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ISOSPECTRALITY PROBLEM FOR DIRAC SYSTEM
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In memory of M. G. Gasymov on his 75th birthday

Abstract. In this paper, we investigate the isospectrality problem for
Dirac system by using Gelfand-Levitan integral equation and transmu-
tation operators.

1. Introduction

Inverse problems of spectral analysis has an important place. The first result
about inverse problems was obtained by Ambartsumyan [1]. Sweden mathe-
matician Borg firstly called attention to this result [2]. Borg showed that Sturm-
Liouville operator didn’t define with one spectrum in general case. He also showed
that Sturm-Liouville operator was defined as one-to-one when different boundary
conditions were satisfied. After this study, when potential provided symmetry
condition q(x) = q(π−x), N. Levinson [13, 14] proved that one spectrum defined
Sturm-Liouville operator. The basic study about inverse problems of spectral
analysis was done by Gelfand and Levitan [8].

For Sturm-Liouville operators, exact solution for two spectra of inverse prob-
lem was obtained by Gasymov and Levitan [16]. In this study necessary and
sufficient conditions were defined for the solution of inverse problem according to
two spectra. The determinated problem of regular and singular Dirac operator
for two spectra was considered by Gasymov and Dzabiev [5].

Then the next years, Hochstadt [9], Levitan [15] and Panakhov [18] investigated
inverse problem for Sturm-liouville and Dirac operator for partially non-coincide
spectrum with different methods.

For scalar Sturm-Liouville equations, to recover potential another method was
proposed by Pöschel and Trubowitz in [19]. Then Jodeit and Levitan [10, 11, 12],
for constructing isospectral problems of the classical Sturm-Liouville differential
equations in scalar and vectorial cases, proposed another method that is based on
the Gelfand-Levitan (GL) integral equation and transmutation (transformation)
operators. Chern [3] extended this idea of Jodeit and Levitan for classical Sturm-
Liouville equations in vectorial cases.

In this paper we investigate the isospectral problem for Dirac operators. Re-
search of inverse problems for Dirac operators have been investigated by many
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mathematicians (see [4, 6, 7, 17, 20]. In this paper we give a relatively proof of
the GL integral equation and a proof of the existence of transmutation operator
and investigate isospectral problem of Dirac operator.

2. Preliminary Results

Let p0(x) and q0(x), 0 ≤ x ≤ π, be real differentiable functions and h0 and H0

fixed real numbers. Consider Dirac system

By′ +Q0(x)y = λy, 0 ≤ x ≤ π, (1)

y2(0)− h0y1(0) = 0, (2)

y2(π) +H0y1(π) = 0.

Here

Q0(x) =

(
p0(x) q0(x)
q0(x) −p0(x)

)
, B =

(
0 1
−1 0

)
, y =

(
y1
y2

)
.

Let ϕ0(x, λ) = (ϕ01(x, λ), ϕ02(x, λ))> be the solution of (1) which satisfies
ϕ01(0, λ) = 1, ϕ02(0, λ) = h0 initial conditions. Thus for every λ, ϕ0(x, λ) satisfies
the first boundary condition (2). The eigenvalues of (1)-(2) are the roots of the
equation

ϕ02(π) +H0ϕ01(π) = 0. (3)

Corresponding eigenfunctions are ϕ0(x, λ), n ≥ 0.
Let constitute the kernel for an integral equation system, as following. The

components of matrix

F (x, y) =
∞∑
−∞

1

α2
n,0

ϕ0(x, λ)ϕ0(y, λ)>, (4)

are continuous and have two continuous derivatives. Also we accept that this
series is uniform convergence with respect to x and y. Integral equation system

K(x, y) + F (x, y) +

∫ x

0
K(x, t)F (t, y)dt = 0, 0 ≤ y ≤ x ≤ π, (5)

plays an important role in this paper. Here F (x, y) is a known matrix function
of y, x is a parameter and K(x, y) (as a unknown matrix function of y) plays the
role of the matrix function in [17].

Theorem 2.1. Suppose that, for all n ≥ 0,

α2
n,0 > 0, (6)

where

α2
n,0 =

∫ π

0
[ϕ01(x, λ)2 + ϕ01(x, λ)2]dx.

Then integral equation system (5) has only one solution for every x, 0 ≤ x ≤ π
[17].
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Proof. It is enough to show that the following homogeneous equation system has
only trivial solution:

hx(y) +

∫ x

0
F (t, y)hx(t)dt = 02×2. (7)

Multiplying the equation system (7) with hx(y) and integrating in y from 0 to x,
we obtain ∫ x

0
h2x(y)dy +

∫ x

0

∫ x

0
F (t, y)hx(t)hx(y)dtdy = 02×2.

From (4), we obtain∫ x

0
h2x(y)dy +

∫ x

0

∫ x

0
[

∞∑
−∞

1

α2
n,0

ϕ0(t, λ)ϕ0(y, λ)>]hx(t)hx(y)dtdy = 02×2.

