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Abstract. In this paper, a self adjoint boundary value problem with a
piecewise continuous coefficient on the positive half line [0,∞) is consid-
ered. The resolvent operator is constructed and the expansion formula
with respect to eigenfunctions is obtained.

1. Introduction

On the semi axis 0 < x < ∞ we consider the boundary value problem by the
differential equation

−y′′ + q(x)y = λ2ρ(x)y (1.1)

and the boundary condition

−
[
α1y(0)− α2y

′(0)
]

= λ2
[
β1y(0)− β2y

′(0)
]
, (1.2)

where λ is the spectral parameter and q(x) is the real function satisfying the
condition ∫ ∞

0
(1 + x) |q(x)| dx <∞ (1.3)

and

ρ(x) =

{
α2, 0 ≤ x < a,

1, x > a.

Here αi, βi (i = 1, 2) are real numbers and γ = α1β2 − β1α2 > 0.
In this paper, we obtain the expansion formula for the (1)-(3) boundary value

problem in the half line. Similar problem for classical Sturm-Liouville equation,
i.e. when ρ(x) = 1 is studied in [15, 6, 13, 14, 2, 3]. When ρ(x) 6= 1 direct and
inverse problems of spectral anlaysis are investigated in Gasymovs’ (see [4]) and
his students works (see [1, 5, 7, 8, 9]).

In this study we used the integral expression for the Jost solution of the equa-
tion (1.1) as in [5] and differently from the classical boundary conditions, a bound-
ary condition with dependence of eigenvalue has taken into account.
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In this work, operator theoratic formulation is given for the boundary value
problem (1.1), (1.2); resolvent operator is constructed and expansion formula
with respect to eigenfunctions is obtained.

It is known from [5] that for all λ from the closed upper half plane equation
(1.1) has a unique solution f(x, λ) which satisfies the condition

lim
x→∞

f(x, λ)e−iλx = 1

and that can be represented in the form

f(x, λ) = f0(x, λ) +

∫ +∞

µ+(x)
K(x, t)eiλtdt, (1.4)

where

f0(x, λ) =

 eiλx, x ≥ a,
1
2

(
1 + 1√

ρ(x)

)
eiλµ

+(x) + 1
2

(
1− 1√

ρ(x)

)
eiλµ

−(x), 0 ≤ x ≤ a,

is the Jost solution of equation (1.1) when q(x) ≡ 0 and

µ±(x) = ±x
√
ρ(x) + a(1∓

√
ρ(x)).

Moreover, the kernel K(x, t) satisfies the estimate∫ +∞

µ+(x)
|K(x, t)| dt ≤ c

∫ +∞

x
t |q(t)| dt, 0 < c = const.

For real λ 6= 0, the functions f(x, λ), f(x, λ) form the fundamental system of
solutions of equation (1.1) and the Wronskian of this system is equal to 2iλ:

W
{
f(x, λ), f(x, λ)

}
= f ′(x, λ)f(x, λ)− f(x, λ)f ′(x, λ) = 2iλ.

By w(x, λ) we denote the solutions of equation (1.1) satisfying the initial data

w(0, λ) = α2 + λ2β2, w′(0, λ) = α1 + λ2β1

and define

ϕ(λ) ≡
[
α1f(0, λ)− α2f

′(0, λ)
]
− λ2

[
β1f(0, λ)− β2f

′(0, λ)
]
.

Using (1.4), it can be seen that ϕ(λ) may have only a finite number of zeros
in the half plane Imλ > 0. Moreover, all these zeros are simple and lie on the
imaginary axis. These assertions can be proved with the same method in Lemma
3.1.6 in [13] (see [9]).

2. The operator theoretic formulation of the boundary value
problem (1.1), (1.2)

In the Hilbert space Hρ ≡ L2 (0,∞; ρ(x)) × C, let us define an inner product
by

(F,G) :=

∫ ∞
0

F1(x)G1(x)ρ(x)dx+
1

γ
F2G2

for

F =

(
F1(x)

F2

)
, G =

(
G1(x)

G2

)
∈ Hρ.
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For convenience we put

F2 = β1F1(0)− β2F
′
1(0) ≡ R′0 [F1]

and define the operator L with

LF =

(
l (F1)

R0 (F1)

)
,

in the domain

D(L) =
{
F ∈ Hρ : F1(x), F ′1(x) ∈ AC [0, b] for every b, l (F1) ∈ L2 (0,+∞) ,

F2 = β1F1(0)− β2F
′
1(0) ≡ R0 (F1)

}
,

where

l (F1) =
1

ρ(x)

{
−F ′′1 + q(x)F1

}
.

