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Abstract. In the paper we study mixed problems with nonlocal and
irregular boundary conditions for junction of hyperbolic systems of dif-
ferent orders with first kind discontinuous coefficients. Under definite
conditions, using the finite integral transformation method, we get ana-
lytic (integral) representation of the solution of the problem under con-
sideration.

1. Introduction

The symbolic calculus was a convenient but mathematically not substanti-
ated device for solving mixed problems. Its popularization, in great extent was
promoted by electrical-engineer. O. Heaviside to successfully used the symbolic
calculus in electrician calculations. But Heaviside did not care of grounding the
applied methods and in a number of cases came to false results. One of the
methods for solving mixed problems for partial differential equations is the in-
tegral transformations method that was successfully used by Cauchy, Laplace,
A.N. Tikhonov, V.A. Il’in, M.L. Rasulov and others.

The function of a complex variable λ determined by the relation

f̃(λ) =

∫ ∞
0

e−λ tf(t)dt (0.1)

is said to be the transform of the function f(t) by (Laplace).
Note that the Heviside method, as it became clear after the papers of Carson

consists of going from the function f(t) to the function

F (λ) = λ

∫ ∞
0

e−λ tf(t)dt. (0.2)

M.L. Rasulov showed that the Laplace integral transformation (0.1) (conse-
quently the Heaviside transformation (0.2)) is a weak device in solving dynamic
problems at non zero initial conditions.
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In this paper we use the finite integral transformation method [5, 6]. Ap-
plication of this method to solving mixed problems is reduced to the following
stages:

1) From the sought-for function u(x, t) we pass to the function (”transform”
u(x, t)) of a complex variable:

ũ(x, t, λ) =

∫ t

0
ω(τ) exp

(
−λ
∫ τ

0
ω(η)dη

)
u(x, τ) d τ,

or

ũ(x, t, λ) =

∫ T

t
ω(τ) exp

(
−λ
∫ τ

0
ω(η)dη

)
u(x, τ) d τ,

where T is some positive number.
2) On the transform ũ(x, t, λ) we perform the operations corresponding to

the given operations on u(x, t) and get ”an operational equation” (a parametric
problem).

3) In the λ - plane we find ”suitable” domain Ω and on it solve the ”operational
equation” with respect to ũ(x, t, λ):

ũ(x, t, λ) = I(x, t, λ;u(x, t)) + Φ(x, t, λ).

4) In the domain Ω we find a ”suitable” smooth line L and from the found
transform ũ(x, t, λ) we pass to the pre-image u(x, t):

u(x, t) = α

∫
L

exp

[
λ

∫ t

0
ω(τ)dτ

]
{ũ(x, t, λ)− I(x, t, λ;u(x, t))} d λ.

From the above stated follows
Problem 1. For solving the given mixed problem find ”suitable” domain Ω

and line L.
While solving mixed problems for parabolic equations with ”regular” boundary

conditions1, problem 1 was solved positively [3-11]. And also in the case when
condition (2) doesn’t contain integral summands of the sought-for function in
[12], at restrictions of ”regularity” of boundary conditions for problem (1)-(3)
(stated for hyperbolic equations) problem 1 was solved positively. In the case of
irregular ”boundary” conditions for hyperbolic equations the solution of problem
1 possesses specific peculiarites. For example, while solving mixed problems (4)-
(6) for hyperbolic equations with irregular conditions (5), problem 1 may be
solved in the classic way:

Ω = {λ : Reλ ≥ α} , L = {λ : Reλ = a}, (0.3)

where α and a (a ≥ α) are some positive numbers, i.e. in this case Ω is a half-
plane, L is the Laplace straightline. And while solving mixed problems (11)-(13)
for hyperbolic equations with irregular boundary conditions (12) it is impossible
to solve problem 1 in the similar way.

In the case of solving a wide class of mixed problems for hyperbolic equations
with irregular boundary conditions, we suggest to choose the domain Ω and the
line L as follows (see fig. 1).