From the definition of Dirac-Delta function∫ x

0
h2x(y)dy +

∫ x

0

∫ x

0
Iδ(x− t)hx(t)hx(y)dtdy = 02×2.

Therefore we deduce ∫ x

0
h2x(y)dy = 02×2.

Thus we obtain that hx(y) ≡ 02×2. The proof is completed. �

Theorem 2.2. The solution of the integral equation system (5) satisfies differ-
ential equation system

B
∂K

∂x
+Q(x)K(x, y) = −∂K

∂y
B +Q0(y)K(x, y). (8)

Here

Q(x) = Q0(x) +BK(x, x)−K(x, x)B. (9)

Also, K(x, y) satisfies the following conditions [17]:

BK(x, x)−K(x, x)B = Q(x)−Q0(x), (10)

K21(x, 0) = K11(x, 0) = 0. (11)

Proof. Let

J = K(x, y) + F (x, y) +

∫ x

0
K(x, t)F (t, y)dt = 02×2 (0 ≤ y ≤ x ≤ π),

J ≡ BJx + JyB +Q(x)J −Q0(y)J = 02×2, (12)

where Q(x) has form (9) and Q0(x) is potential of the unperturbed problem (1),

BJx = B
∂K

∂x
+B

∂F

∂x
+BK(x, x)F (x, y) +

∫ x

0
B
∂

∂x
(K(x, t))F (t, y)dt, (13)

JyB =
∂K

∂y
B +

∂F

∂y
B +

∫ x

0
K(x, t)

∂

∂y
(F (t, y))Bdt. (14)
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In integral term of (14), getting −B ∂
∂t(F (t, y)) instead of ∂

∂y (F (t, y))B and inte-

grating by parts we obtain

−
∫ x

0
K(x, t)B

∂

∂t
(F (t, y))dt = −(K(x, t)BF (t, y))|x0 +

∫ x

0

∂

∂t
(K(x, t))BF (t, y)dt

= −K(x, x)BF (x, y) +K(x, 0)BF (0, y) +

∫ x

0

∂

∂t
(K(x, t))BF (t, y)dt.

From definition of J , we get K(x, 0) = −F (x, 0). Thus we can write K11(x, 0) =
K21(x, 0) = 0 and K(x, 0)BF (0, y) = 02×2. From (14)

JyB =
∂K

∂y
B +

∂F

∂y
B −K(x, x)BF (x, y) +

∫ x

0

∂

∂t
(K(x, t))BF (t, y)dt. (15)

On the other hand,

Q(x)J = Q(x)K +Q(x)F +Q(x)

∫ x

0
K(x, t)F (t, y)dt, (16)

−Q0(y)J = −Q0(y)K −Q0(y)F −Q0(y)

∫ x

0
K(x, t)F (t, y)dt. (17)

Replacing (13),(15),(16) and (17) in (12), we obtain

J ≡ 02×2 ≡ [B
∂K

∂x
+
∂K

∂y
B +Q(x)K −Q0(y)K] (18)

+

∫ x

0
[B
∂K

∂x
+
∂K

∂y
B +Q(x)K −Q0(y)K]F (t, y)dt.

On the other hand, K(x, y) satisfies conditions (10) and (11). Equation system
(18) means that matrix function

hx(y) = B
∂K

∂x
+
∂K

∂y
B +Q(x)K −Q0(y)K,

is a solution of homogeneous integral equation system and therefore is equal to
zero matrix. This proves that the differential equation system (8) holds. �

Theorem 2.3. If K(x, y) is a solution of integral equation system (5), is, thus,
because of theorem 2.2, a solution of the problem (8)-(10)-(11),
i) for every complex λ, the vector-valued function

ϕ(x, λ) = ϕ0(x, λ) +

∫ x

0
K(x, t)ϕ0(t, λ)dt, (19)

is a solution of the differential equation system

By′ +Q(x)y = λy, 0 ≤ x ≤ π, (20)

where

Q(x) = Q0(x) +BK(x, x)−K(x, x)B;

ii) vector-valued function ϕ(x, λ) satisfies the initial conditions

ϕ1(0, λ) = 1, ϕ2(0, λ) = h0 = h. (21)
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Proof. The proof of i) is simple [17]. Let prove to ii).
From (19) we get

ϕ1(x, λ) = ϕ01(x, λ) +

∫ x

0
[K11(x, t)ϕ01(t, λ) +K12(x, t)ϕ02(t, λ)]dt,

ϕ2(x, λ) = ϕ02(x, λ) +

∫ x

0
[K21(x, t)ϕ01(t, λ) +K22(x, t)ϕ02(t, λ)]dt.

