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ON THE SPECTRUM OF THE PENCIL OF SECOND ORDER

DIFFERENTIAL OPERATORS WITH PERIODIC

COEFFICIENTS ON THE SEMI-AXIS

ASHRAF D. ORUJOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. In this paper, the spectrum and resolvent of the operator
Lλ generated by the differential expression `λ(y) = y′′ + p(x)y′ + (λ2 +
iλp(x) + q(x))y and the initial condition y(0) = 0 is investigated in the
space L2(0,+∞). Here the coefficients p(x), q(x) are periodic functions
whose Fourier series are absolutely convergent and Fourier exponents
are positive. It is shown that continuous spectrum of the operator Lλ
consists of the interval (−∞,+∞). Moreover, at most a countable set
of spectral singularities can exists over the continuous spectrum and at
most a countable set of eigenvalues can be located outside of the interval
(−∞,+∞). Eigenvalues and spectral singularities with sufficiently large
modulus are simple and lie near the points λ = ±n2 , n ∈ N.

1. Introduction

In this study, the spectrum and resolvent of the maximal differential operator
Lλ generated by the linear differential expression

`λ(y) = y′′ + p(x)y′ + (λ2 + λip(x) + q(x))y

and the boundary condition y(0) = 0 have been investigated in the space L2(0,+∞).
Here λ is a complex parameter,

p(x) =

∞∑
n=1

pne
inx, q(x) =

∞∑
n=1

qne
inx (1)

with complex coefficients pn, qn for which

∞∑
n=1

n | pn |< +∞,
∞∑
n=1

| qn |< +∞. (2)
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The domain of the operator Lλ is

D(Lλ) =
{
y(x)|y(x), y′(x) ∈ AC([0, R]) for all R > 0,

y(0) = 0, y(x), `λ(y) ∈ L2(0,+∞)} .

Let Q be the class of periodic functions q(x) =
∑∞

n=1 qne
inx with ‖q(x)‖ =∑∞

n=1 |qn| < +∞. Then Q is a complex normed space and p(x), q(x), p′(x) ∈ Q.
It is clear that if at least one of the functions p(x) and q(x) is not zero, then

the operator Lλ is nonselfadjoint for each λ ∈ C.
In the study [4], the Floquet solutions of equation `λ(y) = 0 in the case

p(x) ≡ 0 have been constructed and using these solutions direct and inverse

spectral problems have been investigated for the operator L = − d2

dx2
+ q(x) in

the space L2(R). Later using some different methods, the inverse problem for

the operator L = − d2

dx2
+ q(x) with periodic potential q(x) ∈ L2(0, 2π) was inves-

tigated in [13], the spectrum and resolvent operator was studied in [14]. Some
results of [4] were generalized for the 2n order linear differential operators with
almost periodic coefficients in [5], [7]. The spectrum and resolvent of a pencil
of high order differential operators with periodic and almost periodic coefficients
were investigated in [8] and [12], [9] respectively. The inverse problem for a pencil
of 2n order differential operators with periodic coefficients from the class Q was
studied in [3]. The pencil of the second order differential operators with periodic
coefficients has been investigated in [2], [10]. Afterwords, the spectrum and resol-
vent for the pencil of the second order differential operators with almost periodic
coefficients under more general conditions on the coefficients was investigated in
[11].

In the present study the operator Lλ is investigated in the space L2(0, +∞).
It is proved that the continuous spectrum of the operator pencil Lλ consists
of the interval (−∞,+∞). There may be at most a countable set of spectral
singularities on the continuous spectrum. Moreover, there may be a countable
set σp(Lλ) of eigenvalues outside the interval (−∞,+∞). Singular values λ±n
(eigenvalues or spectral singularities) with sufficiently large modulus are simple,
lie in the neighborhood of points ±n

2 , n ∈ N, and satisfy the asymptotic formula

λ±n = ±n
2

+O(
1

n
), n→∞.

2. Floquet solutions of the equation `λ(y) = 0

The system of the linear independent solutions of an equation of type `λ(y) = 0
with almost periodic coefficient was investigated in [11]. According to Theorem
1 in the study [11], we can formulate the following theorem related with the
equation

y′′ + p(x)y′ + [λ2 + iλp(x) + q(x)]y = 0, −∞ < x < +∞. (3)

Theorem 1. If the functions p(x) and q(x) satisfy the conditions (1) and (2),
then for ∀λ 6= ±n

2 , n ∈ N, the differential equation (3) has the solutions
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f1(x, λ) = eiλx

(
1 +

∞∑
n=1

U (1)
n (λ)einx

)
, f2(x, λ) = e−iλx

(
1 +

∞∑
n=1

U (2)
n (λ)einx

)
,

(4)
where the series

∞∑
n=1

∣∣∣U (s)
n (λ)

∣∣∣n2, s = 1, 2,

is uniform convergent in each compact set S ⊆ C which doesn’t contain the
numbers λ = −n

2 , n ∈ N, in case s = 1 and λ = n
2 , n ∈ N, in case s = 2. Here

U
(1)
n (λ) = U

(1)
0n +

∑n
k=1

U
(1)
kn

k+2λ , U
(2)
n (λ) = U

(2)
0n +

∑n
k=1

U
(2)
kn

k−2λ , n ∈ N.

