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Abstract. Let I := (a, b) be a finite or infinite interval. We assume
that p0(x), q0(x) and p1(x) are real-valued measurable functions on I,
p0, p

−1
0 , p21p

−1
0 and q20p

−1
0 are locally Lebesque-integrable, i.e. belong to

L1
loc(I), and w(x) is a positive function almost everywhere on I. Con-

sider the operators generated in L2
w(I) by the formal differential expres-

sion
l[f ] := w−1{−(p0f

′
)
′
+ i[(q0f)

′
+ q0f

′
] + p

′

1f},
where the derivatives are understood in the sense of distribution. The
method described in this paper gives the ability to correctly define the
minimal operator L0 generated by l[f ] in the space L2

w(I) and include it
in the class of operators generated by the second order symmetric (for-
mally self-adjoint) quasi-differential expressions with locally integrable
coefficients. Thus, the well-developed spectral theory of second order
quasi-differential operators is applied to the Sturm-Liouville operators
with distribution coefficients. The main goal of this work is to construct
the Titchmarsch-Weyl theory for such operators. The central problem
here is to find the conditions of the coefficients p0, q0 and p1 when the
limit-point or limit-circle cases can be realized. The obtained results are
applied to the Hamiltonian theory with δ-interactions, i.e. when

l[f ] = −f
′′

+
∑
j

hjδ(x− xj)f,

where hj is a strength of the interaction at the points xj , and to the
associated Jacobi matrices.

1. Introduction. Preliminaries

1. Let I := (a, b) ⊂ R ; p(x), q(x) and w(x) be real-valued functions such
that p(x) 6= 0, w(x) > 0 a.e. on I, p−1 (:= 1/p), q and w are locally Lebesque-
integrable (i.e. p−1, q, w ∈ L1loc(I)), and r(x) be a complex-valued function on
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I with r ∈ L1loc(I). We define the quasi-derivative f [1] of a locally absolutely

continuous complex-valued function f on I by f [1] := p(f
′− rf) and assume that

the function f [1] is also locally absolutely continuous. Thus, we can construct the
second quasi-derivative f [2] by f [2] := (f [1])

′
+rf [1]−qf and the quasi-differential

expression l[f ] by l[f ] := −w−1f [2]. Therefore,

l[f ](x) = w−1(x){ − [p(f
′ − rf)]

′ − rp(f ′ − rf) + qf}(x). (1.1)

The domain ∆ of the expression l[f ] is the set of all complex-valued functions f

such that f and f [1] are locally absolutely continuous on I and l[f ] (∈ L1loc(I)) is
represented by (1.1) for f ∈ ∆.

Following the terminology of the theory of linear quasi-differential equations
of arbitrary order, we also say that the quasi-derivatives f [0](:= f), f [1] and f [2]

are generated by the matrix

F =

(
r p−1

q −r

)
.

Let L2w(I) be a space of the equivalence classes of all complex-valued measur-
able functions f such that |f |2w is Lebesque-integrable on I. It is well known that
in the spectral theory of ordinary differential equations there is the procedure of
constructing the minimal and maximal operators (L0 and L1 respectively) gen-
erated by l[f ] in the Hilbert space L2w(I). Operators L0, L1 and the ones related
to them are called Sturm-Liouville operators. More information about them and
the terminology used in this paper can be found in the author’s recent article [9].

Recall that the expression l[f ] is said to be regular if the interval (a, b) is finite
and the elements of the matrix F and the function w are summable in the whole
[a, b]. Otherwise, the expression l[f ] is said to be singular. In particular, the left
end-point a of the interval (a, b) is regular if a > −∞ and if the elements of matrix
F and the function w are summable in every [a, β] ⊂ [a, b), β < b; otherwise
we say that the end-point a is singular. Similarly we define the regularity or
singularity for the right end-point b.

Let the end-point a be regular and the end-point b be singular points of the
interval I. Following H.Weyl, we define l[f ] to be of limit-point type at b if not
all solutions to l[y] = λy, λ ∈ C lie in L2w(I) and of limit - circle type otherwise.
In other words, the expression l[f ] is in the limit-point case at b if the deficiency
numbers - d+ and d− - of the operator L0 are equal to 1. If d+ = d− = 2, then
l[f ] is in the limit-circle case at b.

