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WITH A SPECTRAL PARAMETER IN THE BOUNDARY

CONDITION
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Abstract. In this paper we consider the boundary value problem gen-
erated on a finite interval by the Sturm-Liouville equation and nonsepa-
rated boundary conditions, one of which contains the spectral parameter.
We study the main properties of the eigenvalues of the boundary value
problem, provide a uniqueness theorem and construct an algorithm for
solving the inverse problem by spectral data.

1. Introduction

One of the rapidly developing sections of modern mathematics is the spectral
theory of differential operators subject of study of which is the boundary value
problems of the mathematical physics. Investigation of a spectrum, expansion
of the given function in eigenfunctions of a differential operator, the solution of
inverse problems of spectral analysis belong to basic issues of this theory. Interest
to spectral theory of differential operators (of Schrödinger, Dirac and others)
especially increased at the last ten years in connection with the development of
quantum mechanics.

Inverse problems of spectral analysis is to determine the operators on their
known spectral data, which may include one, two, and more number of spectra,
the spectral function, spectra and the normalizing numbers, the Weyl function,
etc. Theory of inverse problems plays a great role in various sections of mathe-
matics and has a number of applications in natural science and engineering.

Depending on the choice of the spectral data the inverse problems of spectral
analysis differ by their statements. The inverse problems that have a unique
solution are of great interest. In such problems relatively small collection of
spectral data (one or two spectra) more natural from physical point of view is
used. Therefore they may be interesting for solving many applied problems of
the modern mathematics.
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At present there is extensive literature (see [2], [13], [15], [18], [23], [24], [26],
[29], [30], [34]) on theory of inverse problems. The more exhaustive results in the
field of inverse spectral problems are known for the Sturm-Liouville differential
equation

−y′′ + q (x) y = λ2y. (1.1)

The swedish mathematician G. Borg was the first who took steps in investigation
of reconstruction of the Sturm-Liouville operator by spectral information [1]. He
proved that two spectra of Sturm-Liouville operators with one common boundary
condition uniquely define the function q (x). N. Levinson [17] suggested another
method for proving G. Borg’s result. The transformation operators played a great
role in various fields of spectral theory of operators. V. A. Marchenko [22] (see
also [23], [24]) applied the transformation operators to the investigation of inverse
problems and asymptotic behavior of the spectral function of singular Sturm-
Liouville operator. In these papers the uniqueness of the Sturm-Liouville operator
with the given spectral function and the uniqueness of the solution of a number
of the inverse spectral problems were proved. The transformation operators tool
was also used by I. M. Gelfand and B. M. Levitan in their fundamental work
[5], where necessary and sufficient conditions and reconstruction method of the
Sturm-Liouville operator by spectral function were obtained. The paper by M.
G. Krein [16] was devoted to effective construction of the classic Sturm-Liouville
operator by two spectra. The complete solution of the renewal problem of the
Sturm-Liouville operator on the segment by two spectra is in M. G. Gasymov
and B. M. Levitan’s work [4].

Periodical problems for differential and difference equations play an important
role in many physical and engineering applications. The paper [31] was the
first work devoted to the inverse periodic problem for equation (1.1) in which
the method using the Lyapunov function was applied. In [30] the uniqueness
theorem on reconstruction of the periodic problem by the method of mapping of
solutions spaces was proved. The total characteristics of the spectrum of periodic
and antiperiodic boundary value problems that was based on parametrization of
a class of real entire functions with the help of special conformal mappings of
an upper half-plane onto an upper half-plane with vertical sections was obtained
in [23] by another method. By the direct method (in which the results of the
paper [23], the Gelfand-Levitan-Marchenko equation and the trace formulas are
not used) in [14], the inverse problem was solved by the length of the gaps for the
Hill operator. Here real-analytic isomorphism between the Hilbert spaces and
bilateral estimations of the potential in terms of spectral data are widely used.

