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Abstract. In the paper a generalization of one M. G. Gasymov theorem
on solvability of a boundary value problem for a class of second order
operator-differential equations of elliptic type is established. Therewith,
the exact value of the norm of the intermediate derivative operator is
found and its relation with solvability conditions is shown.

1. Introduction

In the separable Hilbert space H consider the boundary value problem

P (d/dt)u(t) = (d/dt−ω1A)(d/dt−ω2A)u(t)+A1
du(t)

dt
= f(t), t ∈ R+ = (0,+∞),

(1.1)

u(0) = 0, (1.2)

where the derivatives are understood in the sense of distributions theory [4], and
the operator coefficients satisfy the conditions:

1. A is a positive-definite self-adjoint operator (A = A∗ ≥ cE, c > 0, E - is a
unit operator) with domain of definition D (A);

2. ω1, ω2 are complex numbers, Reω1 < 0, Reω2 > 0;
3. the operator B1 = A1A

−1 is bounded in H.
As is known, the domain of definition of the operator Aγ (γ ≥ 0) becomes a

Hilbert space Hγ with respect to the scalar product (x, y)γ = (Aγx,Aγy), x, y ∈
D (Aγ). For γ = 0 we assume H0 = H.

Denote by L2(R+;H) Hilbert space of all functions f(t) determined in R+ =
(0, ∞) almost everywhere, with the values in H, with the norm

‖f‖L2(R+;H) =

(∫ +∞

0
‖f(t)‖2 dt

)1/2

.
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Following the monograph [4], introduce the Hilbert space

W 2
2 (R+;H) =

{
u : u′′ ∈ L2(R+;H) , A2u ∈ L2(R+;H)

}
with the norm

‖u‖W 2
2 (R+;H) =

(∥∥u′′∥∥2
L2(R+;H)

+
∥∥A2u

∥∥2
L2(R+;H)

)1/2
.

The spaces L2(R;H) and W 2
2 (R;H) are determined in the similar way for

R = (−∞, ∞).
From the theorem on traces [4] it follows that the following linear sets are

complete subspaces of the space W 2
2 (R+;H) :

W 2
2 (R+;H; 0, 1) =

{
u : u ∈W 2

2 (R+;H), u(0) = u′(0) = 0
}
,

W 2
2 (R+;H; 0) =

{
u : u ∈W 2

2 (R+;H), u(0) = 0
}
.

Definition. Problem (1.1), (1.2) is said to be regularly solvable if for any func-
tion f(t) ∈ L2(R+;H) there exists the function u(t) ∈ W 2

2 (R+;H) that satisfies
equation (1.1) almost everywhere in R+, boundary condition (1.2) in the sense
of convergence lim

t→+0
‖u(t)‖3/2 = 0 and it holds the estimation

‖u‖W 2
2 (R+;H) ≤ const ‖f‖L2(R+;H) .

In the present paper we show sufficient conditions for regular solvability of
problem (1.1), (1.2), expressed by its coefficients.

For the first time, the regular solvability of boundary value problem (1.1),
(1.2) when ω1 = −1, ω2 = 1 was investigated in the papers of M. G. Gasymov
[1, 2] in connection with completeness of a part of eigen and associated vectors
of the bundle P (λ). Further this result was generalized in the paper [3], when
the boundary condition contains some linear operator. For Imω1 = Imω2 = 0
problem (1.1), (1.2) was studied in the paper [9]. Note that in the papers [5, 11]
higher order boundary value problems were investigated.

Following the papers [3, 6-10], for obtaining solvability conditions we’ll find
the exact value of the norm of the intermediate derivative operator in the space
W 2

2 (R+;H; 0) and connect it with the regular solvability condition.

2. Main results

At first we consider the boundary value problem

P0 (d/dt)u (t) = (d/dt− ω1A) (d/dt− ω2A)u (t) = f(t), t ∈ R+,

u(0) = 0.

Denote by P0 an operator acting from the space W 2
2 (R+;H; 0) to L2(R+;H)

in the following way:

P0u = P0 (d/dt)u, u ∈W 2
2 (R+;H; 0).

