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WITH NONSEPARATED BOUNDARY CONDITIONS

VICTOR A. SADOVNICHII, YAUDAT T. SULTANAEV, AND AZAMAT M. AKHTYAMOV

In memory of M. G. Gasymov on his 75th birthday

Abstract. To uniquely reconstruct the inverse self-adjoint Sturm-Liou-
ville problem with the real numbers in the nonseparated boundary con-
ditions, in addition to the spectrum of the problem itself, the spectra
of additional boundary value problems, and a certain sequence of signs
were used before. If the problems considered in the work of Levitan
and Gasymov are used instead of the additional problem, then the in-
verse self-adjoint Sturm-Liouville problem with nonseparated boundary
conditions can be uniquely reconstructed by a few number of spectral
data, that is by two spectra and two eigenvalues. Uniqueness theorems
and a solvability theorem are proved. The corresponding examples and
counterexample are considered.

1. Introduction

Let L denote the Sturm-Liouville problem

ly = −y′′ + q(x) y = λ y = s2 y, (1.1)

Ui(y) = ai1 y(0) + ai2 y
′(0) + ai3 y(π) + ai4 y

′(π) = 0, i = 1, 2, (1.2)

where q(x)is a real continous function on [0, π]; and aij with i = 1, 2, j = 1, 2, 3, 4
are complex constants.

The inverse Sturm-Liouville problem for L in the case of separated boundary
conditions (a13 = a14 = a21 = a22 = 0) was first considered in [2, 3, 7, 22]
and has been well studied since then (see [8, 9, 10, 11, 15, 20, 24]). The inverse
problem with asymmetric and symmetric potentials and nonseparated boundary
conditions was studied by M. G. Gasymov, I. M. Guseinov, V. A. Marchenko,
I. M. Nabiev, O. A. Plaksina, V. A. Sadovnichii, I. V. Stankevich, V. A. Yurko,
and other authors (see [1, 4, 5, 6, 12, 14, 16, 17, 18, 19, 21, 23, 25]).
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Note that general self-adjoint nonseparated boundary conditions (1.2) can be
reduced to one of the two following types:

(i) boundary conditions

V1(y) = a11 y(0) + y′(0) + a13 y(π) = 0, (1.3)

V2(y) = a21 y(0) + a23 y(π) + y′(π) = 0, (1.4)

where a11 and a23 are any real numbers, a13 6= 0 is any complex number, and
a21 = −a13;

(ii) boundary conditions

P1(y) = y(0) + ω y(π) = 0, (1.5)

P2(y) = ω y′(0) + y′(π) + α y(π) = 0, (1.6)

where ω 6= 0 is any complex number and α is any real number.
To uniquely reconstruct the boundary value problems with self-adjoint non-

separated boundary conditions (1.3), (1.4), in addition to the spectrum of the
problem itself, the spectra of two more boundary value problems, a certain se-
quence of signs, and a certain real number were used (see, e.g., [14, 25]).

Let Y1 and Y2 denote the following spectral Sturm-Liouville problems.
Problem Y1 :

−y′′+q(x) y = λ y, a11 y(0)+y′(0)+a13 y(π) = 0, −a13 y(0)+a23 y(π)+y′(π) = 0.

Problem Y2 :

−y′′ + q(x) y = λ y, a11 y(0) + y′(0) = 0, y(π) = 0.

Here a11, a13, and a23 are real numbers.
The boundary conditions of Problem Y1 are a special case of boundary condi-

tions (1.3), (1.4).
In [25], to uniquely reconstruct Problem Y1, in addition to the spectrum of

the problem itself, the spectra {zn} of Problem Y2, the sequence of signs ωn =
sign (|θ′(π, zn)| − |a13|), where θ(x, λ) is the solution of equation (1.2) with the
boundary conditions θ(0, λ) = 1, θ′(0, λ) = −a11, were used.

As showed below, if the problems considered in the work of Levitan and Gasy-
mov are used instead of the additional problem Y2 with separated boundary
conditions, then the problem Y1 can be uniquely reconstructed by a few number
of spectral data, that is by two spectra and two eigenvalues. Two eigenvalues can
be used instead of infinite consequence of sigs mentioned in [25].