The solutions f1(x, λ) and f2(x, λ) can be used for the investigation of the
structure of the spectrum and the kernel of the resolvent operator, but they are
not sufficient for studying the asymptotics of the singular values of the operator
Lλ. For this reason it is convenient to use the Floquet solutions of the form

f1(x, λ) = eiλx
(

1 +
∞∑
n=1

U
(1)
0n e

inx +
∑∞

k=1
1

k+2λ

∞∑
n=k

U
(1)
kn e

inx

)
,

f2(x, λ) = e−iλx
(

1 +
∞∑
n=1

U
(2)
0n e

inx +
∑∞

k=1
1

k−2λ

∞∑
n=k

U
(2)
kn e

inx

) (5)

with conditions
∞∑
n=1

n2
∣∣∣U (s)

0n

∣∣∣ < +∞,
∞∑
k=1

1
k

∞∑
n=k

n2
∣∣∣U (s)

kn

∣∣∣ < +∞, s = 1, 2. It is clear

that these representations of the solutions are a modified form of formulas (4).
The special solutions of type (5) are used in [2], [10] under various conditions

on the coefficients of the considered equations. We use the following theorem
about existence of the Floquet solutions of the equation (3).
Theorem 2. If p(x), q(x), p′(x) ∈ Q, then for each λ 6= −n

2 , n ∈ N, the
differential equation (3) has solutions as

f(x, λ) = eiλx

(
1 +

∞∑
n=1

une
inx +

∞∑
k=1

1

k + 2λ

∞∑
n=k

ukne
inx

)
, (6)

where the sequence {un} , {ukn} of complex numbers uniquely determined from
the system of equations

−n2un−n
n∑
k=1

ukn+qn+

n−1∑
m=1

(impn−m+qn−m)um+

n−1∑
m=1

ipn−m

m∑
k=1

ukm = 0, (7.1)

−nun+ipn+

n−1∑
m=1

ipn−mum= 0, n ∈ N, (7.2)

−n(n− k)ukn+
n−1∑
m=k

[i(m− k)pn−m+qn−m]ukm= 0, k, n ∈ N, n ≥ k + 1 (7.3)

and the series
∞∑
n=1

n2 |un| < +∞,
∞∑
k=1

1

k

∞∑
n=k

n2 |ukn| < +∞ (8)

converge.
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Remark. In what follows we suppose the sum
n−1∑
m=1

am to be equal to zero for

n = 1.
Proof. If we assume the existence of the solution of equation (3) of the form (6),
according to (7) we can find the derivatives of f(x, λ) with respect to x as follows

f ′(x, λ) = eiλx

(
iλ+

∞∑
n=1

i(λ+ n)

(
un +

n∑
k=1

ukn
k + 2λ

)
einx

)
,

f ′′(x, λ) = eiλx

(
−λ2 −

∞∑
n=1

(λ+ n)2

(
un +

n∑
k=1

ukn
k + 2λ

)
einx

)
.

If we substitute these expressions in the equation (3) and divide both sides by
eiλx, according to uniqueness properties of the Fourier series we have the following
system of equations for the sequences {un} , {ukn} :

−

(
un +

n∑
k=1

ukn
k + 2λ

)
n(n+ 2λ) + 2iλpn + qn+

∑
s+m=n

[ips(2λ+m) + qs]

(
um +

m∑
k=1

ukm
k + 2λ

)
= 0, n ∈ N.

From this system we get the system of equations

−n2un − n
n∑
k=1

ukn+qn+
∑

s+m=n
(imps+qs)um +

∑
s+m=n

ips
m∑
k=1

ukm = 0,

−nun+ipn+
∑

s+m=n
ipsum= 0, n ∈ N,

−n(n− k)ukn+
∑

s+m=n
m≥k

[i(m− k)ps+qs]ukm= 0,

k, n ∈ N, n ≥ k + 1,

to determine {un} , {ukn}. The last system of equations can be rewritten as (7.1)-
(7.3). On the contrary if {un} , {ukn} satisfy the system of equations (7.1)-(7.3)
and series (8) converge, then the function f(x, λ) determined by (6) is a solution
of (3). Therefore to prove the theorem it is sufficient to show the solvability of the
system (7.1)-(7.3) and convergent of series (8). It is easy to see that the system
of equations (7.1)-(7.3) has a unique solution. Indeed, from the equation (7.2)
the sequence {un} is determined by the recurrent manner uniquely. Furthermore
by the known sequence {un} from equations (7.1), (7.3) the sequence {ukn} also
is determined by the recurrent manner uniquely.

Now let us show that for the solution {un} , {ukn} of the system (7.1)-(7.3) the

series
∞∑
n=1
|un|n2 and

∞∑
k=1

1
k

∞∑
n=k

|ukn|n2 converge, therefore the function f(x, λ)

is a solution of equation (3) for ∀λ ∈ C, λ 6= −n
2 , n ∈ N. For this reason from

equation (7.2) we have n2 |un| ≤ n |pn| + n
n−1∑
m=1
|pn−m| |um| and by summing for

n = 1, 2, ..., j it is found that

j∑
n=1

n2 |un| ≤
j∑

n=1

n |pn|+
j∑

n=2

n−1∑
m=1

n |pn−m| |um| ≤
j∑

n=1

n |pn|+
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j∑
n=2

n−1∑
m=1

(n−m) |pn−m|m |um|
n

(n−m)m
≤

j∑
n=1

n |pn|+ 2

j−1∑
n=1

n |pn|
j−1∑
m=1

m |um| ≤
∥∥p′(x)

∥∥+ 2
∥∥p′(x)

∥∥ j−1∑
n=1

n |un|

or
j∑

n=1

n2 |un| ≤
∥∥p′(x)

∥∥+ 2
∥∥p′(x)

∥∥ j−1∑
n=1

n |un| , ∀j ∈ N.