The paper [28] was devoted to characteristics of spectral data of similar bound-
ary value problems (i.e. problems whose characteristic functions differ by a con-
stant). In this paper the methods and results of the paper [23] are generalized and
developed for the case of non-separated boundary conditions (i.e. when bound-
ary forms contain combination of values of functions on the end of the section).
The problem of reconstruction of a class of similar boundary value problems by
spectral data was completely studied in [33] by another method. The classes of
non-similar (self-adjoint) boundary value problems were considered in the papers
of M. G. Gasymov, I. M. Guseinov, and I. M. Nabiev [3], I.M. Guseinov and
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I. M. Nabiev [10], [11]. The properties of spectral data were studied, unique-
ness theorems, necessary and sufficient conditions for solvability of the inverse
problems were proved. The characteristics of the spectrum of Sturm-Liouville
operators in the case of regular, irregular and degenerate boundary conditions
were given in the papers [19]-[21 ], in the case of boundary conditions containing
a spectral parameter in [6]. Inverse problems on a whole axis, semi-axis and sec-
tion for Sturm-Liouville operators with a spectral parameter in the discontinuity
condition were solved in [8], [9], [12]. Note that in the general case of boundary
conditions, a uniqueness problem of the reconstruction of a differential equation
and boundary conditions was studied in the papers [30], [32], [35] by different
methods. One can find information on similar results on the solution of inverse
problems (in different statements) for a quadratic bundle of Sturm-Liouville op-
erators in [27] (see also [26]).

In the present paper we consider a boundary value problem generated on the
segment [0, π] by the Sturm-Liouville equation (1.1) and nonseparated boundary
conditions

y(0) + ω y(π) = 0, ω̄ y′(0) + (αλ+ β) y(π) + y′(π) = 0, (1.2)

where the coefficient of equation (1.1) q(x) is a real function belonging to L2[0, π],
λ is a spectral parameter ω 6= ± i is a pure imaginary number α 6= 0, β are real
numbers. We will denote this problem by Lβ. Basic properties of the eigenvalues
of the problem Lβ was studied, a uniqueness theorem was given, an algorithm
for solving the inverse problem of reconstruction of boundary value problems Lβ1
and Lβ2 (β1 6= β2) by spectral data was composed.

By Wn
2 [0, π] we denote the Sobolev space of complex-valued functions on [0, π]

which has n − 1 absolutely continuous derivative and nth derivative of which
is square integrable on [0, π]. For brevity, in the sequel, we will say that the
condition (T ) holds, if for any function y (x) ∈W 2

2 [0, π] , y (x) 6≡0 satisfying the
condition (1.2) the inequality

β |y(π)|2 +

∫ π

0

( ∣∣y′(x)
∣∣2 + q(x) |y(x)|2

)
dx > 0 (1.3)

holds. Note that this inequality is necessarily satisfied if β ≥ 0, q (x) > 0.

2. Properties of eigenvalues of the problem Lβ

In this section we assume that the condition (T ) holds. Denote

M =

∫ π

0
|y (x)|2 dx, N = α |y (π)|2 , P = β |y (π)|2 +

∫ π

0

(∣∣y′ (x)
∣∣2 + q (x) |y (x)|2

)
dx. (2.1)

Lemma 1. The eigenvalues of boundary value problem Lβ are real, nonzero and
simple.
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Proof. Let λ be an eigenvalue of the problem Lβ and y (x) be a corresponding

eigenfunction. Multiplying both sides of the equality (1.1) by y (x) and integrat-
ing the result from 0 to π with respect to x, we obtain

−
∫ π

0
y′′ (x) y (x)dx +

∫ π

0
q (x) |y (x) |2 dx = λ2

∫ π

0
|y (x) |2 dx.

Applying the integration by part we arrive at

y′ (0) y (0)− y′ (π) y (π) +

∫ π

0

(∣∣y′ (x)
∣∣2 + q (x) |y (x)|2

)
dx = λ2

∫ π

0
|y (x)|2 dx.