1If the boundary conditions for parabolic equations are regular in the sense of Birkhoff-
Tamarkin-Naimark-Rasulov, they are ”regular” by our definition [6], but the inverse statement
is not true.
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2. Problem statement

Find the solution of the hyperbolic system

∂ni

∂tni
ui (x, t)−

ni−1∑
s=1

ni−s∑
j=0

Bi,j,s (x)
∂j+s

∂xj∂ts
ui (x, t)−

−
ni∑
j=0

Ai,j (x)
∂j

∂xj
ui (x, t) = fi (x, t) ,

x ∈ (ai, bi) , t ∈ (0, T ) , i = 1, 2, ..., n, (1)

under the conditions

n∑
i=1

χ(i,k)∑
j=0

S(i,j,k)∑
m=0

{
α
(i,k)
j,m

∂m+j

∂xm∂tj
ui (x, t)

/
x=ai

+

∫ bi

ai

γ
(i,k)
j,m (x)

∂m+j

∂xm∂tj
ui (x, t) dx+

+ β
(i,k)
j,m

∂m+j

∂xm∂tj
ui (x, t)

/
x=bi

}
= ϕk (t) , t ∈ (0, T ) , k = 1, N, (2)

and initial conditions

∂k

∂tk
ui(x, t) /t=0 = Di,k (x) , x ∈ (ai, bi) , k = 0, ni − 1, i = 1, n, (3)

where Bi,j,s, Ai,j are the square matrices of order ri, α
(i,k)
j,m , β

(i,k)
j,m ,γ

(i,k)
j,m (x) are the

vectors of the row of dimension ri; ϕk (t) is a scalar function Di,k, fi, ui are the
columns of dimension ri; S (i, j, k) and χ (i, k) are non-negative integers less or

equal to ni − 1 and ni respectively; N ≡
n∑
ν=1

dν , dν = nνrν ; ri, ni, n are natural

numbers; ai, bi (ai < bi) are finite numbers ; T (0 < T ≤ ∞) is some number.
In (1)-(3) u1, u2, ..., un is the sought-for solution, and the remaining ones are

considered to be known.
At the same time, note that the problem of vibrations of a end fastened string,

at some points of which there are concentrated masses, are reduced to the prob-
lems of the form (1)-(3) (see [1], p. 147).

In the present paper we’ll consider the case when conditions (3) are irregular.
For simplicity of notation we consider the following model problems 2 and 3.

Problem 2. Find the solution of the hyperbolic equation

∂2u

∂ t2
=
∂2u

∂ x2
+ F (x, t) , 0 < x < 1 , 0 < t <∞, (4)

satisfying the nonlocal conditions

Ui(u) ≡
∫ 1

0
Ki(x)u(x, t)dx = ϕi(t) , 0 < t <∞ , i = 1, 2, (5)

and initial conditions

∂ku

∂ tk

∣∣∣∣
t=0

= fk(x) , 0 < x < 1 , k = 0, 1, (6)

where u ≡ u(x, t) is the sought-for positive solution, and the remaining ones are
the known functions.

At the same time note that conditions (5) are irregular.
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10. Let the functions F (x, t), fk(x), (k = 0, 1), ϕi(t) , (i = 1, 2) be continu-
ous for 0 ≤ x ≤ 1, 0 ≤ t <∞.

20. Let Ki(x) ∈ C2([0, 1]) , i = 1, 2 and A ≡ K1(0)K2(1)−K1(1)K2(0) 6= 0.
Applying the finite integral transformation

ϕ̃(t, λ) =

∫ t

0
e−λτϕ(τ) d τ, (7)

to problem 2, we get the parametric problem

y′′ − λ2y = ψ(x) , x ∈ (0, 1), (8)

Ui(y) = γi , i = 1, 2. (9)

Let 2 G(x, ξ, λ) be the Green function of problem (8)-(9); ∆(λ) be the denom-
inator of the Green function; δ(x, λ, γ1, γ2) be the solution of the homogeneous
equation corresponding to (8), satisfying nonhomogeneous conditions (9);

y1(x, λ) = e−λx; y2(x, λ) = e−λ(1−x);

A1(x, λ) = U2(y2)y1(x, λ)− U2(y1)y2(x, λ);

A2(x, λ) = U1(y1)y2(x, λ)− U1(y2)y1(x, λ) .