Here we use the following lemma.
Lemma. Let 0 < a1 < a2 < ...an < ..., lim

n→∞
an = +∞ and bn ≥ 0, n ∈ N. If

there exist n0 ∈ N and constants C0 > 0, C1 > 0 such that the inequality

n∑
k=1

akbk ≤ C0 + C1

n−1∑
k=1

bk

holds for any n ≥ n0, then the series
∞∑
k=1

akbk converges.

By this Lemma if an = n, bn = n |un|, C0 = ‖p′(x)‖, C1 = 2 ‖p′(x)‖ , then the

series
∞∑
n=1

n2 |un| converges.

Now let us show that if the series
∞∑
n=1

n2 |un| converges, then for the sequence

{ukn} obtained from the system (7.1)-(7.3) the series
∞∑
n=1

1
k

∞∑
n=k

|ukn|n2 also con-

verges.

Since the series
∞∑
n=1
|un|n2 converges, by setting Un =

∑n
k=1 ukn from the

equation (7.1) we have

n
n∑
k=1

ukn = −n2un+qn+
n−1∑
m=1

(impn−m+qn−m)um +
n−1∑
m=1

ipn−m

m∑
k=1

ukm,

nUn = −n2un + qn +

n−1∑
m=1

(impn−m + qn−m)um +

n−1∑
m=1

ipn−mUm

which implies

n |Un| ≤ n2 |un|+ |qn|+
n−1∑
m=1

(m |pn−m|+ |qn−m|) |um|+
n−1∑
m=1

|pn−m| |Um| ≤

n2 |un|+ |qn|+
n−1∑
m=1

(|pn−m|+ |qn−m|)m |um|+
n−1∑
m=1

|pn−m| |Um| .

By summing with respect to n, we obtain

j∑
n=1

n |Un| ≤
j∑

n=1

(n2 |un|+ |qn|) +

j∑
n=2

n−1∑
m=1

(|pn−m|+ |qn−m|)m |um|+
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j∑
n=2

n−1∑
m=1

|pn−m| |Um| ≤
j∑

n=1

(n2 |un|+ |qn|)+

j−1∑
n=1

(|pn|+ |qn|)
j−1∑
m=1

m |um|+
j−1∑
n=1

|pn|
j−1∑
m=1

|Um|

or
j∑

n=1

n |Un| ≤
∞∑
n=1

(n2 |un|+ |qn|) +
∞∑
n=1

(|pn|+ |qn|)
∞∑
m=1

m |um|+

∞∑
n=1

|pn|
j−1∑
m=1

|Um| , j ∈ N.

If we set

C ′0 =

∞∑
n=1

(n2 |un|+ |qn|) + (‖p(x)‖+ ‖q(x)‖)
∞∑
m=1

m |um| , C ′1 = ‖p(x)‖ ,

then it is obtained
j∑

n=1

n |Un| ≤ C ′0 + C ′1

j−1∑
n=1

|Un| , ∀j ∈ N.

Then according to the Lemma the series
∞∑
n=1

n |Un| =
∞∑
n=1

n

∣∣∣∣ n∑
k=1

ukn

∣∣∣∣ converges.

On other hand, from the equation
n∑
k=1

ukn = Un we have

unn = Un −
n−1∑
k=1

ukn and |unn| ≤ |Un|+
n−1∑
k=1

|ukn| , n ∈ N.

Considering this in the equation (7.3), we get

n(n− k) |ukn| ≤
n−1∑
m=k

((m− k) |pn−m|+ |qn−m|) |ukm| ⇒

n
n−1∑
k=1

(n− k) |ukn| ≤
n−1∑
k=1

n−1∑
m=k

((m− k) |pn−m|+ |qn−m|) |ukm| =

n−1∑
m=1

m∑
k=1

((m− k) |pn−m|+ |qn−m|) |ukm| =

n−1∑
m=1

m−1∑
k=1

((m− k) |pn−m|+ |qn−m|) |ukm|+
n−1∑
m=1

|qn−m| |umm| ≤

n−1∑
m=1

m−1∑
k=1

(m− k) (|pn−m|+ |qn−m|) |ukm|+
n−1∑
m=1

|qn−m|

(
|Um|+

m−1∑
k=1

|ukm|

)
or

n

n−1∑
k=1

(n− k) |ukn| ≤
n−1∑
m=1

(|pn−m|+2 |qn−m|)
m−1∑
k=1

(m− k) |ukm|+
n−1∑
m=1

|qn−m| |Um|).
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If we set V1 = 0, Vn =
n−1∑
k=1

(n − k) |ukn| by summing the last inequality term by

term, we have

j∑
n=2

nVn ≤
j∑

n=2

n−1∑
m=1

(|pn−m|+2 |qn−m|)Vm +

j∑
n=2

n−1∑
m=1

|qn−m| |Um| ≤

j−1∑
n=1

(|pn|+ 2 |qn|)
j−1∑
m=2

Vm +

j−1∑
n=1

|qn|
j−1∑
m=1

|Um| ≤

∞∑
n=1

|qn|
∞∑
m=1

|Um|+
∞∑
n=1

(|pn|+2 |qn|)
j−1∑
m=1

Vm, ∀j ≥ 2.

As a result, we prove the inequality

j∑
n=1

nVn ≤ A0 +A1

j−1∑
n=1

Vn, ∀j ≥ 2,

where A0 = ‖q(x)‖
∞∑
m=1
|Um| , A1 = ‖p(x)‖ + 2 ‖q(x)‖. From here according

to the Lemma we get that the series
∞∑
n=2

nVn converges, consequently the se-

ries
∞∑
n=2

n−1∑
k=1

n(n − k) |ukn| also converges. Therefore because of the inequality

∞∑
n=2

n−1∑
k=1

n |ukn| <
∞∑
n=2

n−1∑
k=1

n(n − k) |ukn| the series
∞∑
n=2

n−1∑
k=1

n |ukn| also converges.