2. Uniqueness of reconstruction Problem Y1 from three spectra

In what follows, we denote a problem of type L but with different coefficients in

the equation and different parameters in the boundary forms by L̃. Throughout
the paper, we assume that if some symbol denotes an object from Problem L then
the same symbol with the tilde ˜ denotes the corresponding object from Problem

L̃.
Along with Problem Y1, we consider the following two problems with decom-

posable boundary conditions.
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Problem G1:

ly = −y′′ + q(x) y = λ y,

U1,1(y) = a11 y(0) + y′(0) = 0,

U2,1(y) = a23 y(π) + y′(π) = 0.

Problem G2:

ly = −y′′ + q(x) y = λ y,

U1,1(y) = a y(0) + y′(0) = 0, a 6= a11,

U2,1(y) = a23 y(π) + y′(π) = 0.

Theorem 2.1. If the eigenvalues of Problems Y1 and Ỹ1, G1 and G̃1, G2 and G̃2

coincide, and their respective algebraic multiplicities coincide, then these bound-
ary value problems coincide as well, i.e., q(x) = q̃(x), a11 = ã11, a13 = ã13,
a23 = ã23.

Proof of Theorem 2.1. When applying Borg’s uniqueness theorem [3], [10, c. 9]
to Problems G1 and G2, we see that

q(x) = q̃(x), a11 = ã11, a23 = ã23, a = ã. (2.1)

Let us demonstrate that a13 = ã13.
Let y1(x, λ) and y2(x, λ) be linearly independent solutions of equation (1.1)

satisfying the conditions

y1(0, λ) = 1, y′1(0, λ) = 0, y2(0, λ) = 0, y′2(0, λ) = 1. (2.2)

Then we have the asymptotic formulas

y1(x, λ) = cos sx+ 1
s u(x) sin sx+O

(
1
s2

)
,

y2(x, λ) = 1
s sin sx− 1

s2
u(x) cos sx+O

(
1
s3

)
,

y′1(x, λ) = −s sin sx+ u(x) cos sx+O
(

1
s

)
,

y′2(x, λ) = cos sx+ 1
s u(x) sin sx+O

(
1
s2

)
,

(2.3)

where u(x) = 1
2

∫ x
0 q(t) dt, for sufficiently large λ = s2 ∈ R ([13, p. 62–65]).

The eigenvalues λk of problem Y1 are the roots of the entire function ([14])

∆(λ) = 2 a13−a23 y1(π, λ)−y′1(π, λ)+(a11 a23+a2
13) y2(π, λ)+a11 y

′
2(π, λ), (2.4)

and the following are true:

λk = k2 + π−1
(

2 b+ (−1)k+14 a13

)
+ σk,

{σk} ∈ l2, λk ≤ λk+1, λk < λk+2, b = −a11 + a23 + 1
2

∫ π
0 q(t) dt.

(2.5)

Substituting the asymptotic formulas for y1(x, λ) and y2(x, λ)) in (2.4) yields

∆(λ) = 2 a13−a23 cos
√
λπ+
√
λ sin

√
λπ−u(π) cos

√
λπ+a11 cos

√
λπ+O

(
1√
λ

)
.

Similarly, we have

∆̃(λ) = 2 ã13−ã23 cos
√
λπ+
√
λ sin

√
λπ−ũ(π) cos

√
λπ+ã11 cos

√
λπ+O

(
1√
λ

)
.
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It can be observed that ∆(λ) and ∆̃(λ) are an entire function of order 1/2.
Besides, according to the assumptions of the theorem, the eigenvalues of Y1 and

Ỹ1 coincide and their corresponding algebraic multiplicities are equal. Therefore,

the Hadamard factorization theorem implies that ∆(λ) ≡ C ∆̃(λ), where C is a
nonzero constant. It follows that

∆(λ)− C∆̃(λ) ≡ 2 (a13 − C ã13)− (a23 − C ã23) cos
√
λπ + (1− C)

√
λ sin

√
λπ

−(u(π)− C ũ(π)) cos
√
λπ + (a11 − C ã11) cos

√
λπ + (1− C)O

(
1√
λ

)
≡ 0.

(2.6)

Here, 1, sin
√
λπ, cos

√
λπ,
√
λ·sin

√
λπ, O

(
1√
λ

)
are linearly independent func-

tions of λ. (This can easily be verified using the definition of linearly independent
functions.) Therefore, C = 1 and

2 (a13 − ã13) +O

(
1

λ

)
≡ 0. (2.7)

Then we have a13 = ã13. �

Remark 2.1. Borg’s Theorem [10, p. 9]) is a special case of Theorem 2.1. Indeed,
in the case of separated conditions (a12 = a21 = 0), problem Y1 coincides with
G1. Therefore, problems Y1=G1 and G2 can only be uniquely reconstructed using
two spectra (namely, those of Y1=G1 and G2).