For problem 2, choosing the domain Ω and the line L by formula (0.3) by the
way stated in [6], it is easy to prove the following

Theorem 1. At restrictions 10 and 20:

(1) if problem (4)-(6) has a solution, then this solution is unique and is rep-
resented by the integral (analytic) formula

u(x, t) =
1

2π
√
−1

∫
L

{
δ

(
x, λ,

∫ t

0
eλ(t−τ)ϕ1(τ)dτ ,

∫ t

0
eλ(t−τ)ϕ2(τ)dτ

)
+

+
1

λ∆(λ)
[A1(x, λ)ϕ1(t) +A2(x, λ)ϕ2(t)]−

∫ 1

0
G(x, ξ, λ)[eλ tf1(ξ)+

+λeλ tf0(ξ) +

∫ t

0
eλ(t−τ)F (ξ, τ)dτ ]dξ

}
dλ, 0 < x < 1, 0 < t <∞, (10)

(2) if the integrals contained in (10) diverge, or the function u(x, t) defined
by formula (10) is not the solution of problem (4)-(6), this problem has
no solution.

Imposing the sufficient smoothness conditions on the functions F (x, t), ϕi(t) ,
(i = 1, 2) , fk(x), (k = 0, 1), by the method stated in [6], it is easy to be convinced
that the function u(x, t) determined by formula (10) is the solution of problem
(4)-(6).

Problem 3. Find the solution of the hyperbolic equation

∂u

∂ t
=
∂u

∂ x
+ F (x, t) , 0 < x < 1 , 0 < t ≤ T, (11)

satisfying the boundary condition

∂u(x, t)

∂ x

∣∣∣∣
x=0

− u(x, t)|x=1 = γ(t) , 0 < t ≤ T, (12)

2For G(x, ξ, λ) , ∆(λ) , δ(x, λ, γ1, γ2) see [6].
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and the initial condition

u(x, t)|t=0 = f(x) , 0 < x < 1, (13)

where u ≡ u(x, t) is the sought for classic solution, and the remaining ones are
the known functions, T is some positive number.

30. Let the functions F (x, t), f(x), γ(t) be continuous for 0 ≤ x ≤ 1,0 ≤ t ≤ T .
40. Let problem (11)-(13) have the classic solution u ≡ u(x, t) possessing

the derivatives of the form
∂ku(x, t)

∂ xk
,
∂ku(x, t)

∂ tk
, (k = 1, 2) including u(x, t),

∂ku(x, t)

∂ xk
,
∂ku(x, t)

∂ tk
∈ C([0, 1]× [0, T ]) , k = 1, 2.

Applying the finite integral transformation (7) to (11)-(13), we have(
∂

∂ x
− λ
)
ũ(x, t, λ) = e−λ tu(x, t)− f(x)−

∫ t

0
e−λ τF (x, τ)dτ, (14)

∂

∂ x
ũ(x, t, λ)

∣∣∣∣
x=0

− ũ(x, t, λ)|x=1 =

∫ t

0
e−λ τγ(τ)dτ, (15)

where ũ(x, t, λ) ≡
t∫
0

e−λ τu(x, τ)dτ .

For solving problem (14)-(15), at first we solve the following parametric prob-
lem:3

y′ − λ y = ψ(x) , x ∈ (0, 1), (16)

y′
∣∣
x=0
− y|x=1 = β, (17)

where ψ(x) ∈ C([0, 1]) , β is some number.
The denominator of the Green function of problem (16)-(17) will be

∆(λ) = eλ − λ. (18)

From (18) we have

∆(λ) = eλ · ρ(λ), (19)

ρ(λ) = 1− σ(λ), (20)

where σ(λ) =
λ

eλ
.

In the right half-plane we try to find some appropriative domain Ω that has
the inequality

|σ(λ)| ≤ 1

2
, for λ ∈ Ω. (21)

If λ = r e
√
−1ϕ, then

|σ(λ)| = r

er cosϕ
. (22)

We take the sequence of numbers ϕn so that

0 < ϕ1 < ϕ2 < ... < ϕn < ... < π/2; (23)

cosϕ1 < 2/e; lim
n→∞

ϕn = π/2.

