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TRAJECTORIES THAT HAVE POINTS AT INFINITY AS

LIMIT SETS FOR DYNAMICAL SYSTEMS ON THE PLANE

MAXIM V. SHAMOLIN

Abstract. In this paper, we deal with the existence and uniqueness of
trajectories of the dynamical systems on the plane that have infinitely
remote points as α- and ω-limit sets. Therefore, on the Riemann or
Poincaré sphere, the limit set of such trajectories is the north pole.
These are key trajectories by definition since an infinitely remote point
is always singular.

1. Preliminaries

At the beginning we consider systems of the form (see also [7, 12])

α′ = ω +
σ

I
F (α) cosα+ σω2 sinα,

ω′ = −1

I
F (α)− σ

I
ωF (α) sinασω3 cosα, σ, I > 0,

(1.1)

where the condition

F ∈ Φ (1.2)

is fulfilled. The class Φ consists of sufficiently smooth odd π-periodic functions
that vanish only at the points 0 mod π/2 and satisfy the following conditions:
F ′(0) > 0 and F ′ (π/2) < 0 [9, 11].

Lemma 1.1. Let us consider system (1.1) on the set

Π ∩ {(α, ω) ∈ R2 : ω > 0}.

Then for any sufficiently smooth function F , there exists a single trajectory going
to infinity (and having the point (−0,+∞) as the ω-limit set).

Proof. Let us endow a phase plane R2{x, y} with an infinitely remote point to

obtain an extended phase plane R2{x, y}. Now map the region Π ∩ {(α, ω) ∈
R2 : ω > 0} onto a Riemann or Poincaré sphere. In the vicinity of the north pole
of the sphere, there exist new coordinates (α, y), y = 1/ω, to which the former
coordinates of the considered region of the extended phase plane are sent by a
nonsingular transformation [2, 4, 5].
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In the variables (α, y), system (1.1) is equivalent to the equation

dα

dy
=

y + σ
I y

2F (α) cosα+ σ sinα
y4

I F (α)− σy cosα+ σ
I y

3F (α) sinα
. (1.3)

Given this, the trajectories of Eq. (1.3) are parametrized in a different manner
than the trajectories of system (1.1).

One can see that Eq. (1.3) has a singular point (0, 0) corresponding to the
infinitely remote point (−0,+∞) of system (1.1). One can readily make sure
that the point (0, 0) of Eq. (1.3) is a hyperbolic saddle, and Lemma 1.1 follows
[1, 6, 8]. �

Let us consider systems of the form

α′ = ω +
σ

I
F (α) cosα+ σω2 sinα+

s(α)

m
sinα,

ω′ = −1

I
F (α)− σ

I
ωF (α) sinα+ σω2 cosα+

ω

m
s(α) cosα, σ, I > 0,

(1.4)

in the strip Π′ under condition (1.2) and

s ∈ Σ. (1.5)

The class Σ consists of sufficiently smooth 2π-periodic even functions that are
equal to zero only at the points π/2 mod π and satisfy the conditions

s(0) > 0, s′
(π

2

)
< 0, s(α+ π) = −s(α), ∀α ∈ R.

Lemma 1.2. Let us consider system (1.4) on the set

Π ∩ {(α, ω) ∈ R2 : ω > 0}.

Then for any sufficiently smooth functions F and s, there exists a unique trajec-
tory going to infinity (and having the point (−0,+∞) as the ω-limit set).

Proof. Following the arguments used in the proof of Lemma 1.1, mapping the
extended phase plane to a sphere and making a similar change of coordinates, we
obtain the equation [3, 10]

dy

dα
=

y4

I F (α)− σy cosα+ σ
I y

3F (α) sinα− y3 s(α)m cosα

y + σ
I y

2F (α) cosα+ σ sinα+ y2 s(α)m sinα
. (1.6)

The trajectories of Eq. (1.6) are parametrized in a different way than the trajec-
tories of system (1.4).

One can see that Eq. (1.6) has a singular point (0, 0) corresponding to the
infinitely remote point (−0,+∞) of system (1.4). One can readily make sure
that this singular point has the topological type of a hyperbolic saddle, which
implies Lemma. �

2. Existence and uniqueness of trajectories going to infinity

Theorem 2.1. (1) If, after the change of phase variables

(x1, x2)⇒ (x1, y),
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where y = 1/x2, the equation defined on the sphere acquires the singular
point (x01, 0), the system under consideration has a trajectory tending to
the straight line

{(x1, x2) ∈ R2 : x1 = x01}
and having an infinitely remote point as the limit set.

(2) If, after the change of phase variables

(x1, x2)⇒ (y, x2),

where y = 1/x1, the equation defined on the sphere acquires the singular
point (0, x02), the system under consideration has a trajectory tending to
the straight line

{(x1, x2) ∈ R2 : x2 = x02}
and having an infinitely remote point as the limit set.

Proof. In line with Lemmas 1.1 and 1.2, we endow the phase plane with an
infinitely remote point to obtain R2{α, ω}. Then we map the extended plane
to a Riemann or Poincaré sphere. In the neighborhood of the north pole of the
sphere, one can introduce coordinates mapping this neighborhood to a certain
neighborhood of zero of the coordinate plane, such that in case (1) they are equal
to (x1, y), y = 1/x2, and in case (2), to (y, x2), y = 1/x1. We investigate the
infinitely remote points along the x2 axis in the first case and along the x1 axis
in the second case. Our further arguments are similar to those used in the proofs
of Lemmas 1.1 and 1.2. �

Remark 2.1. The number of trajectories going to infinity is determined from
the topological type of the infinitely remote singular point. In particular, in
systems (1.1) and (1.4) there exists a single trajectory going to infinity since the
infinitely remote point is a saddle (if it is not the plane but the phase cylinder
that is mapped).