We note that, the operator L is selfadjoint in the Hilbert space Hρ and the
boundary value problem (1.1), (1.2) is equivalent to the equation LF = λ2F.

3. Resolvent operator

If we assume that λ2 is not a spectrum point of the operator L we can easily

say that the resolvent operator Rλ2(L) =
(
L− λ2I

)−1
exists. Now, let us find

the expression of the operator Rλ2(L).

Theorem 3.1. All numbers of the form λ2 (Imλ > 0, ϕ (λ) 6= 0) belong to the
resolvent set of the operator L. The resolvent Rλ2 is the integral operator

Rλ2(L)F =

( (
G̃x,x, F̄

)
Hρ

R′0

[(
G̃x,λ, F̄

)
Hρ

]), F ∈ Hρ,

where

G̃x,λ :=

(
G (x, ·, λ)

R′0 [G (x, ·, λ)]

)
=

(
G (x, ·, λ)

− γ
ϕ(λ)f (x, λ)

)
,

G(x, y, λ) = − 1

ϕ (λ)

{
w(x, λ)f(y, λ), x ≤ y < +∞,
f(x, λ)w(y, λ), 0 ≤ y < x.

Proof. Assume that F =
(F1(x)
F2

)
∈ D(L) and F1(x) is zero in exterior of every

interval. To construct the resolvent operator of L we need to solve the boundary
problem

−y′′ + q(x)y = λ2ρ(x)y + ρ(x)F1(x), (3.1)

−
[
α1y(0)− α2y

′(0)
]

= λ2
[
β1y(0)− β2y

′(0)
]

+ F2. (3.2)

Let us find the solutions of the problem (3.1), (3.2) which have the form

y(x, λ) = c1(x, λ)w(x, λ) + c2(x, λ)f(x, λ) (3.3)

by noting that the functions w(x, λ) and f(x, λ) are the solutions of homogeneous
problem for Imλ > 0.
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By applying the method of variation of constants, we have the system of equa-
tions {

c′1(x, λ)w(x, λ) + c′2(x, λ)f(x, λ) = 0,
c′1(x, λ)w′(x, λ) + c′2(x, λ)f ′(x, λ) = −ρ(x)F1(x).

(3.4)

Since y(x, λ) ∈ L2,ρ(0,∞), then c1(∞, λ) = 0. Using this relation and the
system of equations (3.4) we get

c1(x, λ) = −
∫ ∞
x

f(t, λ)

ϕ(λ)
F1(t)ρ(t)dt,

c2(x, λ) = c2(0, λ)−
∫ x

0

w(t, λ)

ϕ(λ)
F1(t)ρ(t)dt. (3.5)

Taking into consideration (3.5) into (3.3) we obtain

y(x, λ) =

∫ ∞
0

G(x, t, λ)F1(t)ρ(t)dt+ c2(0, λ)f(x, λ),

where

G(x, t, λ) =
1

ϕ(λ)

{
w(x, λ)f(y, λ), x ≤ y < +∞,
f(x, λ)w(y, λ), 0 ≤ y < x.

Using formula (3.2) we have c2(0, λ) = F2
ϕ(λ) , thus

y(x, λ) =

∫ ∞
0

G(x, t, λ)F1(t)ρ(t)dt+
F2

ϕ(λ)
f(x, λ) =

(
G̃x,λ, F̄

)
Hρ
,

where

G̃x,λ =

(
G (x, ·, λ)

R′0 [G (x, ·, λ)]

)
.

Theorem is proved. �

Lemma 3.1. Let the function F1(x) is continuosly differentiable two times and
finite at infinity. Then as |λ| → ∞, Imλ > 0 the following equation holds:(
G̃, F̃

)
=

∫ ∞
0

G(x, t, λ)F1(t)ρ(t)dt+
F2

ϕ(λ)
f(x, λ) = −F1(x)

λ2
+O

(
1

λ2

)
. (3.6)

Proof. Using Theorem 1 and integrating by parts, we write∫ ∞
0

G(x, t, λ)F1(t)ρ(t)dt = −
∫ ∞
x

w(x, λ)f(t, λ)

ϕ(λ)
F1(t)ρ(t)dt−

−
∫ ∞
x

w(t, λ)f(x, λ)

ϕ(λ)
F1(t)ρ(t)dt =

=
1

λ2

∫ ∞
x

w(x, λ)