The following theorem holds.

Theorem 1.1. Let the end-point a be regular and the end-point b be singular
points of the interval I. The quasi-differential expression l[f ] is in the limit-point
case at b if and only if the condition

+∞∑
k=1

(∫ βk

αk

w(x)dx

∫ x

αk

|K(x, t)|2w(t)dt

)1/2

=∞ (1.2)

be fulfilled for some sequence of disjoint intervals (αk, βk) ⊂ (a, b), k = 1, 2, . . .,
where K(x, t) is the Cauchy function of the equation l[f ] = 0, i.e. is the solution
of this equation with respect to x satisfying the initial conditions K(x, t)|x=t = 0,

K [1](x, t)|x=t = 1.
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We note here that Theorem 1.1 is a special case of Theorem 1 in the author’s
paper [8]. Theorem 1 was formulated there for arbitrary quasi-differential oper-
ators of arbitrary order and spaces Lpw(I).

The problem of finding additional conditions on the functions p, q, r and w,
which would guarantee the limit-point case for the differential expressions has
been studied by many mathematicians over the last 100 years, and several such
conditions have already been found. Theorem 1.1 has been formulated and proven
in [9] (see [9], Theorem 4) and it was shown there that this theorem really allows
to obtain the most of known and some of new sufficient conditions for the limit-
point case (see [9], Theorem 8).

In this work, as a corollary of Theorem 1.1, we present another sufficient con-
dition for the limit-point case (Theorem 2.1).

2. Let p0, q0 and p1 be real-valued Lebesgue-measurable functions such that
p−10 , p21p

−1
0 , q20p

−1
0 are locally Lebesgue-integrable (i.e. p−10 , p21p

−1
0 , q20p

−1
0 ∈ L1loc(I)).

Let ϕ := p1 + iq0. Consider the matrix

F =
1

p0

(
ϕ 1
−|ϕ|2 −ϕ

)
.

Using matrix F , we define the quasi-derivatives f [0], f [1], f [2], as follows (similar
to Section 1)

f [0] = f, f [1] = p0f
′ − ϕf, f [2] = (f [1])

′
+
ϕ

p0
f [1] +

|ϕ|2

p0
f.

Assume further that p0 also belongs to L1loc(I), it is easy to see that ϕ ∈ L1loc(I).

It is possible to conclude from these assumptions that if
′

is a distributional
derivative then we can remove all parentheses in f [2] and this expression can be
rewritten as follows

f [2] = (p0f
′
)
′ − i((q0f)

′
+ q0f

′
)− p′1f.

It is necessary to emphasize that monomials (p0f
′
)
′
, (q0f)

′
and p

′
1f are singular

generalized functions. The first two of them are the distributional derivatives of
regular generalized functions, while q0f

′
and f [2] are regular generalized functions.

Thus, the expression l[f ] (see (1.1)) can be formally rewritten in terms of
generalized functions

l[f ] = w−1{−(p0f
′
)
′
+ i((q0f)

′
+ q0f

′
) + p

′
1f}. (1.3)

In particular, if w(x) = 1, p0(x) = 1, q0(x) = 0, p1(x) = σ(x), where σ2(x) ∈
L1loc(I), then the quasi-differential expression l[f ] has the form

l[f ] = −f ′′
+ σ

′
f. (1.4)

Let I = [0,+∞), xn (n = 1, 2, . . .) be an increasing sequence of positive num-
bers, x0 = 0 and lim

n→+∞
xn = +∞. If, in addition, the function σ(x) is a step

function with jumps hj ∈ R at the points xj ∈ I then

l[f ] = −f ′′
+

+∞∑
j=1

hjδ(x− xj)f, (1.5)

where δ(x) is the Dirac δ-function.



NEW LIMIT-POINT CRITERIA . . . 293

Thus, the Hamiltonian theory with δ-interactions, i.e. the theory of operators
generated by the expressions (1.5), is included in the theory of operators generated
by the quasi-differential expressions of second order. In particular, there is Weyl’s
limit-point/limit-circle dichotomy for the corresponding expressions.

The following theorem holds.

