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CONSTRUCTING EXTREMAL ELEMENTS IN

APPROXIMATION BY SUMS OF UNIVARIATE FUNCTIONS

ARZU M.-B. BABAYEV AND IBRAHIM K. MAHAROV

Abstract. The approximation problem considered in the paper is to
approximate a continuous bivariate function by sums of univariate func-
tions in the uniform norm. For certain class of bivariate functions, we
obtain an explicit formula for a best approximation.

1. Introduction

It is well known that approximate representations of functions of several vari-
ables by simple combinations, thus by sums, of functions of fewer variables is of
both theoretical and practical significance. Application areas range from statis-
tics to nuclear physics (for references see [3, 7]). In applications, as a rule, it is
required to evaluate or estimate the error of this approximate representation. If
the representation is f(x, y) ≈ ϕ(x)+ψ(y), where f(x, y), ϕ(x) and ψ(y) are con-
tinuous functions on a compact set Q ⊂ R2, on projections of Q onto coordinate
axes x and y respectively, then the error is defined as

E(f) = E(f,Q)
def
= inf

ϕ+ψ
max

(x,y)∈Q
|f(x, y)− ϕ(x)− ψ(y)| .

It should be remarked that this type of approximation has arisen in connection
with the classical functional equations [5], the numerical solution of certain elliptic
p.d.e. boundary value problems [4] and dimension theory [16].

In [15], Rivlin and Sibner proved that for a function f(x, y) with the continuous

nonnegative derivative ∂f
∂x∂y on a rectangle R = [a1, b1] × [a2, b2], the above–

mentioned error can be computed by the formula

E(f,R) =
1

4
[f (a1, a2) + f (b1, b2)− f (a1, b2)− f (b1, a2)] . (1.1)

Babaev [2, 3] generalized this result and proved that the formula is valid for
a continuous function f (x, y) with the nonnegative difference ∆h1h2f . More
precisely he considered the class M(R) of continuous functions f(x, y) with the
property

∆h1,h1f = f(x, y) + f(x+ h1, y + h2)− f(x, y + h2)− f(x+ h1, y) ≥ 0
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for each rectangle [x, x+ h1]× [y, y + h2] ⊂ R, and proved that if f(x, y) belongs
to M(R), where R = [a1, b1]× [a2, b2], then the formula (1.1) is valid. Formulas
of type (1.1) were also obtained for functions with the nonnegative differences
∆h1h2f , but defined on sets different from a rectangle (see [9, 10]).

In [8], Ismailov constructed the following classes of bivariate functions. Let
c ∈ (a1, b1], R1 = [a1, c] × [a2, b2] and R2 = [c, b1] × [a2, b2]. It is clear that
R = R1∪R2 and if c = b1 then R = R1. With each rectangle S = [x1, x2]×[y1, y2]
lying in R associate the following functional:

L(f, S) =
1

4
[f(x1, y1) + f(x2, y2)− f(x1, y2)− f(x2, y1)] .

Definition 1.1. (see [8]) We say that a continuous function f(x, y) belongs to
the class Vc(R) if

1) L(f, S) ≥ 0, for each S ⊂ R1;
2) L(f, S) ≤ 0, for each S ⊂ R2;
3) L(f, S) ≥ 0, for each S = [a1, b1]× [y1, y2] , S ⊂ R.

The class Vc(R) has the following obvious properties:
1) For given functions f1, f2 ∈ Vc(R) and numbers α1, α2 ≥ 0, α1f1 + α2f2 ∈
Vc(R). Vc(R) is a closed subset of the space of continuous functions.
2) Vb1(R) = M(R).
3) If f is a common element of Vc1(R) and Vc2(R), a1 < c1 < c2 ≤ b1 then
f(x, y) = ϕ(x) + ψ(y) on the rectangle [c1, c2]× [a2, b2].

The main result of [8] was as follows.

Theorem 1.1. The best approximation of a function f(x, y) from the class Vc(R)
can be calculated by the formula

E(f,R) = L(f,R1) =
1

4
[f(a1, a2) + f(c, b2)− f(a1, b2)− f(c, a2)] .

Let y0 be any solution from [a2, b2] of the equation

L(f, Y ) =
1

2
L(f,R1), Y = [a1, c]× [a2, y] . (1.2)

Then a function ϕ0(x) + ψ0(y), where

ϕ0(x) = f(x, y0),

ψ0(y) =
1

2
[f(a1, y) + f(c, y)− f(a1, y0)− f(c, y0)] .

is a best approximating sum among all sums ϕ(x) + ψ(y).

Note that in special case c = b1, Theorem 1.1 turns into Babaev’s result from
[3]. It should be remarked that for constructing extremal elements by Babaev’s
or Ismailov’s method one should solve the equations of type (1.2). This is a quite
difficult task for complicated bivariate functions f(x, y). In this paper, we give an
explicit formula for a best approximating sum of univariate functions to a given
function from the class M(R).
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2. Main result

In the theory of approximation by sums of univariate functions, the concept
of ”a bolt of lightning” is principal. A bolt of lightning (see [1, 6, 7, 13, 14]) is
a finite ordered set p = {p1, p2, · · · pn} on the plane such that pi 6= pi+1, each
segment line pipi+1 (unit of the bolt) is parallel to the coordinate axis x or y, and
two adjacent units pipi+1 and pi+1pi+2 are perpendicular. A bolt of lightning p
is said to be closed if pnp1⊥p1p2 (in this case, n is an even number).

