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Abstract. In this paper we consider linear metric spaces possessing
certain property. The notion of a non-degenerate system is introduced.
It is proved that such systems have a complete metric space of coefficients
with a canonical basis. The basicity criterion is given in terms of the
coefficient operator.

1. Introduction

The space of coefficients is the notion of theory of basis. It is known that
the arbitrary basis in Banach space has a Banach space of coefficients that is
isomorphic to initial one (see [7, 8, 3, 6]). Each non-degenerate system (will
be determined later) in Banach space generates an appropriate Banach space
of coefficients with a canonical basis (see [3, 6, 2, 1]). In this connection, the
space of coefficients plays an important part in studying approximate properties
of systems. It has very significant applications in different fields of natural science
as solids and molecules, multiple birth of particles, aviation, medicine and biology,
data compression and etc (see [4, 5] and references in it). All these applications
are closely related to the theory of wavelet analysis. Recently, there is a great
interest to this direction and a lot of monographs (see [4]) have been devoted to
it. It is known that many topological spaces are unnormed. Therefore, study
of these or other properties of the space of coefficients in topological and, in
particular, in metric spaces is of great scientific interest.

The present paper is devoted to the study of topological properties of the
space of coefficients, generated by the non-degenerate system in metric spaces.
The paper is organized as follows. The main notion and properties that will
be used in further presentations are given in Section 2. Section 3 is devoted to
obtaining the main results. It is proved that an arbitrary non-degenerate system
in the metric space in which the metric possesses a certain property, generates
a complete space of coefficients with a canonical basis. The basicity criterion of
the systems in such metric spaces is given in terms of the coefficient operator.
The brief summary of obtained results is given in Section 4.
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2. Main denotations and notions

Accept the following standard denotation. N is a set of all positive integers
ordered in a usual way, K is a field of scalars (K or R are real numbers, C are
complex numbers). ∃! means “exists” and “is unique”, ⇒ means “follows”.

Recall some notion from the theory of bases. Let (X ; ρ) be some linear metric
space over the field K. Denote the linear span of the set M ⊂ X by L [M ], its
closure by M̄ .

Definition 2.1. The system {xn}n∈N ⊂ X is called complete inX if L
[
{xn}n∈N

]
≡ X.

Definition 2.2. The system {xn}n∈N ⊂ X is called minimal in X if xk /∈

L
[
{xn}n 6=k

]
, ∀k ∈ N .

Definition 2.3. The system {xn}n∈N ⊂ X is called ω-linear independent in X
if
∑∞

n=1 λnxn = 0 in X yields that λn = 0 , ∀n ∈ N .

Definition 2.4. The system {xn}n∈N ⊂ X is called a basis in X if for ∀x ∈ X,
∃! {λn}n∈N ⊂ K:x =

∑∞
n=1 λnxn.

We’ll use the following notion as well.

Definition 2.5. The system {xn}n∈N ⊂ X is called non-degenerate if xn 6= 0 ,
∀n ∈ N .

We’ll suppose that the linear metric space (X ; ρ) possesses the following prop-
erties:
α) The linear operations of addition and multiplication by the scalar in (X ; ρ)

are continuous in X, i.e. from λn → λ , n→∞, in C and from xn → x, yn → y,
n→∞ in X it follows that λnxn → λx , xn + yn → x+ y, n→∞ in X;
β) Let τρ be a topology in X, generated by the metric ρ. We’ll assume that the

boundedness of the set in Xwith respect to the topology τρ and the metric ρ are
equivalent, i.e. these notion in the spaces(X ; τρ) and (X ; ρ) are identical.

3. The space of coefficients

Let (X ; ρ) be some linear, metric complete space possessing the properties α),
β) and {xn}n∈N ⊂ X be some non-degenerate system.

Assume

Kx̄ ≡
{
{λn}n∈N ⊂ K : the series

∞∑
n=1

λnxn converges in X} .

It is obvious that with respect to ordinary operations of component-wise addi-
tion and multiplication by a scalar, Kx̄ turns into a linear space. Let λ̄, µ̄ ∈Kx̄ :
λ̄ ≡ {λn}n∈N , µ̄ ≡ {µn}n∈N . Assume

ρKx̄

(
λ̄; µ̄

)
= sup

m
ρ

(
m∑
n=1

λnxn;
m∑
n=1

µnxn

)
.

Show that ρKx̄ (· ; ·) is a metric in Kx̄ .