Theorem 1.2. The expression l[f ] (see (1.5)) is in the limit-circle case if and
only if all solutions of the equation

Zk+1

rk+1rk+2dk+1
− 1

r2k+1

(
hk +

1

dk
+

1

dk+1

)
Zk +

Zk−1
rkrk+1dk

= 0, k = 1, 2, . . . ,

belong to the space l2, where dk = xk − xk−1, rk+1 =
√
dk + dk+1.

The authorship of this theorem is assigned to M.M. Malamud and A.S. Kostenko
(see [4], [5] and also [9]).

3. In accordance with the Theorem 1.2, we will need the following facts about
the theory of operators generated by the second order difference expressions in the
Hilbert space l2, where l2 is the space of all sequences of vectors u = (u0, u1, . . .),
uj ∈ C with the standard scalar product (see, e.g. [1]).

Let aj and bj be sequences of real numbers, bj 6= 0 for j = 0, 1, . . .. Consider
the Jacobi matrix

J =


a0 b0 0 0 . . .
b0 a1 b1 0 . . .
0 b1 a2 b2 . . .
...

...
...

...
. . .


and the second order difference expression generated by the matrix J

(lu)j = bjuj+1 + ajuj + bj−1uj−1, j = 0, 1, . . . ,

where u−1 = 0. In the standard way we define the minimal closed symmetric
operator L0 with an everywhere dense domain. The deficiency index of L0 is (0, 0)
or (1, 1). Following the terminology of the classical moment problem, we say that
there is the definite case for the operator L0 if deficiency index is (0, 0) and there
is the indefinite case for L0 otherwise. Moreover these two cases correspond to
the limit-point and the limit-circle cases for the Sturm-Liouville operators.

Theorem 1.2 shows that the deficiency number of the operator L0 generated
by (1.5) in the Hilbert space L2(0,+∞) is equal to 2 if and only if there is
the indefinite case for the Jacobi matrix J , where a0, b0 6= 0 are arbitrary real
numbers and

aj = − 1

r2j+1

[
hj +

1

dj
+

1

dj+1

]
, bj =

1

rj+1rj+2dj+1
, j = 1, 2, . . . . (1.6)

In [6], the analogue of Theorem 1.1 for the operators generated by the Jacobi
matrices J is proved, namely,

Theorem 1.3. For the realization of the indefinite case for l, it is necessary and
sufficient that for any sequence of intervals of positive integers [nk,mk] such that
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mk ≤ nk+1 ≤ mk+1 (k = 1, 2, . . .) the following condition be satisfied

+∞∑
k=1

 mk∑
i=nk

i∑
j=nk

|Kij |2
1/2

< +∞, (1.7)

where Kij is the Cauchy function of the operation l, i.e. it is the solution of

difference equation (lu)j = 0 with initial conditions Kjj = 0, Kj+1,j = b−1j .

2. Sufficient conditions for the limit point case

1. Further, we always assume that I = [0,+∞) and the functions p(x), q(x),
r(x), w(x) satisfy the conditions in section 1 §1 on I (or the functions p0(x), q0(x)
and p1(x) satisfy the conditions in section 2 § 1). Let (αk, βk) ⊂ I, k = 1, 2, . . .
be a sequence of disjoint intervals and K(x, t) be the Cauchy function of the
equation l[f ] = 0. We note here that the function K(x, t) is uniquely determined
by the coefficients of l in the triangle {(x, t)|αk < t ≤ x < βk} for fixed k .
Thus, if the condition (1.2) is fulfilled then independently of the values of these
functions outside the set

⋃+∞
k=1[αk, βk] the expression l is in the limit-point case

at infinity. This fact we will use later.
The following lemma is valid.

Lemma 2.1. Let a, b and c be positive numbers with a < c < b, h be any real
number and K(x, t) be the Cauchy function of the quasi-differential equation

−y′′
+ hδ(x− c)y = 0. (2.1)

Then the inequality∫ b

a
dx

∫ x

a
K2(x, t)dt ≥ 1

3
√

3
(ρs)2(ρ+ s)

∣∣∣∣h+
3

2

(
1

ρ
+

1

s

)∣∣∣∣ ,
is true, where ρ = c− a and s = b− c.