3The not self-adjoint boundary value problem was studied in [3] and in other papers
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The function gn(x) =
x

ex cosϕn
, x ∈ [0,∞) for x =

1

cosϕn
attains its greatest

value

max
x∈[0,∞)

gn(x) = gn

(
1

cosϕn

)
=

1

e cosϕn
>

1

2
, for n ≥ 1, (24)

and in the interval
[

1
cosϕn

,∞
)

it strongly decreases and

lim
x→∞

gn(x) = 0. (25)

This means that in the interval
[

1
cosϕn

,∞
)

there exists such a unique number

for which x = rn

gn(rn) =
rn

ern cosϕn
=

1

2
; (26)

x

ex cosϕn
≤ 1

2
for x ∈ [rn,∞) . (27)

It follows from (22) and (27) that

|σ(λ)| ≤ 1

2
for rn ≤ r = |λ| <∞, |ϕ| ≤ ϕn, (28)

where ϕ = arg λ.
Let

An = rn cosϕn +
√
−1rn sinϕn = B̄n; n = 1, 2, ...;

Cn = rn+1 cosϕn +
√
−1rn+1 sinϕn = D̄n; n = 0, 1, ...;

(CnAn+1) = {λ : |λ| = rn+1; ϕn ≤ arg λ ≤ ϕn+1}, n = 0, 1, ..., ;

(AnCn) = {λ : rn ≤ |λ| ≤ rn+1; arg λ = ϕn}, n = 1, 2, ..., ;

L is a symmetric line (see fig. 1) with respect to the real axis λ of the plane
whose upper part is determined in the form

(upper part L) =
∞⋃
n=0

(CnAn+1)
⋃ ∞⋃
n=1

(AnCn);

Ω is the closed domain with the boundary L remained at the right side of this
line (see fig.1).

Fig. 1.
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Validity of (21) follows from (28).
Taking into account (21) in (20), we have

|ρ(λ)| ≥ 1

2
, for λ ∈ Ω. (29)

Taking into attention (29), from (19) we get

∆(λ) 6= 0, for λ ∈ Ω. (30)

Thus, we establish the following
Lemma 1. For λ ∈ Ω and ψ(x) ∈ C([0, 1]) problem (16)-(17) has a unique

solution and this solution is represented by the formula

y(x, λ) = J(x, λ;ψ(x))− eλx

∆(λ)
β, 0 ≤ x ≤ 1 , λ ∈ Ω, (31)

where

J(x, λ;ψ(x)) =
eλx

∆(λ)

{
ψ(0)−

∫ 1

0
eλ(1−ξ)ψ(ξ)dξ

}
+

∫ x

0
eλ(x−ξ)ψ(ξ)dξ. (32)

For λ ∈ Ω according to lemma 1, from (14)-(15) we get∫ t

0
e−λ τu(x, τ)dτ = e−λ tJ(x, λ;u(x, t)) + Φ(x, t, λ), (33)

where

Φ(x, t, λ) =
eλx

∆(λ)

{
−f(0)−

∫ t

0
e−λ τF (0, τ)dτ +

+

∫ 1

0
eλ(1−ξ)

[
f(ξ) +

∫ t

0
e−λ τF (ξ, τ)dτ

]
dξ−

−
∫ t

0
e−λ τγ(τ)dτ

}
−
∫ x

0
eλ(x−ξ)

[
f(ξ) +

∫ t

0
e−λ τF (ξ, τ)dτ

]
dξ. (34)

Multiplying the both sides of (33) by eλ t, we have

eλ t
∫ t

0
e−λ τu(x, τ)dτ − J(x, λ;u(x, t)) = eλ tΦ(x, t, λ),

0 ≤ x ≤ 1 , 0 ≤ t ≤ T , λ ∈ Ω. (35)

Now show that ∫
L

eλt

λ2
dλ = 2π

√
−1 t, for t > 0. (36)