310 TOGRUL R. MURADOV

1) It is clear that ρKx̄

(
λ̄; µ̄

)
≥ 0, ∀λ̄, µ̄ ∈Kx̄ . Let ρKx̄

(
λ̄; µ̄

)
= 0 ⇒ρ (λ1x1;

µ1x1) = 0 ⇒ λ1x1 = µ1x ⇒ λ1 = µ1, since the system {xn}n∈N is non-
degenerate. From ρ (λ1x1 + λ2x2;λ1x1 + µ2x2) = 0 we get λ2 = µ2. Continuing
this process, we get λk 6= µk, ∀k ∈ N ⇒ λ̄ = µ̄.

2) Let ν̄ ≡ {νn}n∈N ∈Kx̄. We have

ρKx̄

(
λ̄; µ̄

)
= sup

m
ρ

(
m∑
n=1

λnxn;

m∑
n=1

µnxn

)
≤

sup
m

[
ρ

(
m∑
n=1

λnxn;
m∑
n=1

νnxn

)
+ ρ

(
m∑
n=1

νnxn;
m∑
n=1

µnxn

)]
≤

ρ
(
λ̄; ν̄

)
+ ρ (ν̄; µ̄) .

Consequently, ρKx̄ (· ; ·) is a metric in Kx̄. Show that (Kx̄; ρKx̄) is complete.

Let
{
λ̄n
}
n∈N ⊂Kx̄ be some fundamental sequence, where λ̄n =

{
λ

(n)
k

}
k∈N

.

On establishing the completeness we’ll need the following

Lemma 3.1. Let x ∈ X, x 6= 0, {λn}n∈N ⊂ C and λnx → 0 , n → ∞. Then
λn → 0 , n→∞.

Proof. Indeed, let lim
n→∞

λn = 0 do not hold. Assume that {λn}n∈N has a bounded

subsequence {λnk
}k∈N . Then from it we can isolate a convergent sequence and

not loosing generality, we’ll assume that λnk
→ λ0 , k → ∞. We have λnk

x →
λ0 x, k → ∞, and consequently λ0 = 0. Thus, an arbitrary bounded subse-
quence of {λn}n∈N converges to zero. It follows from the accepted assumption
that {λn}n∈N contains an unbounded subsequence, and let λnk

→ ∞ , k → ∞.

Consequently, 1
λnk

→ 0 , k → ∞. As a result, 1
λnk

λnk
x = x 6= 0 , ∀k ∈

N . On the other hand, by the conditions of the lemma lim
k→∞

(
1
λnk

λnk
x
)

=

lim
k→∞

1
λnk

lim
k→∞

(λnk
x) = 0. The obtained contradiction proves the lemma. �

So, ρKx̄

(
λ̄n ; λ̄m

)
→ 0, n,m→∞. It is easy to see that

ρ
(
λ

(n)
k xk; λ

(m)
k xk

)
≤ 2ρKx̄

(
λ̄n ; λ̄m

)
, ∀k ∈ N. (3.1)

Further, we’ll suppose that ρ is invariant with respect to the shift, i.e.. ρ (x; y) =
ρ (x− y; 0) , ∀x, y ∈ X. it follows directly from the inequality (3.1) that the

sequence
{
λ

(n)
k

}
n∈N

is fundamental for each fixed k ∈ N . Let λ
(n)
k → λk , as

n→∞. Denote λ̄ ≡ {λn}n∈N . Show that ρKx̄

(
λ̄n ; λ̄

)
→ 0, n→∞. Take ∀ε >

0. It is clear that ∃n0 :ρKx̄

(
λ̄n ; λ̄n+p

)
< ε, ∀n ≥ n0, ∀p ∈ N . Consequently

sup
m
ρ

(
m∑
k=1

(
λ

(n)
k − λ

(n+p)
k

)
xk; 0

)
< ε, ∀n ≥ n0, ∀p ∈ N.

Hence, it follows

ρ

(
m∑
k=1

(
λ

(n)
k − λ

(n+p)
k

)
xk; 0

)
< ε, ∀n ≥ n0, ∀p,m ∈ N.
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Passing to limit as p→∞ we get

ρ

(
m∑
k=1

(
λ

(n)
k − λk

)
xk; 0

)
≤ ε, ∀n ≥ n0, ∀m ∈ N. (3.2)

We have

ρ

(
r+p∑
k=r

(
λ

(n)
k − λk

)
xk; 0

)
≤ ρ

(
r+p∑
k=1

(
λ

(n)
k − λk

)
; 0

)
+

ρ

(
r−1∑
k=1

(
λ

(n)
k − λk

)
; 0

)
≤ 2ε, ∀n ≥ n0, ∀r, p ∈ N.

It follows from λ̄n ∈Kx̄ that ∃m(n)
0 :

ρ

(
m+p∑
k=m

λ
(n)
k xk; 0

)
< ε, ∀m ≥ m(n)

0 , ∀p ∈ N.