Using the intermediate derivatives theorem [4], we get

‖P0u‖2L2(R+;H) ≤

2
(∥∥u′′∥∥2

L2(R+;H)
+ |ω1 + ω2|2

∥∥Au′∥∥2
L2(R+;H)

+ |ω1ω2|2
∥∥A2u

∥∥2
L2(R+;H)

)
≤
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const ‖u‖2W 2
2 (R+;H) ,

i.e. P0 is a bounded operator.
The following theorem is valid.

Theorem 1. The operator P0 realizes isomorphism from the space W 2
2 (R+;H; 0)

onto L2(R+;H).
Proof. Since P0 is a bounded operator, it suffices to show that KerP0 = {0},
JmP0 = L2(R+;H). Since the homogeneous equation P0 (d/dt)u (t) = 0 has a
general solution from the space W 2

2 (R+;H) in the form u0 (t) = eω1tAx, x ∈ H3/2,
then from the condition u(0) = 0 it follows that u0(t) = 0. Further, it is easy to
see that the general solution of the equation P0 (d/dt)u (t) = f(t) is represented
in the form u (t) = α (t) + eω1tAx, where x ∈ H3/2 is an unknown vector, and

α(t) =
1

2π

∫ +∞

−∞
P−10 (iζ, A)

(∫ +∞

0
f(s)e−iζsds

)
eiζtdζ, t ∈ R+,

where
P−10 (iζ, A) = (iζ − ω2A)−1 (iζ − ω1A)−1 , ζ ∈ R.

Belonging of α(t) to the space W 2
2 (R+;H) follows from the Parseval theorem

for the Fourier integrals. From the theorem on traces [4] it follows that α (0) ∈
H3/2. Then the condition u(0) = 0 yields u (t) = α (t) − eω1tAα (0). Thus,

u ∈W 2
2 (R+;H; 0) and P0u = f . The theorem is proved.

Now prove a conditional theorem on regular solvability of problem (1.1), (1.2).
Theorem 2. Let ‖B1‖ ≤ N−11 (0), where

N1 (0) = sup
0 6=u ∈W 2

2 (R+;H;0)

∥∥Au′∥∥
L2(R+;H)

‖P0u‖−1L2(R+;H) .

Then boundary value problem (1.1), (1.2) is regularly solvable.
Proof. The finiteness of the norm N1 (0) follows from theorem 1 and from the
intermediate derivatives theorem [4]. Write problem (1.1), (1.2) in the form of the
operator equation P0u + P1u = f , where u ∈ W 2

2 (R+;H; 0), f(t) ∈ L2(R+;H),
and the operator P1u = A1u

′ whose boundedness follows from condition 3) and
theorem 1. By theorem 1 P−10 is an isomorphism. Then after substitution of

u = P−10 ϑ we get the solution of the equation
(
E + P1P

−1
0

)
ϑ = f in the space

L2(R+;H). On the other hand, for any ϑ(t) ∈ L2(R+;H) the following inequali-
ties hold:∥∥P1P

−1
0 ϑ

∥∥
L2(R+;H)

= ‖P1u‖L2(R+;H) ≤ ‖B1 ‖
∥∥Au′∥∥

L2(R+;H)
≤

‖B1 ‖N1 (0) ‖P0u‖L2(R+;H) = ‖B1 ‖N1 (0) ‖ϑ‖L2(R+;H) .

Since ‖B1 ‖N1 (0) < 1, then the operator E + P1P
−1
0 is inversible in L2(R+;H),

u = P−10

(
E + P1P

−1
0

)−1
f and

‖u‖W 2
2 (R+;H) ≤ const ‖f‖L2(R+;H) .

The theorem is proved.
From this theorem it follows that for finding the exact solvability conditions

of boundary value problem (1.1), (1.2), it is necessary to find the norm N1 (0).
At first we find the norm

sup
06=u ∈W 2

2 (R+;H;0,1)

∥∥Au′∥∥
L2(R+;H)

‖P0u‖−1L2(R+;H) .
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To this end, we consider a polynomial operator bundle of fourth order, depen-
dent on a real parameter β ∈ R:

Φ (λ;β;A) = P0 (λ;A)P ∗0
(
−λ̄;A

)
+ βλ2A2,

where

P0 (λ;A) = (λE − ω1A) (λE − ω2A) .