The following theorem is valid.

Theorem 2.1. Let a function f(x, y) belong to the class M(R). Then the func-
tion g(x, y) = g1(x) + g2(y), where

g1(x) =
1

2
f(x, a2) +

1

2
f(x, b2)−

1

4
f(a1, a2)−

1

4
f(b1, b2),

g2(y) =
1

2
f(a1, y) +

1

2
f(b1, y)− 1

4
f(a1, b2)−

1

4
f(b1, a2)

is a best approximation for the function f .

Proof. With each rectangle S = [u1, v1]× [u2, v2] ⊂ R we associate the functional

L (h, S) =
1

4
(h(u1, u2) + h(v1, v2)− h(u1, v2)− h(v1, u2)) , h ∈ C(R).

This functional has the following obvious properties:
(A) L(z, S) = 0 for any function z = z1(x) + z2(y) and S ⊂ R..

(B) For any point (x, y) ∈ R, L(f,R) =
4∑
i=1

L(f, Si), where S1 = [a1, x]×[a2, y],

S2 = [x, b1]× [y, b2], S3 = [a1, x]× [y, b2], S4 = [x, b1]× [a2, y].
Since f belongs to the class M(R), for any rectangle S = [u1, v1]× [u2, v2] ⊂ R

we can write

L (f, S) ≥ 0. (2.1)

Set the function

p(x, y) = L (f, S1) + L (f, S2)− L (f, S3)− L (f, S4) . (2.2)

It is not difficult to verify that the function f − p has the form z1(x) + z2(y).
Hence

E (f,R) = E (p,R) . (2.3)

Calculate the norm ‖p‖. From the property (B), it follows that

p(x, y) = L(f,R)− 2(L(f, S3) + L(f, S4))

and

p(x, y) = 2 (L (f, S1) + L (f, S2))− L (f,R) .

From the last equalities and (2.1), we obtain that

|p(x, y)| ≤ L (f,R) , for any (x, y) ∈ R.
On the other hand, one can check that

p(a1, a2) = p(b1, b2) = L (f,R) (2.4)

and

p(a1, b2) = p(b1, a2) = −L (f,R) . (2.5)
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Therefore,

‖p‖ = L (f,R) . (2.6)

Note that the points (a1, a2), (a1, b2), (b1, b2), (b1, a2) in the given order form a
bolt of lightning. We conclude from (2.4)-(2.6) that at the points of this bolt,
the function p alternatively takes its maximum and minimum. By Havinson’s
characterization theorem (see theorem 1 in [7]), the zero function is a best ap-
proximation to p. Hence

E(p,R) = L (f,R) . (2.7)

Now from (2.3) and (2.7) we obtain that

E (f,R) = L (f,R) . (2.8)

It is not difficult to verify that the function p(x, y) has the form

p(x, y) = f(x, y)− g1(x)− g2(y).

On the other hand, from (2.6) and (2.8) it follows that

E(f,R) = ‖p‖ .

Therefore, the function g1(x) + g2(y) is a best approximation for f . �

Until this moment we have been approximating a function f(x, y) from M(R)
on the rectangle R by functions ϕ(x) + ψ(y). As it is seen from the following
theorem in some cases the formula in theorem 2.1 is true also for more general
sets different from a rectangle.

Theorem 2.2. Let f(x, y) be a function from M(R) and Q ⊂ R is a compact
set which contains all vertices of R (points (a1, a2), (b1, b2), (a1, b2), (b1, a2)).
Besides, we assume that the projections of Q onto the coordinate axes coincide
with the corresponding projections of R. Then

E(f,Q) = L(f,R) =
1

4
[f (a1, a2) + f (b1, b2)− f (a1, b2)− f (b1, a2)]

and the function g(x, y) = g1(x) + g2(y), where

g1(x) =
1

2
f(x, a2) +

1

2
f(x, b2)−

1

4
f(a1, a2)−

1

4
f(b1, b2),

g2(y) =
1

2
f(a1, y) +

1

2
f(b1, y)− 1

4
f(a1, b2)−

1

4
f(b1, a2)

is a best approximation for the function f on the set Q.

Proof. As Q ⊂ R, E(f,Q) ≤ E(f,R). On the other hand by theorem 1.1,
E(f,R) = L(f,R). Hence E(f,Q) ≤ L(f,R). It can be easily shown that
L(f,R) ≤ E(f,Q) (see [8]). But then automatically E(f,Q) = L(f,R). Besides,
we conclude that E(f,Q) = E(f,R). It follows from the last equality and theorem
2.1 that the function g1(x) + g2(y) is a best approximation on Q. �

Remark. Some interesting properties of the best approximation E(f,Q) de-
pending on the approximation domain Q were investigated in the papers [11, 12].
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