On the other hand, taking into our account the inequality

|unn| ≤ |Un|+
n−1∑
k=1

|ukn| , n ∈ N,

we have

|unn| ≤ |Un|+
n−1∑
k=1

|ukn| ⇒ n |unn| ≤ n |Un|+ n
n−1∑
k=1

|ukn| ⇒

∞∑
n=1

n |unn| ≤
∞∑
n=1

n |Un|+
∞∑
n=2

n

n−1∑
k=1

|ukn| ,

consequently the series
∞∑
n=1

n |unn| and
∞∑
n=1

n
n∑
k=1

|ukn| also converge. Now show

that the series
∞∑
n=2

n2
n−1∑
k=1

|ukn|
k

converges. For this reason from equation (7.3) we can write

n2ukn = knukn +

n−1∑
m=k

[i(m− k)pn−m + qn−m]ukm ⇒ n2 |ukn| ≤
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kn |ukn|+
n−1∑
m=k

[(m− k) |pn−m|+ |qn−m|] |ukm| ⇒
n−1∑
k=1

n2
|ukn|
k
≤

n
n−1∑
k=1

|ukn|+
n−1∑
k=1

n−1∑
m=k

[(m− k) |pn−m|+ |qn−m|]
|ukm|
k
≤ n

n−1∑
k=1

|ukn|+

n−1∑
m=1

m−1∑
k=1

m |pn−m|
|ukm|
k

+
n−1∑
m=1

m∑
k=1

|qn−m| |ukm| ⇒
n−1∑
k=1

n2
|ukn|
k
≤

n

n−1∑
k=1

|ukn|+
n−1∑
m=1

|pn−m|
m−1∑
k=1

m
|ukm|
k

+

n−1∑
m=1

|qn−m|
m∑
k=1

|ukm| ⇒

j∑
n=2

n−1∑
k=1

n2
|ukn|
k
≤

j∑
n=2

n

n−1∑
k=1

|ukn|+
j∑

n=2

n−1∑
m=1

|pn−m|
m−1∑
k=1

m
|ukm|
k

+

j∑
n=2

n−1∑
m=1

|qn−m|
m∑
k=1

|ukm| ≤
j∑

n=2

n
n−1∑
k=1

|ukn|+
j−1∑
n=1

|pn|
j−1∑
m=2

m−1∑
k=1

m
|ukm|
k

+

j−1∑
n=1

|qn|
j−1∑
m=1

m∑
k=1

|ukm| ⇒
j∑

n=2

n−1∑
k=1

n2
|ukn|
k
≤
∞∑
n=2

n
n−1∑
k=1

|ukn|+

∞∑
n=1

|pn|
j−1∑
m=2

m−1∑
k=1

m
|ukm|
k

+

∞∑
n=1

|qn|
∞∑
m=1

m∑
k=1

|ukm|

or
j∑

n=2

n−1∑
k=1

n2
|ukn|
k
≤
∞∑
n=2

n
n−1∑
k=1

|ukn|+

‖q(x)‖
∞∑
m=1

m∑
k=1

|ukm|+ ‖p(x)‖
j−1∑
m=2

m−1∑
k=1

m |ukm|
k

,

j∑
n=2

n

n−1∑
k=1

n
|ukn|
k
≤ B0 +B1

j−1∑
n=2

n−1∑
k=1

n |ukn|
k

, j ≥ 2

where B0 =
∞∑
n=2

n
n−1∑
k=1

|ukn| + ‖q(x)‖
∞∑
m=1

m∑
k=1

|ukm| and B1 = ‖p(x)‖. From here

according to the Lemma the series
∞∑
n=2

n−1∑
k=1

n2 |ukn|k converges. Hence, from the

convergence of the series
∞∑
n=2

n−1∑
k=1

n2 |ukn|k and
∞∑
n=1

n |unn|, by the equality

∞∑
n=1

n∑
k=1

n2
|ukn|
k

=
∞∑
n=2

n−1∑
k=1

n2
|ukn|
k

+
∞∑
n=1

n |unn| ,

we obtain that the series
∞∑
k=1

1

k

∞∑
n=k

|ukn|n2
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also converges. Therefore, for the solution {un} , {ukn} of the system (7.1)-(7.3)

the series
∞∑
n=1
|un|n2 and

∞∑
k=1

1
k

∞∑
n=k

n2 |ukn| converge. Then the function f(x, λ)

is a solution of equation (3). The proof is completed.
In order to find the second solution of the equation (3) which is linearly in-

dependent with the solution f(x, λ) we put µ = −λ in equation (3). Then the
equation (3) is written as

y′′ + p(x)y′ + [µ2 − iµp(x) + q(x)]y = 0, −∞ < x < +∞. (9)

The substitution y(x) = e−
∫
p(x)dxz(x) (where

∫
p(x)dx ∈ Q) in the equation

(9) after some simplifications gives

z′′ − p(x)z′ + [µ2 − iµp(x) + q(x)− p′(x)]z = 0, −∞ < x < +∞. (10)

According to the above proved, the equation (10) for each µ 6= −n
2 , n ∈ N, has

a solution z(x, µ) in the form of

z(x, µ) = eiµx

(
1 +

∞∑
n=1

ũne
inx +

∞∑
k=1

1

k + 2µ

∞∑
n=k

ũkne
inx

)
.