It holds
Lemma 1. Let β ∈

[
0, d−2

)
, where

d = sup
ζ∈R

∣∣ζP−10 (iζ, 1)
∣∣ , P0 (iζ, 1) = (iζ − ω1) (iζ − ω2) .

Then the operator bundle Φ (λ;β;A) is represented in the form

Φ (λ;β;A) = F (λ;β;A)F ∗
(
−λ̄;β;A

)
, (2.1)

and

F (λ;β;A) = (λE − η1 (β)A) (λE − η2 (β)A) = λ2E + α1 (β)λA+ α0 (β)A2.
(2.2)

Proof. Let µ ∈ σ (A) , λ = iζ, ζ ∈ R. Then

Φ (λ;β;µ) = P0 (iζ;µ)P0

(
−iζ;µ

)
− βζ2µ2 = |P0 (iζ;µ)|2 − βζ2µ2

≥ |P0 (iζ;µ)|2
(

1− β sup
ζ∈R

ζ2µ2 |P0 (iζ, µ)|−2
)

= |P0 (iζ;µ)|2
(
1− βd2

)
> 0.

Consequently, Φ (λ;β;A) has no toots on the imaginary axis, and it follows from

the equality Φ (λ;β;A) = Φ
(
−λ̄;β;A

)
= 0 that its two roots lie in the left

half-plane, two roots η1 (β)µ and η2 (β)µ lie in the right half-plane −η1 (β)µ

and −η2 (β)µ. Then denote F (λ;β;µ) = (λ− η1 (β)µ) (λ− η2 (β)µ), where

Reη1 (β) < 0, Reη2 (β) < 0. We get Φ (λ;β;µ) = F (λ;β;µ)F
(
−λ;β;µ

)
. Fur-

ther, using the spectral expansion of the operator A, hence we get the validity of
equality (2.1). The lemma is proved.
Remark. Obviously, there exists a point ζ0 such that d =

∣∣ζ0P−10 (iζ0, 1)
∣∣.

Denote

p = − (ω1 + ω2) , q = ω1ω2.

It holds
Corollary 1. The coefficients of the quadratic bundle F (λ;β;A) satisfy the
following relations:

1) Reα1 (β) > 0; 2) Imα1 (β) = Imp; 3) 2Reα0 (β)−|α1 (β)|2 = 2Req−|p|2+β;

4) Impq̄ = Imα1 (β)α0 (β); 5) |α0 (β)| = |q| .
Indeed, Reα1 (β) = −Reη1 (β)−Reη2 (β) > 0. The relations 2)-5) are obtained

from equality (2.1) with regard to (2.2) by associating the same coefficients λ.
Lemma 2. Let β ∈

[
0, d−2

)
. Then for any u ∈ W 2

2 (R+;H; 0) it holds the
equality

‖P0u‖2L2(R+;H) − β
∥∥Au′∥∥2

L2(R+;H)
= Re (α1 (β)− p) + ‖F (d/dt;β;A)u‖2L2(R+;H) .

(2.3)



304 SABIR S. MIRZOEV

Proof. For β ∈
[
0, d−2

)
and u ∈W 2

2 (R+;H; 0) we have:

‖P0u‖2L2(R+;H) =
∥∥u′′ + pAu′ + qA2u

∥∥2
L2(R+;H)

= ‖u′′‖2L2(R+;H) +

|p|2 ‖Au′‖2L2(R+;H) + |q|2
∥∥A2u

∥∥2
L2(R+;H)

+ 2Re (u′′, pAu′)L2(R+;H) +

2Re
(
u′′, qA2u

)
L2(R+;H)

+ 2Re
(
pAu′, qA2u

)
L2(R+;H)

.

(2.4)

Integrating by parts, we get:

2Re (u′′, Au′)L2(R+;H) = −‖u′ (0)‖21/2 ,
(
u′′, A2u

)
L2(R+;H)

= −‖Au′‖2L2(R+;H) ,

2Re
(
Au′, A2u

)
L2(R+;H)

= 0.