Theorem 2.1 will be used to prove theorems of unique reconstruction of problem
Y1 from two spectra and one or two eigenvalues.

3. The uniqueness of reconstructing Problem Y1 from two
spectra and one or two eigenvalues

There are theorems stronger than Theorem 2.1 which also are true. They are
based on the fact that equation ∆(λ) = 0 with respect to unknown coefficient
a13 is quadratic.

Let λ1 be the eigenvalue of problem Y1, and λ̃1 be the eigenvalue of problem

Ỹ1.

Theorem 3.1. Let λ1 = λ̃1. If the eigenvalues of problems G1 and G̃1, G2

and G̃2 coincide and their respective algebraic multiplicities coincide as well, and
besides at least one of the conditions are satisfied:

y2(π, λ1) = 0; (3.1)

y2(π, λ1)
(
a11 a23 y2(π, λ1)+a11 y

′
2(π, λ1)−a23 y1(π, λ1)−y′1(π, λ1)

)
= 1; (3.2)

∆(λ1) = 0,
∆(λ)

dλ

∣∣∣
λ=λ1

= 0,
y2(π, λ)

dλ

∣∣∣
λ=λ1

6= 0. (3.3)

Then q(x) = q̃(x), a11 = ã11, a13 = ã13, a23 = ã23.
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Proof of Theorem 3.1. When applying Borg’s uniqueness theorem ([3], [10, c. 9])
to problems G1 and G2 similarly to Theorem 3.1, we see that:

q(x) = q̃(x), a11 = ã11, a23 = ã23, a = ã.

Let us demonstrate that a13 = ã13.
1) Let us assume that condition (3.1) is satisfied. Condition (3.1) means that

the coefficient at a2
13 in (2.4) equals zero (the square equation degenerates into a

linear equation). So, from (2.4), (3.1) and equations λ1 = λ̃1, ∆(λ1) = ∆̃(λ̃1) = 0,
we have

2 a13 = 2 ã13 = a23 y1(π, λ1) + y′1(π, λ) + a11 y
′
2(π, λ1). (3.4)

Hence from (3.4), we obtain a13 = ã13. Thus, the theorem is proved for
condition (3.1).

2) Let us assume that condition (3.2) is satisfied. From (2.4) we have

2 a13−a23 y1(π, λ1)−y′1(π, λ1)+(a11 a23+a2
13) y2(π, λ1)+a11 y

′
2(π, λ1) = 0. (3.5)

Equation (3.5) means that the coefficient at a2
13 does not equal zero (the qua-

dratic equation does not degenerate into a linear equation) and the discriminant
of equation (3.5) equals zero. Consequently, we obtain uniqueness solution

a13 = − 1

y2(π, λ1)
. (3.6)

Thus, the theorem is proved for condition (3.2).
3) Let us assume that condition (3.3) is satisfied. From condition (3.3) and

equations (2.4), (3.3), we conclude that

2 (a13 − ã13) + (a2
13 − ã2

13) y2(π, λ1) = 0,

(a2
13 − ã2

13) y2(π,λ)
dλ

∣∣∣
λ=λ1

= 0.
(3.7)

From condition y2(π,λ)
dλ

∣∣∣
λ=λ1

6= 0 and equations (3.7), we obtain a13 = ã13.

Thus, the theorem is proved for condition (3.3). �

Let λ1 and λ2 be arbitrary eigenvalues of Problem Y1, and λ̃1 and λ̃2 be the

corresponding eigenvalues of Problem Ỹ1.

Theorem 3.2. Let λ1 = λ̃1 and λ2 = λ̃2. If the eigenvalues of problems G1 and

G̃1, G2 and G̃2 coincide and their respective algebraic multiplicities coincide as
well, and besides the condition

y2(π, λ2)− y2(π, λ1) 6= 0, (3.8)

is satisfied, then q(x) = q̃(x), a11 = ã11, a13 = ã13, a23 = ã23.

Proof of Theorem 3.2. From equation (2.4), we have

2 (a13 − ã13) + (a2
13 − ã2

13) y2(π, λ1) = 0,
2 (a13 − ã13) + (a2

13 − ã2
13) y2(π, λ2) = 0.

(3.9)

From (3.8) we obtain the solution of this system of the linear algebraic equa-
tions with two unknown (a13 − ã13) and (a2

13 − ã2
13), and the solution is unique.

