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ON BEHAVIOR AT INFINITY OF THE SOLUTIONS OF A

SEMILINEAR ELLIPTIC EQUATION OF SECOND ORDER

SHIRMAIL G. BAGIROV

Abstract. Asymptotic behavior of the solution of a semilinear elliptic
equation of second order in a cylindrical domain, satisfying the Neumann
boundary condition on the lateral surface, is studied.

1. Introduction and the main result

Denote: Πa,b = G× (a, b), Πa,∞ = Πa, Γa,b = ∂G× (a, b), Γa,∞ = Γa, where G
is a bounded domain in Rn with the Lipschits boundary.

Let L be an operator of the form

L =

n∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

n∑
i=1

ai(x)
∂

∂xi
,

where x = (x1, . . . , xn) ∈ Rn, the coefficients aij(x), ai(x) are bounded, measur-
able functions, aij = aji and the following ellipticity condition be fulfilled

n∑
i,j=1

aij(x)ξiξj > V1 |ξ|2 , x ∈ G, V1 = const > 0, |ξ|2 =

n∑
i=1

ξ2
i , ξ ∈ Rn.

We study the behavior at infinity of the solutions of the equation:

utt + Lu− (t+ 1)µ |u|σ = 0 in Π0, (1.1)

satisfying the condition:

∂u

∂ν
=

n∑
i,j=1

aij(x)
∂u

∂xj
cos(xi, n) on Γ0, (1.2)

where σ > 1, µ > −2, n is a unit vector of the external normal to ∂G.
The case µ = 0 was considered in the paper [1].

Similar problems with nonlinearity of the form |u|σ−1 u were investigated in
the papers [2]–[6].

As the solution of problem (1.1), (1.2) we understand a generalized solution.
The function u(x, t) is said to be the generalized solution of equation (1.1) satis-
fying condition (1.2) if u(x, t) ∈ W 1

2 (Πa,b) ∩ L∞(Πa,b) for any 0 < a, b < ∞ and
it holds the equality:∫

Πa,b

utϕtdxdt+
n∑

i,j=1

∫
Πa,b

aij(x)uxjϕxidxdt−

94
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n∑
i=1

∫
Πa,b

ai(x)uxiϕdxdt+

∫
Πa,b

(t+ 1)µ |u|σ ϕdxdt = 0

for any function ϕ(x, t) ∈W 1
2 (Πa,b) such that ϕ(x, a) = ϕ(x, b) = 0.

From the classic results on smoothness of generalized solutions of linear elliptic
equations it follows that u(x, t) in any closed domain Π̄a,b satisfies the Holder
condition [7].

The following theorem is the main result

Theorem 1.1. a) If u(x, t) > 0 is the solution of equation (1.1), satisfying

condition (1.2), then u(x, t) = O
(
t−

µ+2
σ−1

)
,

b) If u(x, t) is the solution of equation (1.1), satisfying condition (1.2), that
changes the sign at any domain Πa, a > 0, then

u(x, t) = O(e−ht),

where h is independent of u(x, t).

2. Absence of negative solutions and auxiliary lemma.

Let us consider the following problem:

n∑
i,j=1

∂

∂xi

(
aij(x)

∂u

∂x

)
−

n∑
i=1

∂

∂xi
(ai(x)u) = 0, (2.1)

∂u

∂ν∗
=

n∑
i,j=1

aij
∂u

∂xj
cos(n, xi)−

n∑
i=1

aiu cos(n, xi) = 0. (2.2)

It is known that problem (2.1), (2.2) has a solution k(x) such that 0 < m1 6
k(x) 6 m2, m1,m2 = const > 0 (see. [8]).

Lemma 2.1. For any σ > 1, µ > −2 problem (1.1), (1.2) has no negative
solutions.

Proof. In defining the solution, as a test function we take ϕ(x, t) = tψ(t)k(x),
where ψ(t) ∈ C∞0 (R), ψ(t) = 1 for 0 6 t 6 R, ψ(t) = 0 for t > 2R and k(x) is
the solution of problem (2.1), (2.2).