Taking into account these equalities in (2.4), we get

‖P0u‖2L2(R+;H) = ‖u′′‖2L2(R+;H) +
(
|p|2 − 2Req

)
‖Au′‖2L2(R+;H) +

|q|2
∥∥A2u

∥∥2
L2(R+;H)

+ 2Imp̄Im
(
u′′, A2u

)
L2(R+;H)

−Rep ‖u′ (0)‖21/2 +

2Impq̄Im
(
Au′, A2u

)
L2(R+;H)

.

(2.5)

Similarly we have:

‖F (d/dt;β;A)u‖2L2(R+;H) =
∥∥u′′ + α1 (β)Au′ + α0 (β)A2u

∥∥2
L2(R+;H)

=

‖u′′‖2L2(R+;H) +
(
|α1 (β)|2 − 2Reα0 (β)

)
‖Au′‖2L2(R+;H) + |α0 (β)|2

∥∥A2u
∥∥2
L2(R+;H)

+2Imα1 (β)Im
(
u′′, A2u

)
L2(R+;H)

−Reᾱ1 (β) ‖u′ (0)‖21/2 +

2Imα1 (β)α0 (β)Im
(
Au′, A2u

)
L2(R+;H)

−Reα1 (β) ‖u′ (0)‖21/2 .
(2.6)

Taking into account relations 2)-5) in equality (2.5), allowing for (2.6), we get
the validity of equality (2.3).
Corollary 2. For β ∈

[
0, d−2

)
and u ∈W 2

2 (R+;H; 0, 1) it holds the equality

‖P0u‖2L2(R+;H) − β
∥∥Au′∥∥2

L2(R+;H)
= ‖F (d/dt;β;A)u‖2L2(R+;H) . (2.7)

Using equality (2.7), we prove the following theorem.
Theorem 3. The norm N1 (0, 1) = d, where

N1 (0, 1) = sup
06=u ∈W 2

2 (R+;H;0,1)

∥∥Au′∥∥
L2(R+;H)

‖P0u‖−1L2(R+;H) .

Proof. Passing to limit as β → d−2 in equality (2.7), we get ‖P0u‖2L2(R+;H) ≥
d−2 ‖Au′‖2L2(R+;H) for all u ∈ W 2

2 (R+;H; 0, 1), i.e. N1 (0, 1) ≤ d. Show that

N1 (0, 1) = d. For that, for any ε > 0 it suffices to construct a vector-function
uε (t) ∈W 2

2 (R+;H; 0, 1) such that

E (uε) = ‖P0uε‖2L2(R+;H) −
(
d2 + ε

) ∥∥Au′ε∥∥2L2(R+;H)
< 0.

Let the vector x ∈ H4, ‖x‖ = 1, and g (t) be a scalar function from W 2
2 (R).

Then by the Plancherel theorem,

E (g (t)x) =
∫ +∞
−∞

((
P0 (iζ, A)P ∗0 (iζ, A)−

(
d2 + ε

)
ζ2A2

)
x, x

)
|ĝ (ζ)|2 dζ =∫ +∞

−∞
(
Φ
(
iζ, d2 + ε,A

)
x, x

)
|ĝ (ζ)|2 dζ.

If µ is an eigenvalue, and x is an eigenvector of the operator A, then(
Φ
(
iζ0, d

2 + ε, µ
)
x, x

)
= Φ

(
iζ0, d

2 + ε, µ
)
< 0.
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If µ ∈ σ (A), then for any δ > 0 we can find xδ, ‖xδ‖ = 1 and Amx = µmxδ +
o (1) , δ → 0, m = 1, 2, ... . Then for small δ we again have(

Φ
(
iζ0, d

2 + ε,A
)
xδ, xδ

)
< 0.

Since the function q (ε, x) =
(
Φ
(
iζ, d2 + ε,A

)
x, x

)
is continuous with respect

to the argument ζ, we can find an interval (τ0 (ε) , τ1 (ε)) on which q (ε, x) < 0.
Now we choose g (t) ∈ W 2

2 (R) so that its Fourier transform ĝ (ζ) has a support
in the interval (τ0 (ε) , τ1 (ε)). Then we get E (g (t)x) < 0. Since the functional
E (·) is continuous in the space W 2

2 (R;H), then from the theorem on density
of finite vector-functions in W 2

2 (R;H) (see [4]) it follows that there exists the
function uN (t) ∈ W 2

2 (R;H) with the support (−N,N) ⊂ R, and E (uN (t)) < ε.
Assuming uε (t) = uN (t−N) ∈W 2

2 (R+;H; 0, 1) we have E (uε (t)) < 0. The
theorem is proved.