So a13 = ã13. �
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Theorem 3.3. Let us assume that eigenvalues of Problems G1 and G̃1, G2 and

G̃2 coincide and their respective algebraic multiplicities coincide as well. Then

among the eigenvalues of Problem Y1 there will be one eigenvalue λ1 = λ̃1, which

satisfies one of conditions (3.1), (3.2), or (3.3), or two eigenvalue λ1 = λ̃1,

λ2 = λ̃2, which satisfy condition (3.8).

Proof of Theorem 3.3. Assume the converse. Then none of conditions (3.1), (3.2),
(3.3) (3.8) is satisfied. Problem Y1 has infinite set of eigenvalues and they all
are either simple or twofold eigenvalues, which is seen in (2.5). Let conditions
(3.1), (3.2), (3.3) and (3.8) be not satisfied for all simple eigenvalues of Problem
Y1, then for all simple eigenvalues of Problem Y1 the following conditions are
satisfied:

y2(π, λ1) 6= 0, y2(π, λ2) 6= 0, y2(π, λ2)− y2(π, λ1) = 0, (3.10)

and for all twofold eigenvalues λi the following conditions are satisfied:

y2(π, λi) 6= 0,
y2(π, λ)

dλ

∣∣∣
λ=λi

= 0. (3.11)

When applying Borg’s uniqueness theorem [3], [10, p. 9] to Problems G1 and G2

similarly in Theorem 2.1, we obtain (2.1). From the aforementioned and (3.10),

(3.11) we get that for all eigenvalues λi of Problem Y1 equations ∆(λi)−∆̃(λi) = 0
equal the following equation

2 (a13 − ã13) + (a2
13 − ã2

13) y2(π, λ1) = 0 (y2(π, λ1) 6= 0), (3.12)

and for all any twofold eigenvalues λi, the equations ∆(λ)
dλ

∣∣∣
λ=λi

− ∆(λ)
dλ

∣∣∣
λ=λi

= 0

equal the following equation

(a2
13 − ã2

13)
y2(π, λ)

dλ

∣∣∣
λ=λi

= 0

(
y2(π, λi) 6= 0,

y2(π, λ)

dλ

∣∣∣
λ=λi

= 0

)
. (3.13)

Equations (3.12) and (3.13) are satisfied if and only if a13 = ã13 and a13 =
−ã13− 2

y2(π, λi)
. If a13 6= − 1

y2(π, λ1) , then these values do not coincide and are two

different solutions for a13.
Let us demonstrate that a13 6= − 1

y2(π, λ1) . Assume the converse. Then a13 =

− 1
y2(π, λ1) . Since (3.1), (3.2) are not true, it follows that

y2(π, λ1) 6= 0,

y2(π, λ1)
(
a11 a23 y2(π, λ1) + a11 y

′
2(π, λ1)− a23 y1(π, λ1)− y′1(π, λ1)

)
6= 1.

(3.14)
This inequalities demonstrate that the equation discriminant square relative to
a13 differs from zero.) As λ1 is the eigenvalue of Problem Y1, then it is the
root of characteristic determinant ∆(λ) and satisfies equation (3.5). Substituting
− 1
y2(π, λ1) for a13 in (3.5), we get

a11 a23 y2(π, λ1) + a11 y
′
2(π, λ1)− a23 y1(π, λ1)− y′1(π, λ1) =

1

y2(π, λ1)
.

The last equation contradicts the inequalities (3.14).
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Thus, for all eigenvalues λi the equations ∆(λi) = 0 are satisfied with two dif-
ferent values a13. This contradicts Theorem 2.1 about uniqueness of reconstruc-
tion of Problem Y1 by all eigenvalues. This contradiction proves the theorem.

Thus, among the eigenvalues of Problem Y1 there will be one eigenvalue λ1 = λ̃1,

which satisfies one of conditions (3.1), (3.2), or (3.3), or two eigenvalue λ1 = λ̃1,

λ2 = λ̃2, which satisfy condition (3.8). �

4. Solvability of the Inverse Problem from two spectra and two
eigenvalues

The main question in the paragraph is as follows.
Solvability question for the inverse problem. Given two real numbers λ1

and λ2 and two sequences of real numbers µk and νk, do there exist an absolutely
continuous function q(x) and numbers a, a11, a13, and a23 such that {µk} is the
spectrum of Problem G1, {νk} is the spectrum of Problem G2, and the numbers
λ1 and λ2 are the eigenvalues of problem Y1?

Suppose that sequences of real numbers µk and νk satisfy the following two
conditions.