Remark 2.2. There may exist phase trajectories going to infinity on the phase
plane along which both phase variables infinitely increase. In this case, changing
the variables x1 = 1/y1, x2 = 1/y2 and examining the topological type of the
north pole of the sphere, which is always a singular point, one can try to prove
the existence and uniqueness of trajectories approaching straight lines of the form

A1x1 +A2x2 +A3 = 0,

where A1A2 6= 0.
Indeed, to the north pole of the sphere the trajectory in this case tends at a

certain angle which corresponds to a trajectory on a plane tending to a straight
line with a nonzero and finite slope.

3. Elements of the theory of monotonic vector fields

Let us consider a family of sufficiently smooth vector fields ϑε in the region D
of a two-dimensional oriented Riemann surface. In the tangent space TqD of each
point q ∈ D, one can measure angles made by the vectors of the family under
study.
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Definition 3.1. A one-parameter family of fields ϑε (ε ∈ E) exhibits a mono-
tonicity in D if for any points q ∈ D, ε1 ∈ E, and ε2 ∈ E in the tangent space
TqD, the angle made by the vectors ϑε1 , ϑε2 ∈ TqD is a monotonic function of the
difference ε2−ε1; the orientation of the angle variation remains unchanged. If the
monotonic dependence is strict, we say that ϑε possesses a strict monotonicity
property.

Theorem 3.1. Let a field ϑε possess the monotonicity property in the region D
of a plane R2. Let x0 be a nonsingular initial condition for the phase trajectory
of the field ϑε for all ε ∈ E.

Then if for any ε ∈ E, the limit set of trajectories beginning at x0 is a set
γ0, {A,B} = ∂γ0, A is the limit set of the trajectory of the field ϑε1, and B is
the limit set of the trajectory of the field ϑε2, ε1 < ε2, then we have ε ∈ (ε1, ε2)
if and only if there exists a set C that is the limit set of the trajectory of the
field ϑε, which, when increasing, shifts monotonically from A to B. (We speak
here simultaneously either of α- or ω-limit sets of the family of trajectories.) The
required phase trajectory is unique if the monotonicity property is strict.

The scheme of the proof. For any ε, the set γ0 can be assumed to consist of ω-
limit sets. According to the theorem on the continuous dependence of solutions on
initial conditions and right-hand sides of equations, for a small change parameter
ε, the limit set will remain in a small neighborhood of the initial one (in the case
where the set γ0 is simply connected). If the set γ0 is multiply connected, we
successively look over each of the connected components. Within the framework
of the theory of comparison systems, in view of the monotonicity property, a
nonmonotonic dependence of the trajectory on the parameter ε is excluded.

Suppose a system possesses a strict monotonicity property. On the contrary,
for a point M ∈ γ0, let there exist at least two parameters ε1 and ε2 for which the
trajectories of the fields ϑε1 and ϑε2 tend to the pointM . Then the trajectories the
fields ϑε, ε ∈ [ε1, ε2], tend to the point M (by virtue of the monotonicity property).
Since the monotonicity property is strict, for any δ > 0, the system with the vector
field ϑε+δ (ε+δ ∈ E) is the comparison system for ϑε. It can be easily understood
that the trajectory of the field ϑε+δ starting from a nonsingular initial condition
never intersects the corresponding trajectory of the field ϑε starting from the
same initial condition. In view of this, the trajectories of the fields ϑk1 and ϑk2
have different limit sets and ε1 < k1 < k2 < ε2, which is a contradiction. This
completely proves the theorem.

This may also be the scheme of the proof of a qualitatively different proposition
that holds for any smooth two-dimensional oriented manifold.

Lemma 3.1. Let us consider a family of fields ϑε (ε ∈ E) in a region of the sphere
S2 of the following form: the south (S) and the north (N) poles of the sphere are
saddles. Let this family of fields possess a strict monotonicity property so that for
a certain ε1, the ω-limit set of the trajectory emanating from the south pole is the
south pole, and for a certain ε2 > ε1, the ω-limit set of the trajectory emanating
from the north pole is the north pole. Both these situations are homoclinic on the
sphere when there exists only one rest point (in addition to N and S) located in
the region bounded by the indicated separatrices. The sphere contains no other
nontrivial limit sets.
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Then there exists only one value of the parameter ε = ε0 ∈ (ε1, ε2) such that
the trajectory emanating from the south (north) pole enters the north (south) pole
(this is a heteroclinic situation on the sphere).

Proof. Uniqueness. On the contrary, let two parameters ε and ε possess the indi-
cated property. Then by virtue of the monotonicity property, all the parameters
from the interval (ε, ε) possess this property. With arguments similar to those
used in Theorem 3.1, we obtain a contradiction to the monotonicity property.

Existence. Therefore, there exists a unique value of the parameter ε = ε0 such
that for ε < ε0 and ε > ε0, different homoclinic situations are realized on the
sphere. On the contrary, for ε = ε0, let there be one of the homoclinic situations.
Then there exists a neighborhood of the value ε = ε0

U = U δε0 = {ε : |ε− ε0| < δ}

such that for any ε ∈ U , the same homoclinic situation holds, which is a contra-
diction. This completely proves the proposition. �

Remark 3.1. We have obtained another method of the proof of Lemmas 1.1 and
1.2. Indeed, the unknown fields satisfy the conditions of Lemma 3.1, since the in-
finitely remote point is projected into the north pole of the Riemann (or Poincaré)
sphere and the point (−π/2, 0) is projected into the south pole.
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