Proof. In the definition of the quasi-differential expression l[f ] (1.4), assume

σ(x) =

{
0, if a ≤ x < c,
h, if c ≤ x ≤ b.

Then the equation l[f ] = 0 takes the form of (2.1). Let t ∈ [a, b] be fixed. We
calculate now the Cauchy function K(x, t) using its definition. This function
satisfies the equation (2.1) for x > t and the initial conditions K(x, t)|x=t = 0

and K [1](x, t)|x=t = 1. It is easy to show that if t ∈ [a, c], x ≥ t, x ≤ c or t ∈ [c, b],
x ≥ t, c ≤ x ≤ b then K(x, t) = x− t.

Now let t ∈ (a, c) and x ∈ (c, b). Then K(x, t) = c1(t)+c2(t)x and consequently

K(c+ 0, t) = c1(t) + c2(t)c,

K [1](c+ 0, t) = lim
x→c+0

[K
′
(x, t)− hK(x, t)] = c2(t)− h(c1(t) + c2(t)c).

On the other hand,

K(c− 0, t) = c− t, K [1](c− 0, t) = 1.
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Using the continuity of K(x, t) and K [1](x, t) at the point x = c, we obtain{
c1(t) + c2(t)c = c− t,
c2(t)− h(c1(t) + c2(t)c) = 1

and hence, c1(t) = −t− h(c− t)c c2(t) = 1 + h(c− t).
Thus,

K(x, t) =

 x− t, if t ∈ [a, c] and x ∈ [t, c],
x− t+ h(c− t)(x− c), if t ∈ [a, c] and x ∈ [c, b],
x− t, if t ∈ [c, b] and x ∈ [t, b].

From this formula it follows that

J :=

∫ b

a
dx

∫ x

a
K2(x, t)dt =: J1 + 2hJ2 + h2J3,

where

J1 :=

∫ b

a
dx

∫ x

a
(x− t)2dt, J2 :=

∫ b

c
dx

∫ c

a
(x− t)(x− c)(c− t)dt,

J3 :=

∫ b

c
dx

∫ c

a
(x− c)2(c− t2)dt.

Calculations show that

J1 =
1

12
(b− a)4, J2 =

1

6
(b− c)2(c− a)2(b− a), J3 =

1

9
(b− c)3(c− a)3.

Thus,

J =
h2

9
(ρs)3 +

h

3
ρ2s2(ρ+ s) +

1

12
(ρ+ s)4.

We rewrite now the integral J in the form

J = (ρs)3

[[
h

3
+

1

2

(
1

ρ
+

1

s

)]2
+

(
1

ρ
+

1

s

)2
[

1

12
ρs

(
1

ρ
+

1

s

)2

− 1

4

]]
and note that

1

12
ρs

(
1

ρ
+

1

s

)2

− 1

4
≥ 1

12
.

Therefore, we obtain

J ≥ (ρs)3

[[
h

3
+

1

2

(
1

ρ
+

1

s

)]2
+

1

12

(
1

ρ
+

1

s

)2
]
.

Applying the inequality of arithmetic and geometric means once again, we con-
clude that Lemma 2.1 holds.

Using this lemma, we prove the following theorem.

Theorem 2.1. Let (αk, βk) ⊂ [0,+∞) (k = 1, 2, . . .) be a sequence of pairwise
disjoint intervals, γk be a sequence of positive numbers such that αk < γk < βk
and the equalities w(x) = p(x) = 1, r(x) = σ(x), q(x) = σ2(x) be fulfilled on
every fixed interval [αk, βk], where σ(x) is a piecewise continuous function with a
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single jump hk at the point γk. Further, let the numbers ρk = γk−αk, sk = βk−γk
and hk be such that

+∞∑
k=1

ρksk
√
ρk + sk

√∣∣∣∣hk +
3

2

(
1

ρk
+

1

sk

)∣∣∣∣ = +∞. (2.2)

Then the operator L0 is of limit-point type.