Condition 1. The numbers µk and νk alternate, i.e., µ0 < ν0 < µ1 < ν1 <
µ2 < ν2 < . . . (or ν0 < µ0 < ν1 < µ1 < ν2 < µ2 < . . . ).

Condition 2. The following asymptotic formulas hold:

µk = k2 + b0 + o (1) , νk = k2 + b′0 + o (1) ,

moreover, b′0 6= b0.

Condition 3. The function

Φ(x) =
2

π

∞∑
k=1

(
νk − µk
b′0 − b0

cos
√
µk − cos kx

)
has integrable derivative.

When applying Theorem 3.4.2 from [9, p. 58] to Problems G1 and G2, we
obtain the following solvability theorem for the inverse problem.

Lemma 4.1. Two sequences of real numbers µk and νk are the eigenvalues of
Problems G1 and G2, respectively, if and only if Conditions 1, 2, and 3 are
satisfied.

To prove the solvability of the inverse problem stated above, it remains to show
that the coefficient a13 can be found. Let us demonstrate this.

It is already shown that q(x) can be found; hence, we can consider solutions
of equation (1.1).

Let y1(x, λ) and y2(x, λ) be linearly independent solutions of equation (1.1)
satisfying conditions (2.2).

If the values λ1 and λ2 are the roots of the equation

2 a13 − a23 y1(π, λi)− y′1(π, λi) + (a11 a23 + a2
13) y2(π, λi) + a11 y

′
2(π, λi) = 0,

(4.1)
then the values λ1 and λ2 are the roots of the characteristic determinant ∆(λ) and
the eigenvalues of Problem G1. So, to prove the unique solvability of the Inverse
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Problem we need to prove the unique solvability of equations (4.1) relative to
unknown value a13.

Suppose values a11, a23 and function q(x) are reconstructed. Then linearly
independent solutions y1(x, λ) and y2(x, λ) of equation (1.1) under conditions
(2.2) are known. So we can set the following conditions.

Condition 4. Numbers λ1 and λ2 satisfy equation (4.1). Besides the number
λ1 or λ2 satisfies at least one of conditions (3.1), (3.2), or (3.3).

Condition 5. Numbers λ1 and λ2 satisfy equation (4.1), inequality (3.8), and
the condition D2

1 = D ·D2, where

D =

∣∣∣∣ 2 y2(π, λ1)
2 y2(π, λ2)

∣∣∣∣ , (4.2)

D1 =

∣∣∣∣ a23 y1(π, λ1) + y′1(π, λ1)− a11 a23 y2(π, λ1)− a11 y
′
2(π, λ1) y2(π, λ1)

a23 y1(π, λ2) + y′1(π, λ2)− a11 a23 y2(π, λ2)− a11 y
′
2(π, λ2) y2(π, λ2)

∣∣∣∣ ,
(4.3)

D2 =

∣∣∣∣ 2 a23 y1(π, λ1) + y′1(π, λ1)− a11 a23 y2(π, λ1)− a11 y
′
2(π, λ1)

2 a23 y1(π, λ2) + y′1(π, λ2)− a11 a23 y2(π, λ2)− a11 y
′
2(π, λ2)

∣∣∣∣ . (4.4)

The application of Lemma 4.1 and Theorem 3.3 yields

Theorem 4.1. If two sequences of real numbers µk, νk satisfy Conditions 1, 2
and 3, and two real numbers λ1, λ2 satisfy Conditions 4 or 5, then there exists a
unique Problem Y1 (with an absolutely continuous function q(x) and numbers a,
a11, a13, a23) such that {µk} is the spectrum of Problem G1, {νk} is the spectrum
of Problem G2, and numbers λ1, λ2 are the eigenvalues of Problem Y1.

Proof of Theorem 4.1. If two sequences of real numbers µk, νk satisfy Conditions
1, 2 and 3, then by Lemma 4.1 there exists a unique Problem G1 and a unique
Problem G2 with an absolutely continuous function q(x) and numbers a, a11,
and a13. To prove the solvability of the inverse problem stated above, it remains
to show that the coefficient a13 can be found. Let us show this. It is already
shown that q(x) can be found; hence, we can consider solutions of equation
(1.1). Let y1(x, λ) and y2(x, λ) be linearly independent solutions of equation
(1.1), satisfying conditions (2.2). With the help of y1(x, λ) and y2(x, λ) we write
system (4.1) of two equations with one unknown a13. Suppose the numbers
λ1 and λ2 satisfy Condition 4 or 5. Then equations (4.1) mean that numbers
λ1 and λ2 are eigenvalues of Problem Y1 with one unknown coefficient a13. If
the numbers λ1 and λ2 satisfy at least one of conditions (3.1), (3.2), (3.3), or
(3.8), then coefficient a13 is uniquely determined by the numbers λ1 and λ2. The
formula for a13 depends on what kind of conditions (3.1), (3.2), (3.3) or (3.8) is
satisfied.