Then we get:∫
Π0,2R

|u|σ (t+ 1)µtψkdxdt = −
∫
ut(tψ

′ + ψ)kdxdt−

−
n∑

i,j=1

∫
Π0,2R

aij(x)uxjkxitψdxdt+

n∑
i=1

∫
Π0,2R

ai(x)uxiktψdxdt =

= −
∫

Π0,2R

ut(tψ
′ + ψ)k dxdt =

∫
Π0,2R

uk(tψ′′ + 2ψ′)dxdt+

∫
G

ku(x, 0)dx 6
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6 m2

 ∫
Π0,2R

|u|σ (t+ 1)µtψdxdt


1/σ ∫

Π0,2R

|tψ′′ + 2ψ′|q

tq−1(t+ 1)µ(q−1)ψq−1
dxdt


1/q

6

6
εm2

σ

∫
Π0,2R

|u|σ (t+ 1)µtψdxdt+

+
m2

εq−1q

∫
Π0,2R

|tψ′′ + 2ψ′|q

tq−1(t+ 1)µ(q−1)ψq−1
dxdt+m2

∫
G

u(x, 0)dx,

where 1
σ + 1

q = 1.

Then as a result we have:(
m1

m2
− ε

σ

)
·
∫

Π0,2R

|u|σ (t+ 1)µtψdxdt 6

6
1

εq−1q
·
∫

Π0,2R

|tψ′′ + 2ψ′|q

(t+ 1)µ(q−1)tq−1ψq−1
dxdt+

∫
G

u(x, 0)dx. (2.3)

we take ψ(t) in the form ψ(t) = ψ(τR) = (ϕ0(τ))λ = θ(τ), where τ = t/R, ϕ0(τ) =
0 for τ ≤ 1, τ ≥ 2, ϕ0(t) ∈ C∞0 (R), λ is a rather large positive number. Estimate
the first term in the right hand side of (2.3):∫

Π0,2R

|tψ′′ + 2ψ′|q

(t+ 1)µ(q−1)tq−1ψq−1
dxdt 6

6
∫
G

∫
16τ62

|τθ′′ + 2θ′|q

R(µ+2)(q−1)
(
τ + 1

R

)µ(q−1)
τ q−1θq−1

dxdt 6 R(µ+2)(1+q) ·A(ϕ0),

where

A(ϕ0) = mesG

∫
16τ62

∣∣∣τλϕλ−1
0 ϕ′′0 + τλ(λ− 1)ϕλ−2

0 + 2λϕλ−1
0 ϕ′0

∣∣∣q(
τ + 1

R

)µ(q−1)
τ q−1ϕ

λ(q−1)
0

dτ.

Obviously, by chosing λ, ϕ0 we can choose so that there would be A(ϕ0) <∞.
Then from (2.3) we obtain:(
m1

m2
− ε

σ

)
·
∫

Π0,R

|u|σ (t+ 1)µtdxdt 6

(
m1

m2
− ε

σ

)
·
∫

Π0,2R

|u|σ (t+ 1)µtψdxdt 6

6
1

qεq−1
·R(µ+2)(1−q)A(ϕ0) +

∫
G

u(x, 0)dx. (2.4)

Since q > 1, then for
∫
G

u(x, 0)dx 6 0 and as R → ∞ from (2.4) we get u ≡ 0

in Π0. This proves Lemma 2.1. �
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If in the proof of Lemma 2.1 as a test function we take ϕ(x, t) = (t−t0)ψ(t)k(x)
for t > t0, ϕ(x, t) = 0 for t < t0, then we get that for any nontrivial solution
u(x, t) of problem (1.1), (1.2) ∫

G

u(x, t0)dx > 0. (2.5)

Lemma 2.2. If u(x, t) is the non-trivial solution of problem (1.1), (1.2), then

u(x, t) = O
(
t−

µ+2
σ−1

)
.

Since

utt + Lu− (t+ 1)µ |u|σ−1 u > utt + Lu− (t+ 1)µ |u|σ ,
then any solution of equation (1.1) is the subsolution of the equation

utt + Lu− (t+ 1)µ |u|σ−1 u = 0. (2.6)

Equation (2.6) has a strong positive solution ω(t), satisfying the relations
ω(t0) = 1, ω′(t0) = 0 at the points t0 ± T (where T is independent of t0) (see.
[4]). Then for rather large t from the maximum principle the subsolution is less
than the solution i.e. u(x, t) 6 ω(t) in Πt0−T,t0+T .