Consequently, for a fixed n ≥ n0 we have

ρ

(
m+p∑
k=m

λkxk; 0

)
= ρ

(
m+p∑
k=m

(
λk − λ

(n)
k

)
xk +

m+p∑
k=m

λ
(n)
k xk; 0

)
≤

ρ

(
m+p∑
k=m

(
λk − λ

(n)
k

)
xk; 0

)
+ ρ

(
m+p∑
k=m

λ
(n)
k xk; 0

)
< 2ε, ∀m ≥ m(n)

0 , ∀p ∈ N.

From the arbitrariness of ε > 0 it follows that the series
∑∞

k=1 λkxk converges in
X. Thus, λ̄ ∈Kx̄ and it follows from relation (3.2) that lim

n→∞
ρKx̄

(
λ̄n ; λ̄

)
= 0.

As a result, we get that (Kx̄; ρKx̄) is a complete metric space. It is obvious that
the metric ρKx̄ is invariant with respect to the shift. Show that linear operations
in Kx̄ are continuous. Let µ→ µ0 in C and λ̄ ≡ {λn}n∈N ∈Kx̄. We have

ρKx̄

(
µλ̄ ; µ0λ̄

)
= ρKx̄

(
(µ− µ0) λ̄; 0

)
= sup

m
ρ ((µ− µ0)Sm; 0) , (3.3)

where Sm =
∑m

n=1 λnxn, ∀m ∈ N . Since the sequence {Sn}n∈N converges in X,
it is clear that it is bounded in (X; ρ), and also in (X; τρ). Take ∀ε > 0. Then
∃δ > 0, ∀t, |t| < δ : ρ (tSm; 0) < ε, ∀m ∈ N . From (3.3) we get

ρKx̄

(
µλ̄ ; µ0λ̄

)
≤ ε, for |µ− µ0| < δ.

This means that µλ̄ → µ0λ̄ in Kx̄. Let
{
λ̄n
}
n∈N ; {µ̄n}n∈N ⊂ Kx̄ and λ̄n → λ̄,

µ̄n → µ̄, as n→∞.
It follows directly from the inequality of triangle and invariance of ρ with

respect to the shift that
ρKx̄

(
λ̄n + µ̄n; λ̄+ µ̄

)
≤ ρKx̄

(
λ̄n − λ̄; 0

)
+ ρKx̄ (µ̄n − µ̄; 0)→ 0, as n→∞.

Consequently, the linear operations are continuous in Kx̄.
Consider the operator T :Kx̄ → X, determined by the expression

T λ̄ =
∞∑
n=1

λnxn, λ̄ ≡ {λn}n∈N ∈ Kx̄.
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Let λ̄n → λ̄, n→∞, in Kx̄ , where λ̄n ≡
{
λ

(n)
k

}
k∈N
∈Kx̄. We have

ρ
(
T λ̄n; T λ̄

)
= ρ

( ∞∑
k=1

(
λ

(n)
k − λk

)
xk; 0

)
≤

sup
m
ρ

( ∞∑
k=1

(
λ

(n)
k − λk

)
xk; 0

)
→ 0, n→∞.

Hence it follows directly that T is a continuous operator. Let λ̄ ∈ KerT , i.e.
T λ̄ = 0 ⇒

∑∞
n=1 λnxn = 0 ,where λ̄ ≡ {λn}n∈N ∈Kx̄. It is clear that if the

system {xn}n∈N is ω-linear independent, then λn = 0, ∀n ∈ N , and as result

KerT = {0}. In this case there exists an inverse operator T−1 : ImT →Kx̄. If
in addition ImT is closed in X, then T−1 is also continuous.

Denote by {en}n∈N ⊂Kx̄ a canonical system, where en = {δnk}k∈N , δnk is

Kronecker’s symbol. Show that {en}n∈N forms a basis for Kx̄. Take ∀λ̄ ≡
{λn}n∈N ∈Kx̄. Show that the series

∑∞
n=1 λnenconverges in Kx̄. Indeed, since

the series
∑∞

n=1 λnxn converges in X, then for ∀ε > 0, ∃m0 ∈ N :

ρ

(
m0+p∑
m0

λnxn; 0

)
< ε, ∀m ≥ m0, ∀p ∈ N.

Thus

ρKx̄

(
m0+p∑
m0

λnen; 0

)
= ρKx̄ ({...; 0;λm0 ; ...;λm0+p; 0; ...} ; 0) =

sup
m0≤r≤m0+p

ρ

(
r∑

n=m0

λnxn; 0

)
≤ ε, ∀m ≥ m0, ∀p ∈ N.

Hence it follow that the series
∑∞

n=1 λnen converges in Kx̄. We have

ρKx̄

(
λ̄−

m∑
n=1

λnen; 0

)
= ρKx̄ ({...; 0;λm+1; ...} ; 0) =

sup
r≥m+1

ρ

(
r∑

n=m+1

λnxn; 0

)
≤ ε, ∀m ≥ m0.