(2.2)
From the boundary conditions (1.2) we obtain

y′ (0) y (0)− y′ (π) y (π) = −y′ (0)ωy (π) +
[
ωy′ (0) + (2αλ+ β) y (π)

]
y (π) =

(αλ+ β) |y (π)|2 .
Taking into account (2.1) and (2.2), we find that

Mλ2 −Nλ− P = 0,

and hence

λ =
N ±

√
N2 + 4MP

2M
. (2.3)

By the inequality (1.3) we haveP > 0. Since M > 0, (2.3) implies that , λ is
real and nonzero. Since the number ω is nonreal, by the Theorem 2.1 of [25] we
obtain that eigenvalues of the problem Lβ are simple. The lemma is proved.
Lemma 2. If y (x) is an eigenfunction of the problem Lβ corresponding to the
eigenvalue λ, then

2λM −N 6= 0. (2.4)

Besides it, the relation
sign (2λM −N) = signλ. (2.5)

holds.
Proof. Since M > 0, P > 0, it follows from (2.3) that

2λM −N = ±
√
N2 + 4MP 6= 0.

It also follows from (2.3) that, if λ > 0 then under the root it must be the + sign
, and − sign if λ < 0 . Therefore, the sign of the left hand side of (2.4) coincides
whit the sign of λ, i.. (2.5) holds. The lemma is proved.

We denote by c(x, λ) and s(x, λ) solutions of the equation (1.1) satisfying the
initial conditions c(0, λ)=s′(0, λ) = 1, c′(0, λ) =s(0, λ) = 0. Then it is easy to see
that the characteristic function of the boundary-value problem Lβ is

∆ (λ) = |ω|2 c (π, λ) + (αλ+ β) s (π, λ) + s′ (π, λ) . (2.6)

The zeros of this functions are the eigenvalues of the problem Lβ.
Lemma 3. The inequality ∆ (0) > 0 holds.

The proof of this lemma is analogous to the proof of Lemma 1.4 of [25] (see
also [7]).
Theorem 1. The following asymtotic formulas hold (as |k| → ∞) for the eigen-
values µk (k = ±1, ±2, ...) of the boundary value problem:

µk = k + a+
B

k
+
τk
k
, (2.7)
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where

a = − 1

π
arctg

b

α
, B =

1

π

(
A+

β b

α2 + b2

)
, (2.8)

b = 1 + |ω|2 , A =
1

2

∫ π

0
q (x) dx,

∞∑
k = −∞
k 6= 0

|τk|2 <∞.

Proof. According to (2.6) the characteristic equation of the problem Lβ is of the

form |ω|2 c (π, λ) + (αλ+ β) s (π, λ) + s′ (π, λ) = 0. It follows from the represen-
tations of the functions c (π, λ) , s (π, λ) and s′ (π, λ) (see [23, p. 18]) that

b cosλπ + α sinλπ + (Ab+ β)
sinλπ

λ
− αAcosλπ

λ
+
f (λ)

λ
= 0, (2.9)

where f (λ) is an entire function of an exponential type not exceeding π, square
summable on real line. By Rouche’s theorem the roots µk (k = ±1, ±2, ...) of
this equation satisfies the asymptotic formula (as |k| → ∞)

µk = k + a+ εk, εk = O

(
1

k

)
. (2.10)

Putting (2.10) into (2.9) and using asymptotic equalities

cosµkπ = (−1)k cos (a+ εk)π = (−1)k (cos aπ − πεk sin aπ) +O

(
1

k2

)
,

sinµkπ = (−1)k sin (a+ εk)π = (−1)k (sin aπ + πεk cos aπ) +O

(
1

k2

)
,

sinµkπ

µk
=

(−1)k sin aπ

k
+O

(
1

k2

)
,

cosµkπ

µk
=

(−1)k cos aπ

k
+O

(
1

k2

)
,

f (µk)

µk
=
f (k + a)

k
+O

(
1

k2

)
(in the establishment of the last formula we use Lemma 1.4.3 of [23]), we obtain
the asymptotic

εk =
B

k
+
τk
k
,

substitution of which into (2.10) implies the desired formula (2.7). The theorem
is proved.