Proof. Apply Lemma 2.1 with a = αk, c = γk, b = βk. Then we have∫ βk

αk

dx

∫ x

αk

K2(x, t)dt ≥ 1

3
√

3
(ρksk)

2(ρk + sk)

∣∣∣∣hk +
3

2

(
1

ρk
+

1

sk

)∣∣∣∣
for k = 1, 2, . . ..
Taking the square root of both sides of this inequality and summing over k, we
obtain

+∞∑
k=1

(∫ βk

αk

dx

∫ x

αk

K2(x, t)dt

)1/2

≥

3−3/4
+∞∑
k=1

ρksk
√

(ρk + sk)

√∣∣∣∣hk +
3

2

(
1

ρk
+

1

sk

)∣∣∣∣.
Using now the condition (2.2) and applying Theorem 1.1 we completely prove
Theorem 2.1.

2. Some corollaries of Theorem 2.1.
If we assume that the points γk are the mid-points of the intervals [αk, βk]

(k = 1, 2, . . .) then sk = ρk and, of course, we can simplify the condition of
Theorem 2.1 Thus, the following corollary of Theorem 2.1 is true.

Corollary 2.1. Let the conditions of Theorem 2.1 be fulfilled and in addition
γk = αk+βk

2 . Then the operator L0 is of limit-point type if

+∞∑
k=1

ρ
5/2
k

√∣∣∣∣hk +
6

ρk

∣∣∣∣ = +∞,

where ρk = βk − αk.

Let the differential expression l be in the form of (1.5). Choose xk as the

points γk, [xk − dk
2 , xk +

dk+1

2 ] as the intervals [αk, βk], where dk = xk − xk−1
(k = 1, 2, . . .) and apply Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let the differential expression l[f ] be as in (1.5) and

+∞∑
k=1

dkdk+1rk+1

√∣∣∣∣hk +
3

2

(
1

dk
+

1

dk+1

)∣∣∣∣ = +∞,

where rk+1 =
√
dk + dk+1. Then the operator L0 is of limit-point type.

Using Theorem 1.2, we also note that if the condition of Corollary 2.2 is ful-
filled, then there is the definite case for the Jacobi matrix J with the elements
(1.6).

3. In sections 1,2 of this paragraph we have shown the way to use Theorem 1.1
to obtain the limit-point criteria for Sturm-Liouville operators generated by the
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expressions (1.1), (1.3) or (1.5). Some of these criteria, as we have already noted
above, are the definite case criteria for the Jacobi matrix J with the elements
(1.6). In this section, using Theorem 1.3, we obtain the definite case criteria for
the Jacobi matrices J with the elements (1.6). We also note that according to
Theorem 1.2, these criteria will be at the same time the limit-points criteria for
Sturm-Liouville operators generated by (1.5).

The following theorem holds.

Theorem 2.2. Let dj and hj (j = 1, 2, . . .) be number sequences such that

+∞∑
j=1

d
3/2
j dj+1

√∣∣∣∣hj +
1

dj
+

1

dj+1

∣∣∣∣ = +∞. (2.3)

Then the Jacobi matrix J with the elements (1.6) is in the definite case.

Proof. Consider two series S1 and S2 of the form (1.7), taking the sequence of
intervals [nk,mk] with the end-points nk = 2k, mk = 2k + 2 in the first case and
with the end-points nk = 2k + 1, mk = 2k + 3 in the second one.

In the first case we have2k+2∑
i=2k

i∑
j=2k

|Kij |2
1/2

≥
√

2|K2k+1,2kK2k+2,2k|1/2.

Consequently,

S1 ≥
√

2

+∞∑
k=0

|K2k+1,2kK2k+2,2k|1/2.

Similarly we obtain

S2 ≥
√

2
+∞∑
k=0

|K2k+2,2k+1K2k+3,2k+1|1/2.

Adding together the obtained inequalities, we have

S1 + S2 ≥
√

2
+∞∑
j=1

|Kj,j−1Kj+1,j−1|1/2.

On the other hand, according to the definition of Cauchy sequence Kij , it is

known that Kjj = 0, Kj+1,j = b−1j . Moreover using the difference equation for

Kij , we obtain Kj+2,j = −b−1j+1b
−1
j aj+1. Consequently,

|Kj,j−1Kj+1,j−1| = b−1j−1

√
b−1j |aj | ≥ d

3/2
j dj+1

√∣∣∣∣hj +
1

dj
+

1

dj+1

∣∣∣∣.
Thus, from the conditions of Theorem 2.1 it follows that the series S1 + S2 is
divergent. Hence, either S1 or S2 is divergent. Applying now Theorem 1.3, we
complete the proof of Theorem 2.2.

