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ON THE SPECTRUM OF A CLASS OF NON-SELF-ADJOINT

“WEIGHTED” OPERATOR WITH POINT δ-INTERACTIONS

MANAF DZH. MANAFOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. We obtain the spectrum structures of a non-self-adjoint op-
erator. Notice that the given “weig” is a sum of finite zero order gener-
alized functions.

1. Introduction, Definition Of The Operator

We use the following notation: C(n)(a, b) is a linear space of scalar complex-
valued functions which are n-times continuously differentiable on (a, b). Let
L2(a, b) be a linear space of scalar complex-valued functions on (a, b), which has

square summable modules W j
2 (a, b), j = 0, 1, 2, stands for the Sobolev space of

functions defined on (a, b) that belong to L2(a, b) together with their derivatives
up to order j, m be a fixed number in N, x0 = −∞, and xm+1 = +∞.

The paper is devoted to study of the spectral properties of ”weighted” one-
dimensional equation

`[y] ≡ − 1

ρ(x)

d

dx

(
ρ(x)

dy

dx

)
+ q(x)y = λ2y, (1.1)

in the space L2(R), where ”weighted” function is ρ(x) = 1 +
m∑
k=1

αkδ(x− xk) and

coefficient is

q(x) = xγ
∞∑
β=1

qβe
iβx,

where q =
∑∞

β=1 |qβ| converges (γ ≥ 0) .

In this formula, αk > 0, xk (x1 < x2 < ... < xm) (k = 1, 2, ...,m = 1,m) are
real numbers.

Notice that, the problems on the studies of one and multi-dimensional Schrödin-
ger operators with singular potentials (that is, e.g., point interactions, measures,
or distributions) have appeared in physical literature. Mathematical investiga-
tions of appropriate physical models were initiated at the beginning of the last
century in the papers [5, 20]. This theme intensively has developed in the last
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three decades (see [4, 9, 13, 14, 15, 18, 19]) and to the books [2, 3], where ad-
ditional references can be found. Spectral problems for singular potentials from
W−12 (R) were recently studied in the papers [10, 23], see also the bibliography

therein, where W−12 (R) is the set of integrals (that means interactions) which in
L2(R). The spectrum and Parseval formula are studied in the papers [16, 17] for
αk = 0, k = 1,m.

Here, the approach is based on the idea of approximation of the generalized
”weight” with smooth ”weight”s.

Consider the differential expression

`ε[y] ≡ − 1

ρε(x)

d

dx

(
ρε(x)

dy

dx

)
+ q(x)y,

where the density function

ρε(x) = 1 +
1

ε

m∑
k=1

αkχε(x− xk),

is defined using the characteristic function

χε(x) =

{
1, for x ∈ [0, ε],
0, for x /∈ [0, ε], ε < min

i=2,m
{xi − xi−1}.

The density function ρε(x) is chosen so that it converges to the ρ(x) as ε → 0+

(see [24]). Therefore, the approximation equation is of the form:

`ε[y] = λ2y. (1.2)

Agree that the solution of equation (1.2) is any function y(x) determined on
R for which the following conditions are fulfilled:

1) y(x) ∈ C2(xk, xk + ε) ∩ C2(xk + ε, xk+1) for k = 0,m;
2) −y′′(x)+q(x)y(x) = λ2y(x) for x ∈ (xk, xk+ε)∪(xk+ε, xk+1), k = 0,m;
3) y(x+k ) = y(x−k ), (1 + αk

1
ε )y′(x+k ) = y′(x−k ) for k = 1,m;

4) y((xk + ε)+) = y((xk + ε)−), y′((xk + ε)+) = (1 + αk
1
ε )y′((xk + ε)−) for

k = 1,m.
These conditions guarantee that the functions y(x) and ρε(x)y′(x) are contin-

uous at the points xk and xk + ε ( k = 1,m).
Define the operator Lε generated in the Hilbert space L2(R) by the differential

expression `ε[y]. The domain of definition of the operator Lε is the set of all
function belonging to L2(R) with satisfying conditions 1) - 4).

Let Rελ be resolvent of the operator Lε and Rλ be a resolvent of the operator
L0(αk ≡ 0, k = 1,m).

Now, define the operator according to the differential expression (1.1). Ob-
viously the extended operator is not uniquely defined. One such self-adjoint
operator can be constructed using the method of generalized point interactions
(see [3, 22]). Consider the Hilbert space H = L2(R)⊕ l2 and the non-self-adjoint
operator L defined by following formula

L

(
y

h

)
≡
(
− d2

dx2
y + q(x)y

{[y′] /
√
α}

)
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on functions (y, h) ∈ W 2
2 (R/{x1, x2, ..., xm}) ⊕ l2 satisfying the boundary condi-

tions

y
(
x+k
)

= y
(
x−k
)
,

hk = −
√
αk{y}k, k = 1,m ,

where {[y′] /
√
α} and {y} denote the vectors from l2 with the coordinates [y′

(
x+k
)
−

y′
(
x−k
)
]/
√
αk and y(xk), respectively. The resolvent of the operator L restricted

to the space L2 (R) coincides with the resolvent of differential operator L0 with
the boundary conditions at the points xk(

y
(
x+k
)

y′
(
x+k
)) ≡ ( 1 0

−αkλ2 1

)(
y
(
x−k
)

y′
(
x−k
)), k = 1,m.

