect to
eigenfunctions as

_(Fi@)\ _ « (2 Sy * .
r=("y )—j;(RUJ( Vi, Ui )+ [ TENT N

where
2i\ f(z,\)

( o ) (4.9)

(V)

1 f(:E,)\)*S()\)f(lT,)\)
A) = F( 2i)\y ) =

BRZI0))

Ulz,

51 -
3
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