Since W 2
2 (R+;H; 0, 1) ⊂W 2

2 (R+;H; 0), then N1 (0) ≥ N1 (0, 1) = d.
Theorem 4. The norm N1 (0) = d if and only if Re (α1 (β)− p) > 0 for all
β ∈

(
0, d−2

)
.

Proof. Let N1 (0) = d. Then for any β ∈
(
0, d−2

)
and u ∈W 2

2 (R+;H; 0) it holds
the inequality

‖P0u‖2L2(R+;H) − β
∥∥Au′∥∥2

L2(R+;H)
≥
(
1− βN2

1 (0)
)
‖P0u‖2L2(R+;H) > 0.

Further, from the form F (λ;β;A) and equality (2.2) it follows that the Cauchy
problem

F (d/dt;β;A)u (0) = 0, u (0) = 0, u′ (0) = x

for any x ∈ H1/2 has the solution u (β, t). Then taking into account equality (2.3),

we get Re (α1 (β)− p) > 0 for β ∈
(
0, d−2

)
. Vice versa, if Re (α1 (β)− p) > 0,

then from (2.3) it follows

‖P0u‖2L2(R+;H) − β
∥∥Au′∥∥2

L2(R+;H)
> 0.

Now, passing here to limit as β → d−2, we get N1 (0) ≤ d, i.e. N1 (0) = d. The
theorem is proved.

Hence we get
Corollary 3. Let Rep ≤ 0 (Re (ω1 + ω2) ≥ 0). Then N1 (0) = d.

Now consider the case when Re (α1 (β)−Rep) < 0 for some β ∈
(
0, d−2

)
. In

this case N−21 (0) ∈
(
0, d−2

)
. Then for β ∈

(
0, N−21 (0)

)
and u ∈ W 2

2 (R+;H; 0)
we have:

‖P0u‖2L2(R+;H) − β
∥∥Au′∥∥2

L2(R+;H)
≥
(
1− βN2

1 (0)
)
‖P0u‖2L2(R+;H) > 0.

As in the proof of theorem 4, having considered the Cauchy problem, we get
Re (α1 (β)− p) > 0 for β ∈

(
0, N−21 (0)

)
.

By definition of N1 (0) for any β ∈
(
N−21 (0) , d−2

)
there exists a function

uβ (t) ∈W 2
2 (R+;H; 0) such that

‖P0uβ‖2L2(R+;H) − β
∥∥Au′β ∥∥2L2(R+;H)

< 0.

Then from equality (2.3) it follows thatRe (α1 (β)− p) < 0. Thus, Reα1

(
N−21 (0)

)
= Rep. Hence it follows that for finding N1 (0) we should solve the equation
Reα1 (β) = Rep together with relations 1)-5). If this equation has a solution from
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the interval
(
0, d−2

)
equal β0, then N1 (0) = β

−1/2
0 . But if this equation has no

solution from the interval
(
0, d−2

)
, then N1 (0) = d. Thus, for Rep > 0 we solve

the equation Reα1 (β) = Rep. Taking into account relation 2), we get α1 (β) = p.
From relation 4) it follows that Rep (Imα0 (β)− Imq) = Im (Reα0 (β)−Req).
Then, taking into account relation 3), we get Reα0 (β) = Req+ β

2 and Imα0 (β) =
β
2
Imp
Rep + Imq. Finally, from 5) for β we get the equation(

Req +
β

2

)2

+

(
Imq +

β

2

Imp

Rep

)2

= |q|2 .

Taking into account β 6= 0, we get

β0 =
−4Rep ·Repq̄

|p|2
. (2.8)

Thus, the following theorem is proved
Theorem 5. The norm N1 (0) is determined as follows:

N1 (0) =


d for Rep ≤ 0,
d for β0 /∈

(
0, d−2

)
, Rep > 0,

β
−1/2
0 for β0 ∈

(
0, d−2

)
, Rep > 0,

where β0 is determined from equality (2.8).
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