We also note (in more details see [6]) that, using the ideas of the proof of
Theorem 2.2 and Theorem 1.3, we can obtain other sufficient conditions for the
definite case for the matrix J by choosing other sequences of intervals [nk,mk].
However, we have only restricted ourselves here to the above theorem.
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3. Conclusion. Examples

In Theorem 8 of [9], it is assumed that the quasi-differential expression l has
the form (1.4) on the sequence of disjoint intervals (αk, βk) (k = 1, 2, . . .), where
the function σ(x) is absolutely continuous on every [αk, βk] and satisfies some
additional conditions which guarantee that (1.1) or (1.3) are in the limit-point
case. More exactly, we assume in this theorem, in particular, that the expression
l is a regular differential expression on [αk, βk], and the coefficients in (1.3) can
be singular generalized functions only outside these intervals. In Theorem 2.1 of
the present work we considers, for the first time, the case when the coefficients
are the singular generalized functions on the intervals [αk, βk].

In [2], C.S. Christ and G. Stolz proved that if dj = 1
j and hj = −2j − 1

(j = 1, 2, . . .) then there is the limit-circle case for l in (1.5). They were probably
the first to show that it is possible for such expression. Later, A.S. Kostenko
and M.M. Malamud (see [4], [5]) and N.N. Konechnaya (see [3]) constructed
numerous examples of the limit-point or limit-circle cases for (1.5). In particular,
using Theorem 1 of [7], the following theorem was proved in [5].

Theorem 3.1. Let dj = xj − xj−1 (j = 1, 2, . . .) be sequence such that

dj−1dj+1 ≥ d2j ,
+∞∑
j=1

d2j <∞,
+∞∑
j=1

dj+1|hj +
1

dj
+

1

dj+1
| <∞.

Then the expression l in (1.5) is in the limit-circle case.

Theorem 3.1 shows that if the condition (2.3) of Theorem 2.2 is not satisfied,
then the limit-circle case for (1.5) is also possible.

Now consider the Jacobi matrix J with the elements aj , bj (j = 0, 1, . . .) defined
by (1.6), and assume that hj = − 1

dj
− 1

dj+1
. Using Theorem 1 of [6], it is easy to

obtain that there is the indefinite case for this matrix if the series

+∞∑
j=1


(
r2j+1

j∏
k=1

d2k
d2k−1

)2

+

(
r2j+2

j∏
k=1

d2k+1

d2k

)2
 (3.1)

is convergent. On the other hand, it is easy to prove that if this series is divergent,
then there is the definite case for the matrix J . So we have established the
following generalization of the Christ-Stolz example.

Let the elements of the matrix J be defined by the formulas (1.6) and hj =
− 1
dj
− 1

dj+1
. Then there is the indefinite case for this matrix if and only if the

series (3.1) is convergent.

Now let hj = −3
2

(
1
dj

+ 1
dj+1

)
. Then the series in Corollary 2.2 is convergent

and therefore this corollary is not applicable. In this case, the elements bj of the
matrix J are the same as in (1.6) and the elements aj are defined by the formula

aj = 1
2r2j+1

[
1
dj

+ 1
dj+1

]
. Now we apply again Theorem 1 of [6] and obtain that if

the series (3.1) and

+∞∑
j=1


(

j∏
k=1

d2k
d2k−1

)2(
1

d2j
+

1

d2j+1

)
+

(
j∏

k=1

d2k+1

d2k

)2(
1

d2j+1
+

1

d2j+2

)
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are convergent then there is the indefinite case for the matrix J . On the other
hand, the numbers dj can be chosen in such a way that

∑+∞
j=1 d

2
j = ∞. Then,

according to Carleman theorem, the matrix J is in the definite case. Thus,

if hj = −3
2

(
1
dj

+ 1
dj+1

)
then both are possible, namely, the definite and the

indefinite cases for the matrix J .
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