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ON THE PROPERTIES OF Q- AND Q′-INTEGRALS OF THE

FUNCTION MEASURABLE ON THE REAL AXIS

RASHID A. ALIEV

Abstract. In the same paper Titchmarsh established that, when study-
ing the properties of trigonometric series conjugate to Fourier series of
Lebesgue integrable functions, Q-integration leads to a series of nat-
ural results. A very uncomfortable fact impeding the application of
Q-integrals and Q′-integrals when studying diverse problems of func-
tion theory is the absence of the additivity property. If one adds the
some condition to the definition of Q-integrability (Q′-integrability) of
a function f , then the Q-integral and Q′-integral become additive. In
this paper, we give the definition of Q- and Q′-integrals for the function,
measurable on the real axis R, and study its additivity properties.

1. Introduction

For a measurable complex function f on an interval [a, b] ⊂ R we set
[f (x)]n = [f (x)]n = f (x) for |f (x)| ≤ n,
[f (x)]n = n · sgnf (x), [f (x)]n = 0 for |f (x)| > n, n ∈ N ,
where sgnz = z

|z| for z 6= 0 and sgn0 = 0.

In 1929, E.Titchmarsh [10] introduced the notions of Q- and Q′-integrals.

Definition 1.1. If a finite limit lim
n→∞

∫ b
a [f (x)]n dx ( lim

n→∞

∫ b
a [f (x)]n dx, respec-

tively) exists, then f is said to be Q-integrable (Q′-integrable, respectively) on
[a, b], that is f ∈ Q [a, b] (f ∈ Q′ [a, b]), and the value of this limit is referred to
as the Q-integral (Q′-integral) of this function and is denoted by

(Q)

∫ b

a
f (x) dx

((
Q′
) ∫ b

a
f (x) dx

)
.

In the same paper, Titchmarsh established that, when studying the properties
of trigonometric series conjugate to Fourier series of Lebesgue integrable func-
tions, Q-integration leads to a series of natural results. A very uncomfortable
fact impeding the application of Q-integrals and Q′-integrals when studying di-
verse problems of function theory is the absence of the additivity property, that
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is, the Q-integrability (Q′-integrability) of two functions does not imply the Q-
integrability (Q′-integrability) of their sum. If one adds the condition

λm {x ∈ [a, b] : |f (x)| > λ } = o (1) , λ→ +∞, (1.1)

where m stands for the Lebesgue measure, to the definition of Q-integrability
(Q′-integrability) of a function f on the interval [a, b], then the Q-integral and
Q′-integral coincide (Q [a, b] = Q′ [a, b]), and these integrals become additive.

Definition 1.2. If f ∈ Q′ [a, b] (or f ∈ Q [a, b]) and condition (1.1) holds, then

f is said to be A-integrable on [a, b], f ∈ A [a, b], and the limit lim
n→∞

∫ b
a [f (x)]n dx

(or the limit lim
n→∞

∫ b
a [f (x)]n dx) is denoted in this case by

(A)

∫ b

a
f (x) dx.

As we noted above, the Q-integral and the Q′-integral do not have the addi-
tivity property. Titchmarsh in [10] for real functions and the author in [8] for
complex functions established that, if f ∈ Q [a, b] and g ∈ L [a, b] (that is, g is
Lebesgue integrable on the interval [a, b]), then f + g ∈ Q [a, b] and

(Q)

∫ b

a
[f (x) + g (x)] dx = (Q)

∫ b

a
f (x) dx+ (L)

∫ b

a
g (x) dx.

The properties of Q- and Q′-integrals were investigated in [8]-[10], and in [1]-[7],
[11]-[15] given the applications of A-, Q- and Q′-integrals in theory of functions
of real and complex variable.

In this paper, similar to the definitions 1.1 and 1.2, we give the definition of
Q- , Q′- and A-integrals for the function, measurable on the real axis R, and we
study its properties.

2. Main results

For a complex function f measurable on the real axis R we assume

[f (x)]δ,λ = [f (x)]δ,λ = f (x) for δ ≤ |f (x)| ≤ λ,

[f(x)]δ,λ = [f (x)]δ,λ = 0 for |f (x)| < δ,

[f (x)]δ,λ = λ sgnf (x), [f (x)]δ,λ = 0 for |f (x)| > λ, 0 < δ < λ.