1) If λ1 satisfies (3.1), then using (4.1), we get

a13 =
1

2

(
a23 y1(π, λ1) + y′1(π, λ1)− a11 y

′
2(π, λ1)

)
. (4.5)

2) If λ1 satisfies (3.2), then from (4.1) it follows that quadratic with respect
to unknown a13 have nonzero discriminant. So the coefficient a13 is uniquely
determined by formula (3.6).
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3) If λ1 satisfies (3.3), then we get (4.1) and the equation ∆(λ)
dλ

∣∣∣
λ=λ1

= 0. The

equation is equivalent to the equation

a2
13 = V,

where

V = d
dλ

(
a23 y1(π, λ) + y′1(π, λ)− a11 y

′
2(π, λ)

)
·
(
d
dλ y2(π, λ)

)−1

∣∣∣∣∣
λ=λ1

−

−a11 a23.
(4.6)

Substituting (4.6) for a2
13 in (4.1), we get

a13 =
1

2

(
a23 y1(π, λ1)+y′1(π, λ1)−(a11 a23+V ) y2(π, λ1)−a11 y

′
2(π, λ1)

)
. (4.7)

4) If λ1 and λ2 satisfy condition (3.8), then by Cramer’s rule, it follows that
the solution of (4.1) is

a13 =
D1

D
,

(
a2

13 =
D2

D

)
, (4.8)

where D, D1, D2 are determined by formulas (4.2), (4.3), (4.4). �

Remark 4.1. From Lemma 4.1 it follows that two sequences of real numbers µk,
νk satisfying Conditions 1, 2 and 3 exist. From Theorem 3.3 it follows that two
real numbers λ1, λ2, satisfying Conditions 4 or 5 exist.

Remark 4.2. Theorem 4.1 generalizes Levitan and Gasymov’s solvability theorem
[2, Theorem 3.4.2, p. 58] to the case of nonseparated boundary conditions. In-
deed, in the special case where a13 = 0 (Problem Y1=Problem G1), the numbers
λ1 and λ2 coincide with two terms in the sequence of µk. So λ1 and λ2 satisfy
Condition 4 or 5. From Theorem 4.1 it follows that two terms in the sequence of
µk with Condition 4 or 5 exist. Thus, in the case a13 = 0, Theorem 4.1 coincides
with Levitan and Gasymov’s solvability theorem.

5. Scheme for identification of Problems Y1, G1 G2

By Theorem 4.1 we can give the Scheme for identification of Problems Y1, G1

G2:
Step 1. The absolutely continuous function q(x) and the numbers a, a11,

a23 are uniquely determined from two sequences of real numbers µk, νk under
Conditions 1, 2 and 3. They, and therefore Problems G1 G2 are determined
by well known methods of identification of inverse Sturm-Liouville problems (see
[9]).

Step 2. By the function q(x) we find the linearly independent solutions
y1(x, λ) and y2(x, λ) of equation (1.1), satisfying conditions (2.2).

Step 3. By the numbers a11, a23, the functions y1(x, λ), y2(x, λ), we write
characteristic determinant (2.4) of Problem Y1 with unknown coefficient a13.

Step 4. By the numbers λ1 and λ2 satisfying Condition 4 or 5 we uniquely
determine a13. The formula for a13 depends on what kind of conditions (3.1),
(3.2), (3.3) or (3.8) is satisfied. If λ1 satisfies condition (3.1), then we use formula
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(4.5); if λ1 satisfies condition (3.2), then we use formula (3.6); if λ1 satisfies
condition (3.3), then we use formulas (4.6) and (4.7); if λ1 and λ1 satisfy condition
(3.8), then we use formula (4.8).