Theorem 2. The eigenvalues µ
(1)
k and µ

(2)
k (k = ±1, ±2, ...) of the bound-

ary value problems Lβ1 and Lβ2 (β1 < β2) alternate (interlace) in the following
sense:

... < µ
(2)
−2 < µ

(1)
−2 < µ

(2)
−1 < µ

(1)
−1 < 0 < µ

(1)
1 < µ

(2)
1 < µ

(1)
2 < µ

(2)
2 < ... . (2.11)

Proof. According to (2.6)

∆j (λ) = |ω|2 c (π, λ) + (αλ+ βj) s (π, λ) + s′ (π, λ) . (2.12)

is a characteristic function of Lβj (j = 1, 2). Consider a solution of the equation
(1.1) which is of the form

z (x, λ) = [1 + ωA (π, λ)] s (x, λ)− ωs (π, λ) c (x, λ) . (2.13)
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Differentiating the equality

z′′ (x, λ) +
[
λ2 − q (x)

]
z (x, λ) = 0 , (2.14)

with respect toλ and then taking the complex conjugation in the obtained equal-
ity, for real λ we obtain

ż′′ (x, λ) + 2λ z (x, λ) +
[
λ2 − q (x)

]
ż (x, λ) = 0.

Then, multiplying this equality by z (x, λ), and the relation (2.14) by ż (x, λ),
subtracting the second result from the first one and then integrating on[0, π]
with respect to x, and using (2.13) we find

2λ

∫ π

0
|z (x, λ)|2 dx− α |z (π, λ)|2 = ż (π, λ) z′ (π, λ)−

z (π, λ) ż′ (π, λ)− ż (0, λ) z′ (0, λ) + z (0, λ) ż′ (0, λ) =

ṡ (π, λ)
[
|ω|2 c (π, λ) + s′ (π, λ) + αλs (π, λ)

]
−

s (π, λ)
[
|ω|2 ċ (π, λ) + ṡ (π, λ) + αλ ṡ (π, λ) + α s (π, λ)

]
.

From here, using the equalities

s (π, λ) =
∆2 (λ)−∆1 (λ)

β2 − β1
, (2.15)

|ω|2 c (π, λ) + s′ (π, λ) + αλs (π, λ) =
β2∆1 (λ)− β1∆2 (λ)

β2 − β1
, (2.16)

obtained from (2.12), we find that

∆1 (λ) ∆̇2 (λ)− ∆̇1 (λ) ∆2 (λ) = (β2 − β1)
{

2λ

∫ π

0
|z (x, λ)|2 dx− α |z (π, λ)|2

}
.

(2.17)

It is evident that z
(
x, µ

(j)
k

)
is an eigenfunction of the problem Lβj . Then it fol-

lows from (2.17) and Lemma 2 that functions ∆1 (λ) and ∆2 (λ) have only simple

zeroes and they do not have common zeros. Putting λ = µ
(2)
k (k = ±1, ±2, ...)

in (2.17) and taking into account that ∆2

(
µ
(2)
k

)
= 0 we obtain

∆1

(
µ
(2)
k

)
∆̇2

(
µ
(2)
k

)
= (β2 − β1)

{
2µ

(2)
k

∫ π

0

∣∣∣z (x, µ(2)k )∣∣∣2 dx− α ∣∣∣z (π, µ(2)k )∣∣∣2} .
Sinceβ2 − β1 > 0, according to Lemma 2, the last equality implies that

sign
{

∆1

(
µ
(2)
k

)
∆̇2

(
µ
(2)
k

)}
= signµ

(2)
k .