Definition 2.1. If a finite limit lim
δ→0+
λ→+∞

∫
R [f(x)]δ,λ dx ( lim

δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx re-

spectively) exists, then f is said to be Q-integrable (Q′-integrable) on R, that is
f ∈ Q (R) (f ∈ Q′ (R)), and the value of this limit is referred to as the Q-integral
(Q′-integral) of this function and is denoted by

(Q)

∫
R
f (x) dx

((
Q′
) ∫

R
f (x) dx

)
.

Remark 2.1. Let h > 0 be any positive number. From equalities

lim
δ→0+
λ→+∞

∫
R

[f (x)]δ,λ dx = lim
δ→0+

∫
{x∈R: δ≤|f(x)|≤h}

f (x) dx+
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+ lim
λ→+∞

∫
{x∈R: |f(x)|>h}

[f (x)]λ dx, (2.1)

lim
δ→0+
λ→+∞

∫
R

[f (x)]δ,λ dx = lim
δ→0+

∫
{x∈R: δ≤|f(x)|≤h}

f (x) dx+

+ lim
λ→+∞

∫
{x∈R: |f(x)|>h}

[f (x)]λ dx (2.2)

follows that if for some h > 0 there exists the integral
∫
{x∈R: |f(x)|≤h} f (x) dx,

then Q- and Q′-integrals of the function f may be determined as follows:

(Q)

∫
R
f (x) dx = lim

λ→+∞

∫
R

[f (x)]λ dx,
(
Q′
) ∫

R
f (x) dx = lim

λ→+∞

∫
R

[f (x)]λ dx,

where [f (x)]λ and [f (x)]λ are determined as in definition 1, and if there exists
the integral

∫
{x∈R: |f(x)|>h} f (x) dx, then Q- and Q′-integrals of the function f

may be determined as follows:

(Q)

∫
R
f (x) dx =

(
Q′
) ∫

R
f (x) dx = lim

δ→0+

∫
{x∈R: |f(x)|≥δ}

f (x) dx.

Note that as in case of an interval Q- and Q′-integrals of the functions mea-
surable on the real axis also doesn’t satisfy additivity property, that is from Q-
integrability (Q′-integrability) of two functions Q-integrability (Q′-integrability)
of their sums doesn’t follow yet. If one adds the conditions

δ m {x ∈ R : |f (x)| > δ } = o (1) , δ → 0+, (2.3)

λm {x ∈ R : |f (x)| > λ } = o (1) , λ→ +∞, (2.4)

to the definition of Q-integrability (Q′-integrability) of a function f on R, then
Q-integral and Q′-integral coincide (Q (R) = Q′ (R)) and these integrals become
additive (see [4]).

Definition 2.2. If f ∈ Q′ (R) (or f ∈ Q (R)) and the conditions (2.3) and
(2.4) are holds, then f is said to be A-integrable on R, f ∈ A (R) and the limit

lim
δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx (or the limit lim

δ→0+
λ→+∞

∫
R [f (x)]δ,λ dx) is denoted in this case

by

(A)

∫
R
f (x) dx.

For the real function f measurable on R we assume

(f > λ) = { t ∈ R : f (t) > λ } ,

(f < λ) = { t ∈ R : f (t) < λ } , (f ≥ λ) = { t ∈ R : f (t) ≥ λ } ,
(f ≤ λ) = { t ∈ R : f (t) ≤ λ } , (δ ≤ f ≤ λ) = { t ∈ R : δ ≤ f (t) ≤ λ } .

Definition 2.3. We denote by M (R; C) the class of measurable complex-valued
functions f on R which are finite limits lim

λ→+∞
λm (|f | > λ) and

lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx exists.
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Lemma 2.1. If a function f belongs to Q and the function g satisfies the condi-
tions (2.3) and (2.4) on R, then their sum f + g belongs to M (R; C); here the
following equation holds:

lim
λ→+∞

λm (|f + g| > λ) = lim
λ→+∞

λm (|f | > λ) ,

lim
δ→0+

δ m (|f + g| > δ) = lim
δ→0+

δ m (|f | > δ) .

The proof is similar to the proof of the [8, lemma 1].