Let C∗n be a circle in λ -plane, of radius rn centered at the point λ = 0. In
what follows, let

C
(1)
n = {λ : λ = rne

√
−1ϕ, ϕn ≤ ϕ ≤ π/2};

C
(2)
n = {λ : λ = rne

−
√
−1ϕ, ϕn ≤ ϕ ≤ π/2};

C(0)
n = {λ : |λ| = rn, Reλ ≤ 0}. (37)

It is clear that

2π
√
−1 =

∫
C∗
n

eλ

λ2
dλ =

∫
Ln

+

∫
C

(1)
n

+

∫
C

(2)
n

+

∫
C

(0)
n

≡ I1,n+ I2,n+ I3,n+ I4,n, (38)

where Ln is the part of L remained interior to the circle C∗n.
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From (37) and (38) we get

I2,n =
√
−1

∫ π/2

ϕn

ern(cosϕ+
√
−1 sinϕ)

rn(cosϕ+
√
−1 sinϕ)

dϕ.

Consequently 4

|I2,n| ≤
∫ π/2

ϕn

ern cosϕ

rn
dϕ =

1

rn

∫ π/2

ϕn

ern sin(π2−ϕ)dϕ ≤ 1

rn

∫ π/2

ϕn

ern(π2−ϕ)dϕ =

=
1

r2n

{
ern(π2−ϕn) − 1

}
≤ 1

r2n

{
ern

π
2
sin(π2−ϕn) − 1

}
=

1

r2n

{
ern

π
2
cosϕn − 1

}
=

=
1

r2n

{
(ern cosϕn)

π
2 − 1

}
.

Hence, using (26), we get

|I2,n| ≤
1

r2n

{
(2rn)

π
2 − 1

}
,

that yields the validity of
lim
n→∞

I2,n = 0. (39)

Similarly, it is established that

lim
n→∞

I3,n = 0, lim
n→∞

I4,n = 0. (40)

Taking into account (39) and (40) in (38), we get∫
L

eλ

λ2
dλ = 2π

√
−1, (41)

that shows the validity of (36) for t = 1. For t > 0 and t 6= 1, taking into account
the identity ∫

C

eλ t

λ2
dλ ≡ t

∫
C

eλ

λ2
dλ, for t > 0,

where C is an arbitrary circle in the λ plane centered at the point λ = 0, from
equality (41) we get the validity of (36).

It holfs
Lemma 2. If ϕ(t) ∈ C2([0, T ]), then it holds the following inversion formula

1

π
√
−1

∫
L

{
eλ tϕ̃(t, λ)− eλt

λ
ϕ(0)

}
dλ = ϕ(t)− 2ϕ(0) , 0 < t ≤ T, (42)

where ϕ̃(t, λ) is form (7).
Proof. According to the lemma conditions, we have

ϕ̃(t, λ)− eλt

λ
ϕ(0) = − 1

λ
ϕ(t)− ϕ′(t)

λ2
+
eλt

λ2
ϕ′(0) +

1

λ2

∫ t

0
eλ(t−τ)ϕ′′(τ)dτ.

Consequently, using (36) we have∫
L

{
eλ tϕ̃(t, λ)− eλt

λ
ϕ(0)

}
dλ = −π

√
−1ϕ(t) + 2π

√
−1 tϕ′(0)+

4Here we use the known inequality 2
π
x ≤ sinx ≤ x , for 0 ≤ x ≤ π/2. (see for instance

Fichtenholts G.M. Course of differential and integral calculus. M.: Nauka, 1969, vol.1).
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+2π
√
−1

∫ t

0
(t− τ)ϕ′′(τ)dτ ,

that yields the validity of lemma 2.
It holds
Lemma 3. If ψ(x) ∈ C2([0, 1]), then it holds the following inversion formula∫

L
J(x, λ;ψ(x))dλ = −π

√
−1ψ(x) , 0 < x < 1, (43)

where J(x, λ;ψ(x)) is from (32).
Proof. According to the lemma conditions, from (32) we get