Therefore, for each λ 6= n
2 , n ∈ N, the function

f̃(x, λ) = z(x,−λ)e−
∫
p(x)dx =

e−iλx−
∫
p(x)dx

(
1 +

∞∑
n=1

ũne
inx +

∞∑
k=1

1

k − 2λ

∞∑
n=k

ũkne
inx

)
,

where the series
∞∑
n=1
|ũn|n2 and

∞∑
k=1

1
k

∞∑
n=k

n2 |ũkn| converge, is the second solution

of equation (3). Since
∫
p(x)dx ∈ Q, p′(x) ∈ Q, from the Wiener and Levy’s

Theorem (see [1], p. 34) it is easy to obtain the existence of the periodic function

q0(x) such that e−
∫
p(x)dx = 1 + q0(x), q′0(x), q′′0(x) ∈ Q. Consequently, we can

write the representation

f̃(x, λ) = e−iλx

(
1 +

∞∑
n=1

vne
inx +

∞∑
k=1

1

k − 2λ

∞∑
n=k

vkne
inx

)

for which the series
∞∑
n=1
|vn|n2 and

∞∑
n=1

1
k

∞∑
n=k

n2 |vkn| converge.

In what follows we use the representations (5) for the solutions f(x, λ), f̃(x, λ).
Corollary 1. If the functions p(x), p′(x) and q(x) belong to the class Q, then
for ∀λ 6= ±n

2 , n ∈ N, the equation (3) has the Flouqet solutions

f1(x, λ) = eiλx

(
1 +

∞∑
n=1

U
(1)
0n e

inx +
∞∑
k=1

1

k + 2λ

∞∑
n=k

U
(1)
kn e

inx

)
,

f2(x, λ) = e−iλx

(
1 +

∞∑
n=1

U
(2)
0n e

inx +
∞∑
k=1

1

k − 2λ

∞∑
n=k

U
(2)
kn e

inx

)
,

in R for which the series of type (8) converge.
Corollary 2. For ∀x ∈ R the functions fj(x, λ), j = 1, 2, and their derivatives
f ′j(x, λ), f ′′j (x, λ) with respect to x are meromorphic functions with respect to λ
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and they may have only simple poles λ = (−1)jn/2, n ∈ N, and they are also
continuous functions of (x, λ) for all x ∈ R, λ ∈ C, λ 6= (−1)jn/2, n ∈ N.

Note that if p(x), q(x) are distinct from zero, then the functions fj(x, λ) have

at most one pole. Namely, if U
(j)
nn 6= 0, then λ = (−1)jn/2, j = 1, 2, is the pole

of the function fj(x, λ).
Wronskian of the functions f1(x, λ) and f2(x, λ) is found as W [f1, f2](x, λ) =

−2iλe−
∫
p(x)dx, where

∫
p(x)dx =

∞∑
n=1

pn
in e

inx for each λ 6= ∓n
2 , n ∈ N (see [4], p.

200). Therefore, for each λ 6= 0,±n
2 , n ∈ N, the functions f1(x, λ) and f2(x, λ)

are linearly independent in R.
The linearly independent solutions of equation (3) for λ = 0 or λ = ∓n

2 ,

n ∈ N have been constructed in [11]. These solutions are the functions f̃1n(x) =

e−
n
2
x(ψ1n(x) + xφ1n(x)) and f2(x,−n

2 ) when λ = −n
2 , f1(x,

n
2 ) and f̃2n(x) =

ei
n
2
x(ψ2n(x) + xφ2n(x)) when λ = n

2 , and f̃1(x) = ψ0(x), f̃2(x) = xψ0(x) + φ0(x)
when λ = 0. Here the functions ψ1n(x), φ1n(x), ψ2n(x), φ2n(x), ψ0(x), φ0(x)
belong to the class Q.

3. The spectrum and resolvent of the operator Lλ

Theorem 3. The operator Lλ has not real eigenvalues.
Proof. Let’s show that the equation Lλy = 0 has only trivial solution which
belongs to L2(0,+∞) for ∀λ ∈ R. In case λ 6= 0,±n

2 , n ∈ N this follows from
the properties of solutions f1(x, λ) and f2(x, λ). Really, if y(x) = c1f1(x, λ) +
c2f2(x, λ) the solution of the equation lλ(y) = 0 belonging to L2(0,+∞) and
satisfying the condition y(0) = 0, then y(x) is almost a periodic function and
necessarily c1 = 0, c2 = 0, y(x) ≡ 0. If linearly independent solutions of (3)
according to λ = ±n

2 , n ∈ N or λ = 0 are taken instead of f1(x, λ) and f2(x, λ),
then similar result is also valid. Hence R ∩ σp(Lλ) = ∅. The theorem is proved.
Theorem 4. The operator Lλ has at most a countable set of eigenvalues in C\R.
Proof. It is easy to see that, f1(x, λ) ∈ L2(0,+∞), f2(x, λ) /∈ L2(0,+∞) for
Imλ > 0 and f1(x, λ) /∈ L2(0,+∞), f2(x, λ) ∈ L2(0,+∞) for Imλ < 0. These
relations imply

y(x, λ) = c1f1(x, λ) + c2f2(x, λ) ∈ L2(0,+∞), y(0, λ) = 0, λ ∈ C\R,

if and only if the eigenvalue equation

f1(0, λ) = 0 when Imλ > 0 or f2(0, λ) = 0 when Imλ < 0

are satisfied.
Because of f1(x, λ) and f2(x, λ) are holomorphic functions in the upper and

lower half planes respectively, these equations have at most a countable set of
roots in C\R. The theorem is proved.