Consequently, lim
m→∞

∑m
n=1 λnen = λ̄ in Kx̄, i.e. λ̄ =

∑∞
n=1 λnen. Consider the

linear functionals e∗n
(
λ̄
)

= λn, ∀n ∈ N . Show that they are continuous. Let

λ̄n → λ̄, n → ∞, in Kx̄, where λ̄n ≡
{
λ

(n)
k

}
k∈N

⊂Kx̄. As it was established

λ
(n)
k → λk, n→∞. Consequently, e∗k

(
λ̄n
)

= λ
(n)
k → λk = e∗k

(
λ̄
)
, as n→∞, and

so, e∗k is continuous, ∀k ∈ N . It is easy to see that e∗n (ek) = δnk, ∀n, k ∈ N . As
a result we get that {e∗n}n∈N is a biorthogonal system to {en}n∈N . This proves
the basicity of the system {en}n∈N in Kx̄ . So the following theorem is valid.

Theorem 3.1. Let (X; ρ) be a metric space possessing the properties α), β), ρ be
invariant with respect to the shift, and {xn}n∈N ⊂ X be a non-degenerate system.
Then the appropriate space (Kx̄; ρKx̄) is complete, the canonical system {en}n∈N
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forms a basis for it. Furthermore, the metric ρKx̄ is invariant with respect to the
shift and linear operations are continuous in Kx̄ .

Assume that the system {xn}n∈N is ω-linear independent and the range of

values of the operator T is closed, i.e. ImT = ImT . In this case, as it follows
from the previous arguments and the Banach theorem, the spaces Kx̄ and ImT
are isomorphic. Furthermore, T is an isomorphism between them. It is easy to
see that Ten = xn, ∀n ∈ N . Then it is clear that the system {xn}n∈N forms a
basis for ImT . In case of its completeness in X it also forms a basis for it. T
is said to be a coefficient operator. It is easy to see that the inverse is also true,
i.e. if the operator T brings about an isomorphism between Kx̄ and ImT , then
{xn}n∈N forms a basis for ImT . In case of its completeness inX, it forms a basis
for it.

Thus the following theorem is valid.

Theorem 3.2. Let (X; ρ) be a metric space possessing the properties α), β), ρ be
invariant with respect to the shift, and {xn}n∈N ⊂ X be a non-degenerate com-
plete system in X. Then it forms a basis for it only if the appropriate coefficient
operator T : Kx̄ → X is an isomorphism in L (Kx̄;X).

4. Conclusion

Summarizing the all obtained results, we find the following conclusion:
1) in each linear metric space satisfying the properties α) and β) an arbi-

trary non-degenerate system generates the corresponding linear metric space of
coefficients also satisfying the properties α) and β);

2) regardless of the fact that this system is complete or minimal, the space of
coefficients has a canonical basis;

3) this system generates a corresponding coefficient operator, which acts from
KX̄ to X and it forms a basis only when this operator is an isomorphism between
KX̄ and X.

Acknowledgements

I express my deep gratitude to corresponding member of NAS of Azerbaijan
professor Bilal Bilalov for his attention to the paper.

References

[1] B. T. Bilalov, S. M. Farahani, and F. A. Guliyeva, The intuitionistic fuzzy normed
space of coefficients, Abstr. Appl. Anal., 2012 (2012), Art. ID 969313, 1–11.

[2] B. T. Bilalov and T. I. Najafov, On the approximation properties of some systems
in Banach spaces, Int. J. Math. Anal. (Ruse), 5 (2011), no. 19, 923–933.

[3] B. T. Bilalov and S. G. Veliyev, Some problems of basis, Elm, Baku, 2010 (in Rus-
sian).

[4] K. Ch. Charles, An introduction to wavelets, Academic Press, New York, 1992.
[5] I. M. Dremin, O. V. Ivanov, and V. A. Nechitailo, Wavelets and their uses, Phys.

Usp., 44 (2001), no. 5, 447–478 (translated from UFN, 171 (2001), no. 5, 465–501).
[6] Ch. Heil, A basis theory primer, Birkhauser/Springer, New York, 2011.
[7] I. Singer, Bases in Banach spaces. I, Springer-Verlag, New York-Berlin, 1970.



314 TOGRUL R. MURADOV

[8] I. Singer, Bases in Banach spaces. II, Springer-Verlag, Berlin-New York, 1981.

Togrul R. Muradov
Institute of Mathematics and Mechanics, National Academy of Sciences of

Azerbaijan, Baku, AZ1141, Azerbaijan.
E-mail address: togrulmuradov@gmail.com

Received: September 05, 2014; Accepted: October 17, 2014