Theorem 2.1. Let f ∈ Q′ (R). Then f ∈ Q (R) and the following equation
holds: (

Q′
) ∫

R
[f (x) + g (x)] dx =

(
Q′
) ∫

R
f (x) dx+ (A)

∫
R
g (x) dx. (2.5)

Proof. Let h > 0 be any positive number. It follows from f ∈ Q′ (R)
and from (2.3) that there exists are finite limits lim

δ→0+

∫
(δ≤|f |≤h) f (x) dx and

lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx. The similar to the proof of the [8, theorem 1] it is

proved that from the existence of the limit lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx follows the

existence of the limit lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx and their equality. Hence, from

(2.1) it follows that the function f is Q-integrable and equation (2.5) holds. This
completes the proof of the theorem.

Theorem 2.2. The Q-integral and the Q′-integral coincide on the function class
M (R; C), that is, if f ∈M (R; C), then for the existence of the integral (Q)

∫
R f (x) dx

it is necessary and sufficient that the integral (Q′)
∫
R f (x) dx exist, and in that

case equation (2.5) holds.

Proof. By Theorem 2.1, it follows from the condition f ∈ Q′ (R) that f ∈
Q (R) and the equation (2.5) holds. It remains to prove that, in the function
class M (R; C), it follows from f ∈ Q (R) that f ∈ Q′ (R). Let h > 0 be any
positive number. It follows from (2.1) that if f ∈ Q (R) and f ∈M (R; C), then
there exists are finite limits lim

δ→0+

∫
(δ≤|f |≤h) f (x) dx, lim

λ→+∞

∫
(|f |>h) [f (x)]λ dx and

lim
λ→+∞

λm (|f | > λ). The similar to the proof of the [8, theorem 2] it is proved that

from the existence of the limit lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx follows the existence of

the limit lim
λ→+∞

∫
(|f |>h) [f (x)]λ dx. Hence, from (2.3) it follows that the function

f is Q′-integrable and equation (2.5) holds. This completes the proof of the
theorem.

Theorem 2.3. If a function f ∈M (R; C) is Q′-integrable on R and a function
g is A-integrable on R, then their sum f + g ∈ M (R; C) is Q′-integrable on R,
and the following equation holds:(

Q′
) ∫

R
[f (x) + g (x)] dx =

(
Q′
) ∫

R
f (x) dx+ (A)

∫
R
g (x) dx. (2.6)
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Proof. Since g ∈ A (R), it follows from Lemma 2.1 that f + g ∈ M (R; C).
We claim that the following relations hold:

λm ((|f | > λ) ∩ (|f + g| ≤ λ)) = o (1) , λ→ +∞, (2.7)

λm ((|f | ≤ λ) ∩ (|f + g| > λ)) = o (1) , λ→ +∞, (2.8)

δ m ((|f | > δ) ∩ (|f + g| ≤ δ)) = o (1) , δ → 0+, (2.9)

δ m ((|f | ≤ δ) ∩ (|f + g| > δ)) = o (1) , δ → 0+, (2.10)

Let lim
λ→∞

λm (|f | > λ) = α, lim
δ→0+

δm (|f | > δ) = β. For every ε > 0the inclusions

(|f | > λ) ∩ (|f + g| ≤ λ) ⊂ (λ < |f | ≤ (1 + ε)λ)∪
∪ ((|f | > (1 + ε)λ) ∩ (|f + g| ≤ λ)) ⊂ ((|f | > λ) \ (|f | > (1 + ε)λ)) ∪ (|g| > ελ)

lead to the inequality

m ((|f | > λ) ∩ (|f + g| ≤ λ)) ≤ m (|f | > λ)−m (|f | > (1 + ε)λ) +m (|g| > ελ) ,

which implies that

lim
λ→+∞

λ ·m (|f | > λ) ∩ (|f + g| ≤ λ) ≤ α− α

1 + ε
=

εα

1 + ε
.

Hence, since ε > 0 is arbitrary, we obtain (2.7). Equations (2.8)-(2.10) can be
proved in a similar way in view of Lemma 2.1.