Theorem 3 and Theorem 4 imply that σp(Lλ) ⊆ C\R.
Theorem 5. The residual spectrum of the operator Lλ is an empty set, i.e.
σr(Lλ) = ∅.
Proof. Since the operator Lλ is one to one for every λ ∈ C\σp(Lλ) then λ ∈ σr(Lλ)
if and only if when the range R(Lλ) is not dense in L2(0,+∞). It means the
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equation L∗λ(z) = 0 has a nontrivial solution z(x), in other words, λ ∈ σp(L∗λ) or

there is a nontrivial solution z(x) of the conjugate equation

z′′(x)− p(x)z′(x) + [λ2 + iλp(x) + q(x)− p′(x)]z(x) = 0, 0 < x < +∞, (11)

satisfying conditions z(0) = 0, z(x) ∈ L2(0,+∞). Since equation (11) is reduced
to equation of type (3) by putting µ = −λ, then according to Theorem 3 the
equation (11) for λ ∈ R has not a nontrivial solution z(x) ∈ L2(0,+∞), i.e.
λ /∈ σp(L∗λ) or σr(Lλ) ∩ R = ∅.

In general, if λ ∈ C, λ 6= ±n
2 , n ∈ N, then according to Corollary 1 the equation

(11) has the solutions in R as

ϕ1(x, λ) = e−iλx

(
1 +

∞∑
n=1

V
(1)
0n e

inx +

∞∑
k=1

1

k − 2λ

∞∑
n=k

V
(1)
kn e

inx

)
and

ϕ2(x, λ) = eiλx

(
1 +

∞∑
n=1

V
(2)
0n e

inx +

∞∑
k=1

1

k + 2λ

∞∑
n=k

V
(2)
kn e

inx

)
in the real line. Clearly the functions

z1(x, λ) = − 2iλf2(x, λ)

W [f1, f2](x, λ)
, z2(x, λ) = − 2iλf1(x, λ)

W [f1, f2](x, λ)
(12)

are linear independent solutions of equation (11). It is easy to see that,

ϕ1(x, λ) = − 2iλf2(x, λ)

W [f1, f2](x, λ)
, ϕ2(x, λ) = − 2iλf1(x, λ)

W [f1, f2](x, λ)
(13)

From here we immediately have ϕ1(x, λ) /∈ L2(0,+∞), ϕ2(x, λ) ∈ L2(0,+∞)
for Imλ > 0 and ϕ1(x, λ) ∈ L2(0,+∞), ϕ2(x, λ) /∈ L2(0,+∞) for Imλ < 0.
Consequently, the solution z(x, λ) = c1ϕ1(x, λ) + c2ϕ2(x, λ) of the equation (9)
with conditions z(0, λ) = 0, z(x, λ) ∈ L2(0,+∞) only exists for values of the
parameter λ satisfying the equation ϕ2(0, λ) = 0 when Imλ > 0 or equation
ϕ1(0, λ) = 0 when Imλ < 0.

According to equation (12) this is equivalent to relations

f1(0, λ) = 0 when Imλ > 0 or f2(0, λ) = 0 when Imλ < 0,

that is λ ∈ σp(Lλ). Hence λ ∈ σp(L∗λ)\R and λ ∈ σp(Lλ)\R are equivalent. From

here we have that if λ /∈ σp(Lλ)∪R, then λ /∈ σp(L∗λ), i.e. λ /∈ σr(Lλ).On the other
hand if λ ∈ R then λ /∈ σr(Lλ), and consequently we get (C\σp(Lλ))∩σr(Lλ) = ∅
i.e. σr(Lλ) = ∅. The theorem is proved.

According to Theorem 5, for each λ ∈ C\σp(Lλ) the inverse operator L−1λ
is defined in a dense set of the space L2(0,+∞). Show that for each λ ∈
C\ (σp(Lλ) ∪ R) the operator L−1λ is bounded on L2(0,+∞). For this reason let
us investigate the solution y(x, λ) ∈ L2(0,+∞) of

y′′ + p(x))y′ + (λ2 + iλp(x) + q(x))y = f(x) (13)

satisfying the condition y(0) = 0, where f(x) ∈ L2(0,+∞). If we apply the
Lagrange method by using Floquet solutions of equation (3), we find the solution
of (13) as

y(x, λ) =

∫ +∞

0
G(x, t, λ)f(t)dt,



370 ASHRAF D. ORUJOV

where

G(x, t, λ) =
1

f1(0, λ)W [f1, f2](t, λ)

{
f1(x, λ)f0(t, λ), 0 ≤ t < x,
f0(t, λ)f1(t, λ), t ≥ x,

if Imλ > 0, f1(0, λ) 6= 0,

G(x, t, λ) =
1

f2(0, λ)W [f1, f2](t, λ)

{
f2(x, λ)f0(t, λ), 0 ≤ t < x,
f0(x, λ)f2(t, λ), t ≥ x,

if Imλ < 0, f2(0, λ) 6= 0, where

f0(x, λ) = f2(0, λ)f1(x, λ)− f1(0, λ)f2(x, λ)

is the solution of equation (3) in (−∞,+∞) with initial condition f0(0, λ) = 0,

f ′0(0, λ) = −W [f1, f2](0, λ) = 2iλw0, w0 = e
−
∞∑

n=1

pn
in

. It is easy to see that the
function

ϕ̂(x, λ) =
f0(x, λ)

W [f1, f2](x, λ)
=
f2(0, λ)ϕ2(x, λ)− f1(0, λ)ϕ1(x, λ)