J(x, λ;ψ(x)) = − 1

λ
ψ(x) +

e−λ(1−x)

λ
ψ(1) +

σ(λ)

λ · ρ(λ)
e−λ(1−x)ψ(1)+

+
e−λ(2−x)

λ · ρ(λ)
ψ′(1)− e−λ(1−x)

λ · ρ(λ)
ψ′(0)− 1

λ

∫ 1

x
e−λ(ξ−x)ψ′(ξ)dξ−

−e
−λ(1−x)

λ · ρ(λ)

∫ 1

0
e−λ ξψ′′(ξ)dξ. (44)

Using the Jordan lemma [2] and estimations (29) and (21), from (44) we easily
get the validity of formula (43). The lemma is proved.

Remark. In lemma 2 and 3, the restrictions imposed on the functions ϕ(t)
and ψ(x) may be weakened.

From (35) we have{
eλ t
∫ t

0
e−λ τu(x, τ)dτ − eλ t

λ
u(x, 0)

}
− J(x, λ;u(x, t)) = Φ1(x, t, λ),

0 ≤ x ≤ 1 , 0 ≤ t , λ ∈ Ω, (45)

where Φ1(x, t, λ) = eλ tΦ(x, t, λ)− eλ t

λ f(x).
Integrating (45) and using the inversion formulas (42) and (43) we get

u(x, t) = f(x) +
1

2π
√
−1

∫
L

Φ1(x, t, λ)dλ , 0 < x < 1 , 0 < t ≤ T. (46)

Thus, we established the following
Theorem 2. Under restrictions 30 and 40:

(1) if problem (11)-(13) has a solution, this solution is unique and it may
represented by formula (46);

(2) if the integrals contained in (46) diverge or the function u(x, t) defined by
formula (46) is not the solution of problem (11)-(13), then this problem
has no solution.

Imposing the sufficient smoothness conditions on the functions F (x, t), f(x),
γ(t), by the method stated in [6], it is easy to be convinced that the function
u(x, t) determined by formula (46) is the solution of problem (11)-(13).

Remark 1. Denote by λk the roots of the equation

eλ − λ = 0.

At the same time note that for all λk it holds the inequality Reλk > 0, and for
large k they have the asymptotics

Reλk = ln(2kπ) ; Imλk = ±2kπ , k = N,N + 1, ...,
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where N is a rather large natural number.
Let L be the Laplace straight line passing through the point a, where a is any

positive fixed number and Reλk 6= a, for all λk.
Then integrating5 (45) with respect to the Laplace straight line L, we have∫

L
eλ tdλ

∫ t

0
e−λ τu(x, τ)dτ −

∫
L

eλ t

λ
dλu(x, 0)−

−
∫
L
J(x, λ;u(x, t))dλ =

∫
L

Φ1(x, t, λ)dλ. (47)

Note that ∫
L
eλ tdλ

∫ t

0
e−λ τu(x, τ)dτ = π

√
−1u(x, t) , t > 0 ;∫

L

eλ t

λ
dλ = 2π

√
−1;∫

L
J(x, λ;u(x, t))dλ = π

√
−1u(x, t) + 2π

√
−1×

×
∑

Reλk<a

eλkx

λk − 1

{
u(0, t)−

∫ 1

0
eλk(1−ξ)u(ξ, t)dξ

}
, 0 < x < 1. (48)

Substituting (48) in (47), we get

u(x, 0) +
∑

Reλk<a

eλkx

λk − 1

{
u(0, t)− λk

∫ 1

0
e−λkξu(ξ, t)dξ

}
=

= − 1

2π
√
−1

∫
L

Φ1(x, t, λ)dλ , 0 < x < 1 , 0 < t ≤ T. (49)

(49) is the Fredholm integral equation of second kind. It is clear that it is
more difficult to solve the Fredholm equation of second kind than problem 3
Consequently, for solving problem 3 it is not appropriate to solve problem 3 by
using the Laplace straight line.

Remark 2. The method used here for finding the ”appropriate” domain Ω
and line L may be successfully used while solving a wide range of mixed problems
for hyperbolic equations with irregular boundary conditions.
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