6. Examples

Example 1. Let µk be the roots of the equation
√
µ sin

√
µ = 0, νk be the

roots of the equation ctg
√
ν =

√
ν, and λ1 = 1. By two sequences of real

numbers µk and νk and the well known methods for identification of inverse
Sturm-Liouville problem with separated boundary conditions (see [9]) we obtain
q(x) = 0, a = −1, a11 = 0, a23 = 0. The result is Problems G1, G2 and Y1 (with
unknown coefficient a13):

Problem G1: −y′′ = λ y, y′(0) = 0, y′(π) = 0.
Problem G2: −y′′ = λ y, y′(0)− y(0) = 0, y′(π) = 0.
Problem Y1: −y′′ = λ y, y′(0) + a13 y(π) = 0, y′(π)− a13 y(0) = 0.
Consequently, linearly independent solutions y1(x, λ) and y2(x, λ) of the equa-

tion −y′′ = λ y satisfying conditions (2.2) are

y1(x, λ) = cos
√
λ, y2(x, λ) =

sin
√
λ√

λ
. (6.1)

From (2.4) it follows that the characteristic determinant of Problem Y1 with
unknown coefficient a13 is

∆(λ) = 2 a13 +
√
λ sin

√
λπ + a2

13

sin
√
λπ√
λ

. (6.2)

Since λ1 = 1 it follows that y2(x, λ1) = sin
√
λ1π√
λ1

= sinπ = 0. Therefore,

condition (3.1) is satisfied. Using (4.5), we get

a13 = −1

2

√
λ1 sin

√
λ1 π = −1

2
sinπ = 0.

Finally, we obtain
Problem Y1: −y′′ = λ y, y′(0) = 0, y′(π) = 0.
We see that Y1 =G1.

Example 2. Let µk be the roots of the equation
√
µ sin

√
µ = 0, νk be

the roots of the equation ctg
√
ν =

√
ν, and λ1 = 1/4. By two sequences of

real numbers µk and νk similarly to Example 1 we obtain q(x) = 0, a = −1,
a11 = 0, a23 = 0. Hence, the linearly independent solutions y1(x, λ) and y2(x, λ)
of the equation −y′′ = λ y satisfying conditions (2.2) are (6.1), and the unknown
coefficient a13 satisfies (6.2).

Since λ1 = 1/4 it follows that y2(x, λ1) = sin
√
λ1π√
λ1

= 2 sin(π/2) = 2 6= 0 and

y2(π, λ1)
(
a11 a23 y2(π, λ1)+a11 y

′
2(π, λ1)−a23 y1(π, λ1)−y′1(π, λ1)

)
= 2 · 1

2
= 1.

Therefore, condition (3.2) is satisfied. Using (3.6), we get

a13 = − 1

y2(π, λ1)
= −

√
λ1

sin
√
λ1 π

= −1

2
.

Finally, we obtain:
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Problem Y1: −y′′ = λ y, y′(0)− 1
2 y(π) = 0, y′(π) + 1

2 y(0) = 0.

Example 3. Let µk be the roots of the equation
√
µ sin

√
µ = 0, νk be

the roots of the equation ctg
√
ν =

√
ν, and λ1 = 1/4. By two sequences of

real numbers µk and νk similarly to Example 1 we obtain q(x) = 0, a = −1,
a11 = 0, a23 = 0. Hence, the linearly independent solutions y1(x, λ) and y2(x, λ)
of the equation −y′′ = λ y satisfying conditions (2.2) are (6.1), and the unknown
coefficient a13 satisfies (6.2).

Since λ1 = 1/4 it follows that y2(π,λ)
dλ

∣∣∣
λ=λ1

= −4 6= 0. Therefore, condition

(3.3) is satisfied. Using (4.6) and (4.7) , we get

V =
d

dλ

(
y′1(π, λ)

)
·
(
d

dλ
y2(π, λ)

)−1
∣∣∣∣∣
λ=λ1

=
1

4
,

a13 =
1

2

(
y′1(π, λ1)− V y2(π, λ1)

)
= −1

2
.

Finally, we obtain:
Problem Y1: −y′′ = λ y, y′(0)− 1

2 y(π) = 0, y′(π) + 1
2 y(0) = 0.

Example 4. Let µk be the roots of the equation
√
µ sin

√
µ = 0, νk be the

roots of the equation ctg
√
ν =

√
ν, and λ1 = 0, λ2 = 1. By two sequences of

real numbers µk and νk similarly to Example 1 we obtain q(x) = 0, a = −1,
a11 = 0, a23 = 0. Hence, the linearly independent solutions y1(x, λ) and y2(x, λ)
of the equation −y′′ = λ y satisfying conditions (2.2) are (6.1), and the unknown
coefficient a13 satisfies (6.2).