−2iλ

is the solution of equation (11) with the conditions ϕ̂(0, λ) = 0, ϕ̂′(0, λ) = −1
and the function

f̂(x, λ) =
f0(x, λ)

−2iλ
=
f2(0, λ)f1(x, λ)− f1(0, λ)f2(x, λ)

−2iλ

is the solution of equation (3) with the conditions f̂(0, λ) = 0, f̂ ′(0, λ) = −w0.
Therefore these solutions are holomorphic functions of λ in C. Using these ex-
pressions we can write

G(x, t, λ) =
1

f1(0, λ)

{
f1(x, λ)ϕ̂(t, λ), 0 ≤ t < x,

f̂(x, λ)ϕ2(t, λ), t ≥ x,

if Imλ > 0, f1(0, λ) 6= 0,

G(x, t, λ) =
1

f2(0, λ)

{
f2(x, λ)ϕ̂(t, λ), 0 ≤ t < x,

f̂(x, λ)ϕ1(t, λ), t ≥ x,

if Imλ < 0, f2(0, λ) 6= 0.
From the explicit expression of functions fi(x, λ) and ϕi(x, λ) it follows that

for ∀λ ∈ C\σp(Lλ), Imλ 6= 0

|G(x, t, λ)| ≤ C(λ)e−τ |x−t|, (14)

where C(λ) > 0, τ = |Imλ| , ∀x, t ∈ (0,+∞). By considering the explicit form
of the function G(x, t, λ) and the formula (14) it can be proved by the standard
method (see [6], p. 302-304) that for each f(x) ∈ L2(0,+∞) the function

y(x, λ) =

∫ +∞

0
G(x, t, λ)f(t)dt,

belong to L2(0,+∞) and satisfy condition y(0, λ) = 0. Further the integral oper-
ator L−1λ : L2(R+)→ L2(R+) defined by

(Rλf)(x) =
(
L−1λ f

)
(x) =

∫ +∞

0
G(x, t, λ)f(t)dt
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is bounded for ∀λ ∈ C\ (σp(Lλ) ∪ R) and ‖Rλ‖ ≤ 2|C(λ)|
τ . It means that λ ∈

ρ(Lλ). On other hand for Imλ = 0 the operator L−1λ is unbounded which means
λ ∈ σc(Lλ).

It is clear that root λ of the equations f1(0, λ) = 0, Imλ ≥ 0 or f2(0, λ) = 0,
Imλ ≤ 0 may be a pole of the kernel G(x, t, λ). If Imλ 6= 0 then these poles are
eigenvalues of the operator Lλ. If Imλ = 0, because of Lλ hasn’t got λ ∈ R as an
eigenvalue, then the kernel G(x, t, λ) of the resolvent operator has poles at these
points which are called spectral singularities (in the sense of [6], p. 306) of the
operator Lλ.

Thus the following theorem is true.
Theorem 6. Lλ has a continuous spectrum σc(Lλ) ∈ R and the resolvent set
ρ(Lλ) = C\ (R ∪ σp(Lλ)). The resolvent operator L−1λ is an integral operator in
L2(0,+∞) with the kernel G(x, t, λ) of Carleman type for λ ∈ ρ(Lλ).

4. The asymptotic formulas for singular values of the operator Lλ

In this section we specify the location of the singular values of the operator Lλ
on the λ complex plane and show that the singular values with sufficiently large
modulus are located close to the points λ = ±n

2 , n ∈ N. Note that as the singular
values of the operator Lλ we mean the eigenvalues and spectral singularities of
the operator Lλ. For this reason we show that the singular values are located on
the strip {λ ∈ C : Imλ < α} for some α > 0. Let us prove this fact for the case
Imλ ≥ 0, f1(0, λ) = 0, in the other case it is proved in the similar way.

First we show that there exists α > 0 such that the equation f1(0, λ) = 0 has
not a root outside the set Eα = {λ|λ ∈ C, |Imλ| < α, Reλ < α}. Because of
|k + 2λ| > 2α for each λ ∈ C\Eα, k ∈ N, we have that the inequality

|f1(0, λ)| =

∣∣∣∣∣1 +

∞∑
n=1

U
(1)
0n +

∞∑
k=1

1

k + 2λ

∞∑
n=k

U
(1)
kn

∣∣∣∣∣ ≥
|U0| −

∣∣∣∣∣
∞∑
k=1

1

k + 2λ

∞∑
n=k

U
(1)
kn

∣∣∣∣∣ ≥ |U0| −

∞∑
k=1

1

|k + 2λ|

∞∑
n=k

∣∣∣U (1)
kn

∣∣∣ ≥ |U0| −
1

2α

∞∑
k=1

∞∑
n=k

∣∣∣U (1)
kn

∣∣∣ ≥
|U0| −

1

2α

∞∑
k=1

∞∑
n=k

∣∣∣U (1)
kn

∣∣∣ > 0

is satisfied when α >

∞∑
k=1

∞∑
n=k

∣∣∣U(1)
kn

∣∣∣
2|U0| (here, according to equation (7.2) 1+

∞∑
n=1

U
(1)
0n e

inx

= e−
∫
p(x)dx, U0 = 1 +

∞∑
n=1

U
(1)
0n 6= 0). For some α satisfying this condition the

equation f1(0, λ) = 0 has not any root outside the set Eα. On the other hand,
the function f1(0, λ) is holomorphic at every interior point λ 6= −k

2 (k ∈ N) of
the set Eα and on the boundary of this set. Then the equation f1(0, λ) = 0
may have at most a countable set of roots in the set Eα and all these roots
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may have the unique limit point at infinity. Show that the roots of the equa-
tion f1(0, λ) = 0 with sufficiently large modulus are located close to the points
λ = −n