ϕ(λ)

{
f ′′(t, λ)− q(t)f(t, λ)

}
F1(t)dt+

+
1

λ2

∫ ∞
x

f(x, λ)

ϕ(λ)

{
w′′(t, λ)− q(t)w(t, λ)

}
F1(t)dt =

=
W {w(x, λ), f(x, λ)}

λ2ϕ(λ)
F1(x) +

+
1

λ2

[
w(0, λ)F ′1(0)− w′(0, λ)F1(0)

]
−

− 1

λ2

∫ ∞
0

G(x, t, λ)F̃1(t)dt,
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where

F̃1(t) = F ′′1 (t) + q(t)F1(t).

Thus (3.6) holds. Lemma is proved. �

4. Expansion formula

Put

F (x, λ) =


(
G̃x,λ, F̄

)
, Imλ ≥ 0,(

G̃x,λ̄, F̄
)
, Imλ < 0.

Let us ΓR denote the circle of radius R and center is zero which boundary con-
tour is positive oriented. Let us ΓR,ε denote boundary contour positive orinented
in plane D = {z : |z| ≤ R, Imz ≥ ε} and ΓR′,ε denote boundary contour negative
oriented in the plane D = {z : |z| ≤ R, Imz < ε} . Then we can use the property
of the integration ∫

ΓR,ε

=

∫
ΓR

+

∫
ΓR′,ε

. (4.1)

Now multiplying both sides of equality (3.6) by 1
2πiλ and integrating over λ

the contour ΓR,ε we obtain

1

2πi

∫
ΓR,ε

λF (x, λ)dλ = − 1

2πi

∫
ΓR

F1(x)

λ
dλ+

1

2πi

∫
ΓR′,ε

O

(
1

λ

)
dλ. (4.2)

According to the equation (4.1) we get

1

2πi

∫
ΓR,ε

λF (x, λ)dλ =
1

2πi

∫
ΓR

λF (x, λ)dλ+
1

2πi

∫
ΓR′,ε

λF (x, λ)dλ. (4.3)

Using (4.2) let us calculate the integral on the right hand side

1

2πi

∫
ΓR

λF (x, λ)dλ = − 1

2πi

∫
ΓR

F1(x)

λ
dλ+

1

2πi

∫
ΓR

O

(
1

λ

)
dλ→ −F1(x) (R→∞) ,

taking into account (4.3) we have

limε→0,R→∞
1

2πi

∫
ΓR,ε

λF (x, λ)dλ = −F1(x)

+
1

2πi

∫ +∞

−∞
λ [F (x, λ+ i0)− F (x, λ− i0)] dλ.

On the other hand using the residue calculus we get

1

2πi

∫
ΓR,ε

λF (x, λ)dλ =

n∑
j=1

Res
λ=iλj

[λF (x, λ)] +
n∑
j=1

Res
λ=−iλj

[λF (x, λ)] .

From the last two relations we get

F1(x) = −
n∑
j=1

Res
λ=iλj

[λF (x, λ)] +

n∑
j=1

Res
λ=−iλj

[λF (x, λ)] +

+
1

2πi

∫ +∞

−∞
λ [F (x, λ+ i0)− F (x, λ− i0)] dλ. (4.4)



280 KHANLAR R. MAMEDOV

Let ψ(x, λ) be the solution of (1.1) satisfying the initial conditions

ψ(0, λ) = β2, ψ′(0, λ) = β1.

It is clear that W {w(x, λ), ψ(x, λ)} = γ > 0. Then for Imλ > 0, f(x, λ) is
written as the linear combination of the solutions w(x, λ) and ψ(x, λ), i.e.

f(x, λ) = c1w(x, λ) + c2ψ(x, λ).

Since W {w(x, λ), ψ(x, λ)} = c1γ,W {w(x, λ), f(x, λ)} = c2γ

f(x, λ) =
β2f

′(0, λ)− β1f(0, λ)

γ
w(x, λ) +

ϕ(λ)

γ
ψ(x, λ).

Thus

G(x, t, λ) = −β2f
′(0, λ)− β1f(0, λ)

γϕ(λ)
w(x, λ)w(t, λ)−

− 1

γ

{
w(x, λ)ψ(t, λ), x ≤ t < +∞,
ψ(x, λ)w(t, λ), 0 ≤ t < x.