This paper comprises three sections. In section 2 we prove that norm resolvent
convergent , as ε→ 0+. In section 3 the spectrum operator L is determined.

2. On Norm Resolvent Convergence

Let’s study the norm resolvent convergence of the operator sequence Lε with
respect to ε. One can easily prove that the resolvents of Lε do not converge to a
resolvent of any operator acting in the Hilbert space L2(R). The limit is called
generalized resolvent and it is restriction to L2(R) of the resolvent of a certain
self-adjoint operator acting in a certain extended Hilbert space [1]. Recently,
norm resolvent convergence was investigated with different conditions in [7, 8].

Theorem 2.1. Let αk > 0 (k = 1,m), then the resolvents of the operators Lε
converge to the restriction to L2(R) of the resolvent of L as ε→ 0+.

Proof. We construct the resolvent of the operator Lε for Imλ 6= 0. For that we
solve in L2(R) the problem

−y′′(x) + q(x)y(x) = λ2y(x) + F (x), x 6= xk, xk + ε
(
k = 1,m

)
,

y(x+k ) = y(x−k ), (1 + αk
1
ε )y′(x+k ) = y′(x−k ) (k = 1,m),

y((xk + ε)+) = y((xk + ε)−)
(
k = 1,m

)
,

y′((xk + ε)+) = (1 + αk
1
ε )y′((xk + ε)−)

(
k = 1,m

)
,

(2.1)

where F (x) is an arbitrary function belonging to L2(R).
It is well-known (see [16]) that the equation

−y′′(x) + q(x)y(x) = λ2y(x), x ∈ (−∞,∞),

has two linear independent solutions f(x, λ), f(x,−λ). Any solution of the
equation y(x, λ) has the following representation

y(x, λ) = C1f(x, λ) + C2f(x,−λ),

where C1, C2 are some numbers.
By the Lagrange method (see [21]) the solution of problem (2.1) takes the form

yε(x, λ) = − 1

W [ϕ1, ϕ2]

∞∫
−∞

R(x, t;λ)F (t)dt
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− 1

W [ϕ1, ϕ2]


bε2f(x,−λ), −∞ < x < x1,

bε4k−1f(x, λ) + bε4kf(x,−λ), xk < x < xk + ε
(
k = 1,m

)
,

bε4k+1f(x, λ) + bε4k+2f(x,−λ), xk + ε < x < xk+1

(
k = 1,m− 1

)
,

bε4m+1f(x, λ), xm < x <∞,
where

R(x, t;λ) =

{
f(x, λ)f(t,−λ), t ≤ x,
f(t, λ)f(x,−λ), t ≥ x,

and bεj (j = 2, 4m+ 1) are arbitrary numbers.
Denote

fk,± = f(xk,±λ), f ′k,± = f ′(xk,±λ), fk+ε,± = f(xk+ε,±λ), f ′k+ε,± = f ′(xk+ε,±λ);

R′h(F ) =


∞∫
−∞

R(xk, t;λ)F (t)dt, if h = 2k − 1,

∞∫
−∞

R(xk + ε, t;λ)F (t)dt, if h = 2k,

Ah =

{
−αk, h = 2k − 1,
αk, h = 2k,

(
k = 1,m

)
; Dε(λ) = det(M ε

4m(λ)), whereM ε
4m(λ) =

−f1,− f1,+ f1,− 0 0 · · ·
−f ′1,− (1 + α1

ε )f ′1,+ (1 + α1
ε )f1,− 0 0 · · ·

0 −f1+ε,+ −f1+ε,− f1+ε,+ f1+ε,− · · ·
0 −(1 + α1

ε )f ′1+ε,+ −(1 + α1
ε )f ′1+ε,− f ′1+ε,+ f ′1+ε,− · · ·

· · · · · · · · · · · · · · · · · ·
· · · −fm,+ −fm,− fm,+ fm,− 0
· · · −f ′m,+ −f ′m,− (1 + αm

ε )f ′m,+ (1 + αm
ε )f ′m,− 0

· · · 0 0 −fm+ε,+ −fm+ε,− fm+ε,+

· · · 0 0 −(1 + αm
ε )f ′m+ε,+ −(1 + αm

ε )f ′m+ε,− f ′m+ε,+


Then for defining the number bεj , from the conditions of problem (2.1) we get

the system

M ε
4m(λ)Bε =

1

ε
AR′,

where Bε = col(bε1, b
ε
2, ..., b

ε
4m), AR′ = col(0, A1R

′
1, 0, A2R

′
2, ..., 0, A2mR

′
2m).