Getting x = 0 in above equations, we obtain ϕ1(0, λ) = ϕ01(0, λ), ϕ2(0, λ) =
ϕ02(0, λ) since ϕ0(x, λ) is a solution of (1)-(2), we follow the initial conditions
(21). �

Theorem 2.4. Let λn, n ≥ 0, be eigenvalues of unperturbed problem (1)-(2).
Thus vector-valued function ϕ(x, λ), λn instead of λ, described by (19), can be
expressed by the formula

ϕ(x, λn) = ϕ0(x, λn)−
∞∑

k=−∞
ckϕ(x, λk)

∫ x

0
ϕ0(t, λk)

>ϕ0(t, λn)dt. (22)

Proof. From (4) and integral equation system (5) we obtain

K(x, t) = −F (x, t)−
∫ x

0
K(x, s)F (s, t)ds,

K(x, t) = −
∞∑
−∞

ck[ϕ0(x, λk) +

∫ x

0
K(x, s)ϕ0(s, λk)ds]ϕ0(t, λk)

>.

If we consider (19), we obtain

K(x, t) = −
∞∑
−∞

ckϕ(x, λk)ϕ0(t, λk). (23)

Getting λn instead of λ in (19)

ϕ(x, λn) = ϕ0(x, λn) +

∫ x

0
K(x, t)ϕ0(t, λn)dt.

Therefore from (23) it follows that

ϕ(x, λn) = ϕ0(x, λn)−
∞∑

k=−∞
ckϕ(x, λk)

∫ x

0
ϕ0(t, λk)

>ϕ0(t, λn)dt.

The proof is completed. �

The formulas (19) and (22) allow us to consider the isospectrality problem.
We suppose that h0 and H0 are finite. As shown in Theorem 2.3 vector-valued
functions ϕ(x, λn), n ≥ 0 are solutions of equation system (20) and satisfy con-
ditions (21) and thus the boundary condition

ϕ2(0, λn)− hϕ1(0, λn) = 0,
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where

h = h0. (24)

To obtain an operator isospectrality with operator (1)-(2) it is necessary to
show that for some real H, ϕ(x, λn) satisfies, at the point x = π, the boundary
condition

ϕ2(π, λn) +Hϕ1(π, λn) = 0.

At the same time we will obtain a formula for H.
Put x = π into (22) it follows that

ϕ(π, λn) = ϕ0(π, λn)−
∞∑

k=−∞
ckϕ(π, λk)

∫ π

0
ϕ0(t, λk)

>ϕ0(t, λn)dt,

ϕ(π, λn) = ϕ0(π, λn)− cnα2
n,0ϕ(π, λn), (25)

where

α2
n,0 =

∫ π

0
ϕ0(t, λn)>ϕ0(t, λn)dt =

∫ π

0
[ϕ2

01(t, λn) + ϕ2
02(t, λn)dt.

From formula (25) we obtain

ϕ(π, λn) =
ϕ0(π, λn)

1 + cnα2
n,0

(26)

and from here

ϕ1(π, λn) =
ϕ01(π, λn)

1 + cnα2
n,0

, ϕ2(π, λn) =
ϕ02(π, λn)

1 + cnα2
n,0

.

Since ϕ02(π, λn) +H0ϕ01(π, λn) = 0 getting ϕ02(π, λn) = −H0ϕ01(π, λn) = 0 we
deduce

ϕ2(π, λn) = −H0
ϕ01(π, λn)

1 + cnα2
n,0

= −H0ϕ1(π, λn),

ϕ2(π, λn) +H0ϕ1(π, λn) = 0.

Therefore we obtain

H = H0.

References

[1] V. A. Ambartsumyan, Ueber eine frage der eigenwerttheorie, Z. Phys., 53 (1929),
690–695.

[2] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math.,
78 (1946), 1–96.

[3] H.-H. Chern, On the construction of isospectral vectorial Sturm-Liouville differential
equations, arXiv:math/9902041v1 [math.SP], submitted on 5 Feb 1999.
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operators, Časopis Pěst. Mat. Fys. 74 (1949), 17–20.

[15] B. M. Levitan, On the determination of the Sturm-Liouville operator from one and
two spectra, Math. USSR-Izv. 12 (1978), no.1, 179–193 (translated from Izv. Akad.
Nauk SSSR. Ser. Mat., 42 (1978), no. 1, 185–199).

[16] B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two
of its spectra, Russian Mathematical Surveys, 19 (1964), no. 2, 1–63 (translated
from Uspekhi Mat. Nauk, 19 (1964), no. 2(116), 3–63.

[17] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac operators, Nauka,
Moscow, 1988 (in Russian).

[18] E. S. Panakhov, Determination of a Dirac system from two incompletely given sets
of eigenvalues, Doklady Akademii Nauk AzSSR, 41 (1985), no. 5, 8–12.
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