2 , n ∈ N. For this, taking into our account the absolute convergence of the

series
∞∑
k=1

∞∑
n=k

n
∣∣∣U (1)

kn

∣∣∣, we can choose the smallest number k0 ∈ N, k0 > 2 such

that
∑∞

k=k0

∞∑
n=k

n
∣∣∣U (1)

kn

∣∣∣ < |U0|
2 . Further, because of lim

λ→∞

k0−1∑
k=1

1
k+2λ

∞∑
n=k

U
(1)
kn = 0

we can take the smallest number r0 ∈ N, r0 > k0 such that the inequality∣∣∣∣∣
k0−1∑
n=1

1

n+ 2λ

∞∑
k=n

U
(1)
nk

∣∣∣∣∣ < |U0|
2

is satisfied for all |Imλ| < α, Reλ ≤ − r0
2 + 1

4 . Thus for λ ∈ Eα, Reλ ≤ − r0
2 + 1

4 ,

|2λ+ k| ≥ 1
k , k ≥ r0 we have |2λ+ k| ≥ 1

k , k ≥ k0 and

|f1(0, λ)| = |U0| −

∣∣∣∣∣
∞∑
k=1

1

k + 2λ

∞∑
n=k

U
(1)
kn

∣∣∣∣∣ ≥
|U0| −

∣∣∣∣∣
k0−1∑
k=1

1

k + 2λ

∞∑
n=k

U
(1)
kn

∣∣∣∣∣−
∞∑

k=k0

1

|k + 2λ|

∞∑
n=k

∣∣∣U (1)
kn

∣∣∣ ≥
|U0| −

|U0|
2
−
∞∑

k=k0

k
∞∑
n=k

∣∣∣U (1)
kn

∣∣∣ =
|U0|

2
−
∞∑

k=k0

∞∑
n=k

n
∣∣∣U (1)

kn

∣∣∣ > 0.

Consequently, the roots of the equation f1(0, λ) = 0 satisfying the conditions
λ ∈ Eα, Reλ ≤ − r0

2 + 1
4 only can be located in the neighborhoods of the points

λ = −k
2 , k ≥ r0 with radius δk = 1

2k . On the other hand, the equation f1(0, λ) = 0
may have a finite number of roots satisfying the conditions λ ∈ Eα, Reλ >
− r0

2 + 1
4 . Show that if the point λ = −m

2 , m ≥ r0 is a pole of the function

f1(0, λ), then there is a unique simple root in the neighborhood
∣∣λ+ m

2

∣∣ < 1
2m .

Indeed, the equations f1(0, λ) = 0 and (m + 2λ)f1(0, λ) = 0 have the same
roots in the closed disk

∣∣λ+ m
2

∣∣ ≤ 1
2m . Further if we put g(λ) = (m + 2λ)U0,

h(λ) = (m + 2λ)
∞∑
m=1

1
k+2λ

∞∑
n=m

U
(1)
mn, then on the circle

∣∣λ+ m
2

∣∣ = 1
2m we have∣∣λ+ k

2

∣∣ ≥ 1
2k for each k ≥ k0 and

|g(λ)| − |h(λ)| = |m+ 2λ| |U0| − |m+ 2λ|

∣∣∣∣∣
∞∑
k=1

1

k + 2λ

∞∑
n=m

U (1)
mn

∣∣∣∣∣ =

1

m

(
|U0| −

∣∣∣∣∣
∞∑
k=1

1

k + 2λ

∞∑
n=m

U (1)
mn

∣∣∣∣∣
)
> 0 id est. |g(λ)| > |h(λ)| .

Therefore, by the Roushé theorem, the functions (m+ 2λ)f1(0, λ) = g(λ) + h(λ)
and g(λ) have the same number zeros in the disk

∣∣λ+ m
2

∣∣ ≤ 1
2m . Since the

function g(λ) has the unique simple zero λ = −m
2 in this disk, we have that the

function (m + 2λ)f1(0, λ) also has the unique simple zero λ−m in this disk. It is
obvious that, if λ = −m

2 is not a pole of f1(0, λ), then the equation f1(0, λ) = 0 has

not any root in the disk
∣∣λ+ m

2

∣∣ ≤ 1
2m . Consequently, the equation f1(0, λ) = 0
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may have a unique simple root in the δ = 1
2k -neighborhood of the point λ = −k

2
for all k ≥ r0. By the similar way we can show that the equation f2(0, λ) = 0 has
the unique simple root λ+k in the δ = 1

2k -neighborhood of the point λ = k
2 for all

k ≥ r1 and some r1 ∈ N. Outside these neighborhoods the equation f2(0, λ) = 0
may have only a finite set of roots. If we set m0 = max {r0, r1}, we have

λ−k = −k
2

+O(
1

k
), λ+k =

k

2
+O(

1

k
), k ≥ m0.

Here λ±k are the simple eigenvalues of operator Lλ if Imλ−k > 0 or Imλ+k < 0

and , then λ±k are the simple spectral singularities of operator Lλ if Imλ−k = 0 or

Imλ+k = 0. So the following theorem is true.
Theorem 7. The operator Lλ may have at most a countable set of spectral sin-
gularities on the continuous spectrum and at most a countable set of eigenvalues
outside the real axis. Singular values {λ±n } (eigenvalues or spectral singularities)
with sufficiently large modulus are simple, lie in the neighborhood of points ±n

2 ,
n ∈ N, and the asymptotic formulas

λ±k = ±k
2

+O(
1

k
), k →∞,

are satisfied.
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