Define the set Γ = {λ : Imλ 6= 0, Dε(λ) = 0} . For λ /∈ Γ we have

bεj =
1

εDε(λ)

2m∑
p=1

ApR
′
pM

ε
4m,2p,j(λ),

where M ε
4m,2p,j(λ) is an algebraic complement of the element mi,j of the matrix

M ε
4m(λ) = (mi,j)4m×4m. If we introduce the denotation

Xε
p (x, λ) =

A1M
ε
4m,2p,1 (λ) f (x,−λ) ,

Ak

[
Mε

4m,2p,4k−2 (λ) f (x, λ) +Mε
4m,2p,4k−1 (λ) f (x,−λ)

]
,

Ak

[
Mε

4m,2p,4k (λ) f (x, λ) +Mε
4m,2p,4k+1 (λ) f (x,−λ)

]
,

AmM
ε
4m,2p,4m (λ) f (x, λ) ,

x ∈ (−∞, x1) ,
x ∈ (xk, xk + ε)

(
n = 1,m

)
,

x ∈ (xk + ε, xk+1)
(
n = 1,m− 1

)
,

x ∈ (xm + ε,∞) ,
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for p = 1,m, then the solution of problem (2.1) takes the form

Rελ (F ) ≡ yε (x, y) =

− 1

W [ϕ1, ϕ2]

 ∞∫
−∞

R (x, t;λ)F (t) dt+
1

εDε (λ)

2m∑
p=1

Xε
p (x, λ)Rp (F )


≡ Rλ (F )− 1

W [ϕ1, ϕ2]
.

1

εDε (λ)

2m∑
p=1

Xε
p (x, λ)Rp (F ) , (2.2)

where

Xε
p (., λ) ∈ L2(R)

(
p = 1, 2m

)
, Imλ 6= 0, λ /∈ Γ.

As ε→ 0+ ; from expression (2.2) it follows that the resolvent Rελ of Lε converges
in the operator norm the resolvent of the operator L restricted to the subspace
L2(R) ⊂ H. �

3. Nature of The Spectrum of the Operator L

Now let’s cite a theorem on the spectrum of the operator L.

Theorem 3.1. Let all intensities of the δ- interactions be αk > 0, k = 1,m .Then
the spectrum of the operator L consists of the absolutely continuous part [0,+∞)
on the continuous spectrum there are spectral singularities at the points λ2n =(
n
2

)2
(n = 1, 2, 3...) of multiplicity mn+1, and has exactly m distinct eigenvalues

on the negative half-line, that are determined as roots of the equation εDε (λ) =
0 (ε→ 0+).

Proof. By the spectrum of the operator L0

(
αk ≡ 0, k = 1,m

)
is absolutely con-

tinuous and coincides with the set [0,+∞) on the continuous spectrum there

are spectral singularities at the points λ2n =
(
n
2

)2
(n = 1, 2, 3...) of multiplic-

ity mn + 1.Since the operator (Rελ − Rλ)(F ) (ε → 0+) is finite dimensional
according to the known results of [6, 11], the absolutely continuous part of the
spectrum of the operator L coincides with the absolutely continuous part of the
spectrum of the operator L0

(
αk ≡ 0, k = 1,m

)
, i.e. with [0,+∞). According

to [12], the spectrum of the operator L may differ from the spectrum of the
operator L0

(
αk ≡ 0, k = 1,m

)
unless by the finitely many negative eigenvalues.

Furthermore, the number of these eigenvalues exactly m. �

Example 3.1. Let q(x) ≡ 0, m = 1. Then the equation εDε (λ) = 0 is of the
form

ε

∣∣∣∣∣∣∣∣
−eλx1 e−λx1 eλx1 0
−λeλx1 −(1 + α1

ε )e−λx1 (1 + α1
ε )eλx1 0

0 −e−λ(x1+ε) −eλ(x1+ε) e−λ(x1+ε)

0 (1 + α1
ε )e−λ(x1+ε) −(1 + α1

ε )eλ(x1+ε) −λe−λ(x1+ε)

∣∣∣∣∣∣∣∣ = 0,

where λ2 < 0.
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Decomposing the determinant Dε (λ) into two rows, we obtain

−εeλx1
[
−λ2(2 + α1

ε )e−λx1 + λ2(1 + α1
ε )α1

ε e
−λ(x1+2ε) − α2

1
λ e
−λ(x1+2ε)

−(2 + α1
ε )(1 + α1

ε )λ2e−λx1

]
= 0.

Hence, we obtain that λ2 < 0 is the eigenvalue of the operator L(q(x) ≡ 0,
m = 1) if λ is the solution of the equation α2

1 e
−2λε = (2ε+ α1)

2.
As ε → 0+ , it follows that the operator L has exactly one eigenvalue in the

form

λ2 = − 4

α2
1

.
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