We claim now that f + g ∈ Q′ (R). Let us take an arbitrary numbers ε > 0
and λ > δ > 0. It follows from (2.7)-(2.10) and from the A-integrability of g that∫

(δ≤|f+g|≤λ)
(f (x) + g (x)) dx =

∫
(δ≤|f+g|≤λ)∩(|f |≤λ)

(f (x) + g (x)) dx+ o (1) =

=

∫
(δ≤|f+g|≤λ)∩(|f |≤λ)∩(|g|≤ελ)

(f (x) + g (x)) dx+ o (1) =

=

∫
(δ≤|f+g|≤λ)∩(δ≤|f |≤λ)∩(|g|≤ελ)

(f (x) + g (x)) dx+

+

∫
(δ≤|f+g|≤λ)∩(|f |<δ)∩(|g|≤ελ)

g (x) dx+ o (1) =

=

∫
(δ≤|f+g|≤λ)∩(δ≤|f |≤λ)∩(|g|≤ελ)

f (x) dx+

+

∫
(δ≤|f+g|≤λ)∩(δ≤|f |≤λ)∩(εδ≤|g|≤ελ)

g (x) dx+

+

∫
(δ≤|f+g|≤λ)∩(δ≤|f |≤λ)∩(|g|<εδ)

g (x) dx+

+

∫
(δ≤|f+g|≤λ)∩(|f |<δ)∩(εδ≤|g|≤ελ)

g (x) dx+ o (1) , λ→ +∞, δ → 0+, (2.11)∫
(δ≤|f |≤λ)

f (x) dx =

∫
(δ≤|f |≤λ)∩(|f+g|≤λ)

f (x) dx+ o (1) =

=

∫
(δ≤|f |≤λ)∩(|f+g|≤λ)∩(|g|≤ελ)

f (x) dx+ o (1) =

+

∫
(δ≤|f |≤λ)∩(δ≤|f+g|≤λ)∩(|g|≤ελ)

f (x) dx−
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−
∫
(δ≤|f |≤λ)∩(|f+g|<δ)∩(εδ≤|g|≤ελ)

g (x) dx+ o (1) , λ→ +∞, δ → 0 + . (2.12)

Since∣∣∣∣∣
∫
(δ≤|f+g|≤λ)∩(δ≤|f |≤λ)∩(|g|<εδ)

g (x) dx

∣∣∣∣∣ ≤ εδ [m (|f | ≥ δ) +m (|f + g| ≥ δ)] ,

∣∣∣∣∣
∫
(εδ≤|g|≤ελ)∩[(|f |>λ)

⋃
(|f+g|>λ)]

g (x) dx

∣∣∣∣∣ ≤ ελ [m (|f | > λ) +m (|f + g| > λ)] ,

∣∣∣∣∣
∫
(εδ≤|g|≤ελ)∩(|f |<δ)∩(|f+g|<δ)

g (x) dx

∣∣∣∣∣ ≤ 2δm (|g| ≥ εδ) ,

it follows from (2.11), (2.12) that the following inequality holds for sufficiently
large values of λ and sufficiently small values of δ:∣∣∣∣∣
∫
(δ≤|f+g|≤λ)

(f (x) + g (x)) dx−
∫
(δ≤|f |≤λ)

f (x) dx−
∫
(εδ≤|g|≤ελ)

g (x) dx

∣∣∣∣∣ ≤
≤ ε+ 2ε (β + ε) + 2ε (α+ ε) + 2ε.

Hence, since ε > 0 is arbitrary, it follows that the function f+g is Q′-integrable
and that (2.6) holds. This completes the proof of the theorem.

Theorems 2.2 and 2.3 imply the following corollary.

Corollary 2.1. If a function f ∈M (R; C) is Q-integrable on R and the function
g is A-integrable on R, then their sum f + g belongs to the class M (R; C) and
is Q-integrable on R and the following equation holds:

(Q)

∫
R

[f (x) + g (x)] dx = (Q)

∫
R
f (x) dx+ (A)

∫
R
g (x) dx.

Theorem 2.4. Let f ∈M (R; C) and let g be a measurable function on R such
that the difference f − g satisfies the condition (1.1). If f and g are Q′-integrable
on R, then f − g is A-integrable on R, and

(A)

∫
R

[f (x)− g (x)] dx =
(
Q′
) ∫

R
f (x) dx−

(
Q′
) ∫

R
g (x) dx.

The proof of Theorem 2.4 is carried out in a similar fashion to that of Theorem
2.2 (one should consider the function g − f instead of g).

Theorems 2.2 and 2.4 imply the following corollary.

Corollary 2.2. Let f ∈ M (R; C) and a function g measurable on R be such
that the difference f − g satisfies the condition (1.1). If f and g are Q-integrable
on R, then f − g is A-integrable on R, and

(A)

∫
R

[f (x)− g (x)] dx = (Q)

∫
R
f (x) dx− (Q)

∫
R
g (x) dx.
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