Since λ1 = 0, λ2 = 1 it follows that

y2(x, λ2)− y2(x, λ1) =
sin
√
λ2π√
λ2

− sin
√
λ1π√
λ1

= 0− π 6= 0, D2
1 = D ·D2,

where

D =

∣∣∣∣ 2 π
2 0

∣∣∣∣ , D1 =

∣∣∣∣ −√λ1 sin
√
λ1π π

−
√
λ2 sin

√
λ2π 0

∣∣∣∣ , D2 =

∣∣∣∣ 2 −
√
λ1 sin

√
λ1π

2 −
√
λ2 sin

√
λ2π

∣∣∣∣ .
Therefore, the condition (3.8) is satisfied. Using (4.8), we get

a13 =
D1

D
= 0.

Finally, we obtain:
Problem Y1: −y′′ = λ y, y′(0) = 0, y′(π) = 0.

Remark 6.1. The same Problem Y1 can be obtained from different formulas. For
example, the Problem −y′′ = λ y, y′(0) = 0, y′(π) = 0 is obtained from (4.5) in
Example 1, and is obtained from (4.8) in Example 4. The Problem −y′′ = λ y,
y′(0)− 1

2 y(π) = 0, y′(π) + 1
2 y(0) = 0 is obtained from (3.6) in Example 2, and

is obtained from (4.6) and (4.7) in Example 3.
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7. Counterexample

The equation D2
1 = D ·D2 in (3.8) means that arbitrary numbers λ1 λ2 can not

be eigenvalues of Problem Y1. If λ1 λ2 are eigenvalues of preassigned Problem
Y1, then the equation D2

1 = D · D2 is automatically satisfied. See Example
4, where the eigenvalues λ1 = 0, λ2 = 1 of the problem −y′′ = λ y, y′(0) = 0,
y′(π) = 0 satisfy the equation D2

1 = D ·D2 = 0. If it is not known that eigenvalues
λ1 λ2 are eigenvalues of Problem Y1, then an agreement between the numbers
λ1 λ2 is necessary. This agreement is given by the condition D2

1 = D ·D2. If this
condition is not satisfied, then formulas (4.8) can not be used. An disagreement

arises between the formulas a13 = D1
D and a2

13 = D2
D . Let us show this in an

example.
Let µk be the roots of the equation

√
µ sin

√
µ = 0, νk be the roots of the

equation ctg
√
ν =
√
ν, and λ1 = 0, λ2 = 1/16.

By two sequences of real numbers µk and νk similarly to Example 1 we obtain
q(x) = 0, a = −1, a11 = 0, a23 = 0. Hence, the linearly independent solutions
y1(x, λ) and y2(x, λ) of the equation −y′′ = λ y satisfying conditions (2.2) are
(6.1), and the unknown coefficient a13 satisfies (6.2).

Since λ1 = 0, λ2 = 1
16 it follows that

y2(x, λ2)− y2(x, λ1) =
sin
√
λ2π√
λ2

− sin
√
λ1π√
λ1

= 2
√

2− π 6= 0,

D =

∣∣∣∣ 2 π

2 2
√

2

∣∣∣∣ = 4
√

2− 2π,

D1 =

∣∣∣∣ 0 π

−1
4 ·
√

2
2 2

√
2

∣∣∣∣ =

√
2π

8
, D2 =

∣∣∣∣ 2 0

2 −1
4 ·
√

2
2

∣∣∣∣ = −
√

2

4
.

Therefore, if we use formulas (4.8), then we get

a13 =
D1

D
=

√
2π

32
√

2− 16π
, a2

13 =
D2

D
=

√
2

8π − 16
√

2
.

The result is the contrary: a2
13 6= a2

13. The contrary arise because D2
1 6= D ·D2.

This happens due to the fact that numbers λ1 = 0 λ2 = 1/16 are eigenvalues of
different Problems of Y1-type.

Indeed, the equation ∆(λ) = 0 with unknown a13 is square and has the form:

∆(λ) = 2 a13 +
√
λ sin

√
λπ + a2

13

sin
√
λπ√
λ

= 0.

In the case λ = λ1 = 0 the quadratic equation is

2 a13 + a2
13 π = 0

and has the roots a13 = 0 a13 = −2/π.
In the case λ = λ2 = 1

16 the quadratic equation is

2 a13 +

√
2

8
+ a2

13 2
√

2 = 0

and has the roots a13 = 1
8

(
−2
√

2 + 2
)

and a13 = −1
8

(
2
√

2 + 2
)
.

Thus, the numbers λ1 = 0 and λ2 = 1/16 are eigenvalues of different Problems
of Y1-type.
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