Hence,

sign ∆1

(
µ
(2)
k

)
= sign ∆̇2

(
µ
(2)
k

)
if µ

(2)
k > 0,

sign ∆1

(
µ
(2)
k

)
= −sign ∆̇2

(
µ
(2)
k

)
if µ

(2)
k < 0.
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Using lemma 3 and arguing as in the proof of Theorem 4.1 of [25], we find from
last relations that the function ∆1 (λ) has two zeros of different sign in the interval(
µ
(2)
−1, µ

(2)
1

)
and exactly one zero in each of the intervals

...,
(
µ
(2)
−3, µ

(2)
−2

)
,
(
µ
(2)
−2, µ

(2)
−1

)
,
(
µ
(2)
1 , µ

(2)
2

)
,
(
µ
(2)
2 , µ

(2)
3

)
, ...,

i.e. (2.11) holds. The theorem is proved.

3. Uniqueness of reconstruction of the problems Lβ1 and Lβ2

We denote by λk (k = ±1, ±2, ...) zeros of the function s (π, λ), squares of
which are the eigenvalues of the boundary-value problem generated by the equa-
tion (1.1) and boundary conditions y (0) = y (π) = 0. The following uniqueness
theorem holds.
Theorem 3. The boundary-value problems Lβ1 and Lβ2 are uniquely determined
by their spectra, a number ω and the sequence of signs

σk = sign
[
|ω| −

∣∣s′ (λk, π)
∣∣] .

We give an algorithm of reconstruction of the boundary value problems Lβ1
and Lβ2 (at the same time we give a short proof of Theorem 3).

Algorithm. The sequences
{
µ
(1)
k

}
,
{
µ
(2)
k

}
, {σk} and a number ω - the spectral

data of the problems Lβ1 , Lβ2 are given.
1) Construct the function ∆j (λ) in the form of an infinite product by using

the sequence
{
µ
(j)
k

}
.

2) Determine the parameter α by the formulaα = −bctgπ a (see (11)), where

b = 1 + |ω|2, a = lim
k→∞

(
µ
(j)
k − k

)
(see (10)).

3) Calculate the difference β2 − β1 = π
b

(
α2 + b2

)
(B2 −B1), where B2 −B1 =

lim
k→∞

k
(
µ
(j)
k − k − a

)
(according to (10)).

4) Construct the function s (π, λ) by (2.15) and find the zeros λk of this func-
tion.

5) Define the parameters βj by the formula

βj =
π

b

(
α2 + b2

)
lim
k→∞

k
(
µ
(j)
k − λk − a

)
.

6) Reconstruct the function u+ (λ) =|ω|2 c (π, λ) + s′ (π, λ) + αλs (π, λ) by
(2.16).

7) Find the value of the function u− (λ) =|ω|2 c (π, λ)− s′ (π, λ) +αλs (π, λ) at

the points λk as follows: u− (λk) = (−1)k σk

√
u2+ (λk)− 4 |ω|2.

8) Using s (π, λ) and u± (λk) we reconstruct the function g (λ) = 1−|ω|2

4|ω|2 u+ (λ)+

1+|ω|2

4|ω|2 u− (λ) = 1
2 [c (π, λ−) s′ (π, λ)] by the interpolation formula

g (λ) = s (π, λ)

∞∑
k = −∞
k 6= 0

g (λk)

(λ− λk) ṡ (π, λk)
.
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9) Define u− (λ) from 8).
10) Define the characteristic function s′ (π, λ) of the boundary-value problem,

generated by the equation (1.1) and boundary conditions y (0) = y′ (π) = 0 by
the formula s′ (π, λ) = 1

2 [u+ (λ)− u− (λ)].
11) Determine the coefficient q (x) from the sequences of zeros of the functions

s (π, λ) and s′ (π, λ) by the known procedure (see, e.g., [23]).
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