Then for Imλ > 0 we obtain

F (x, λ) = −β2f
′(0, λ)− β1f(0, λ)

γϕ(λ)
w(x, λ)

∫ ∞
0

w(t, λ)F1(t)ρ(t)dt+

+
ψ(x, λ)

γ

∫ x

0
w(t, λ)F1(t)ρ(t)dt+

1

γ
ψ(x, λ)

∫ x

0
ψ(t, λ)F1(t)ρ(t)dt+

+
F2

γϕ(λ)

[
β2f

′(0, λ)− β1f(0, λ)
]
w(x, λ)− F2

γ
ψ(x, λ). (4.5)

It follows that

Res
λ=iλj

[λF (x, λ)] = − iλj
ϕ′(iλj)

f(0, iλj)w(x, iλj)

∫ ∞
0

w(t, iλj)F1(t)ρ(t)dt+

+
F2iλj
γϕ′(iλj)

[
β2f

′(0, iλj)− β1f(0, iλj)
]
w(x, iλj).

With the help of equalities (1.5) and (1.8) we get

n∑
j=1

Res
λ=iλj

[λF (x, λ)] +

n∑
j=1

Res
λ=−iλj

[λF (x, λ)] =

− m2
jf (x, iλj)

∫ ∞
0

f (t, iλj)F1(t)ρ(t)dt+

+
1

γ

[
β2f

′(0, iλj)− β1f(0, iλj)
]
m2
jf (x, iλj)F2 =

= − (F,Uj (λ))Hρmjf (x, iλj) , (4.6)

where

F =

(
F1(x)

F2

)
, Uj (x) = mj

(
f (x, iλj)

β2f ′(0, iλj)− β1f(0, iλj)

)
, j = 1, · · · , n. (4.7)

Now let us calculate

1

2πi

∫ +∞

−∞
λ [F (x, λ+ i0)− F (x, λ− i0)] dλ.
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From formula (3.5) and equality F (x, λ− i0) = F (x, λ+ i0) we have

F (x, λ+ i0)− F (x, λ− i0) =[
β2f ′(0, λ)− β1f(0, λ)

γϕ(λ)
− β2f

′(0, λ)− β1f(0, λ)

γϕ(λ)

]
w(x, λ)

∫ ∞
0

w(t, λ)F1(t)ρ(t)dt+

+
F2

γ

[
β2f

′(0, λ)− β1f(0, λ)

γϕ(λ)
− β2f ′(0, λ)− β1f(0, λ)

γϕ(λ)

]
w(x, λ) =

=
1

γ

(α1β2 − β1α2)
[
f ′ (0, λ) f(0, λ)− f (0, λ) f ′(0, λ)

]
|ϕ(λ)|2

w(x, λ)×

×
∫ ∞

0
w(t, λ)F1(t)ρ(t)dt+

+
F2

γ

(α1β2 − β1α2)

|ϕ(λ)|2
[
f (0, λ) f ′(0, λ)− f ′ (0, λ) f(0, λ)

]
w(x, λ) =

=
2iλ

|ϕ(λ)|2
w(x, λ)

∫ ∞
0

w(t, λ)F1(t)ρ(t)dt− 2iλF2

|ϕ(λ)|2
w(x, λ).

It follows that

1

2πi

∫ +∞

−∞
λ [F (x, λ+ i0)− F (x, λ− i0)] dλ =

=
2

π

∫ ∞
0

λ2

|ϕ(λ)|2
w(x, λ)

∫ ∞
0

w(t, λ)F1(t)ρ(t)dtdλ−

−2F2

π

∫ ∞
0

λ

|ϕ(λ)|2
w(x, λ)dλ =

∫ ∞
0

T (F, λ)
1√
2π

[
f(x, λ)− S(λ)f(x, λ)

]
dλ,

(4.8)
where

T (F, λ) ≡ − 1√
2π

∫ ∞
0

2iλ

|ϕ(λ)|2
w(t, λ)F1(t)ρ(t)dt+ F2

2iλγ2

ϕ(λ)
.

Taking (4.6) and (4.8) into (4.4) we get the expansion formula with respect to
eigenfunctions as

F ≡
(
F1(x)

F2

)
=

n∑
j=1

(F,Uj (x))Hρ Uj (x) +

∫ ∞
0

T (F, λ)U(x, λ)dλ,

where

U(x, λ) ≡ 1√
2π

(
f(x, λ)− S(λ)f(x, λ)

− 2iλγ
ϕ(λ)

)
=

1√
2π

(2iλf(x,λ)
ϕ(λ)

− 2iλγ
ϕ(λ)

)
. (4.9)
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