Thus, u(x, t) is upper bounded, as for large t is less than the value at the vertex
of the parabola.

The function v(x, t) = u(x, t)− c0t
−µ+2
σ−1 , where c0 =

[
(µ+σ+1)(µ+2)

(σ−1)2

] 1
σ−1

, is also

an upper bounded subsolution of equation (2.6). Then:

vtt + Lv − a(x, t)v > 0, (2.7)

where a(x, t) > 0.
Let us consider the function v− εt. This function also satisfies inequality (2.7)

and is negative for t = 0. There exists T0(ε) such that for T > T0(ε), v− εT 6 0.
Then from the maximum principle it follows that v − εT 6 0 for t > 0. Having
tending ε to zero, we get v 6 0.

So:

u+(x, t) 6 c0t
−µ+2
σ−1 . (2.8)

As

|u| = u+ − u−, u = u+ + u−,

then by (2.5) we get:∫
G

|u| dx =

∫
G

(u+ − u−)dx =

∫
G

(2u+ − u)dx 6 2

∫
G

u+dx 6 c1 · t−
µ+2
σ−1 .

Hence for large T∫
ΠT−2,T+2

|u| dxdt 6 c1 ·
T+2∫
T−2

t−
µ+2
σ−1dt 6 4c1(T − 2)−

µ+2
σ−1 =

= 4c1(T + 1)−
µ+2
σ−1

(
1− 3

T + 1

)−µ+2
σ−1

6 c2(T + 1)−
µ+2
σ−1 . (2.9)
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From the theory of linear differential equations we know that (see. [7])

max
ΠT−1,T+1

|u| 6 c
∫

ΠT−1,T+1

|u| dxdt.

Using (2.9), from this inequality we get that for large T

max
ΠT−1,T+1

|u| 6 c2(T + 1)−
µ+2
σ−1 .

Hence for t ∈ [T − 1, T + 1]

|u(x, t)| 6 c2t
−µ+2
σ−1 .

So

u(x, t) = O
(
t−

µ+2
σ−1

)
.

This proves lemma 2.2.

3. The proof of the main result.

Point a) was already proved, prove b). Write equation (1.1) in the form

utt + Lu− q0(x, t)u = 0,

where q0(x, t) = (t+ 1)µ |u|σ−1 signu.
As q0(x, t) = O(t−2), then there exists t0 such that for t > t0

|q0(x, t)| < ε.

Take θ(t) ∈ C∞0 such that θ(t) = 1 for t > t0 + 1, θ(t) = 0 for t 6 t0 and
0 6 θ(t) 6 1.

Assume

v(x, t) = θ(t)u(x, t).

The function v(x, t) satisfies the equation

vtt + Lv − q(x, t)v = F (x, t), (3.1)

and the boundary condition

∂v

∂ν
= 0 on Γ0, (3.2)

where

q(x, t) =

{
q0(x, t) for t > t0 + 1
0 for t 6 t0,

F (x, t) = (θt · u)t + θt · ut.
Show that |v(x, t)| 6 c · exp{−ht}, c = const. As the function F (x, t) has a

compact support, then from theory of linear equations (see. [9], [10]) it follows
that problem (3.1), (3.2) has the solution v1(x, t) such that

v1(x, t) =

{
O(e−ht) as t→ +∞
at+ b+O(eht) as t→ −∞. (3.3)

The function ω(x, t) = v1(x, t)− v(x, t) satisfies the equation:

ωtt + Lω − q(x, t)ω = 0 (3.4)
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and the boundary condition :

∂ω

∂ν
= 0 on Γ0,

ω(x, t) → 0 as t → +∞ and ω = at + b + O(eht) as t → −∞ . If we prove that
ω ≡ 0, then the problem statement follows. Show that a = 0, b = 0. Suppose
that a > 0. So, ω(x, t) < 0 for t < −T1, where T1 is a rather large positive
number. Prove ω < 0 for t > −T1. As q(x, t) = q0(x, t) for t > t0 + 1, then
q(x, t) = O(t−2) as t→ +∞.

Denote l = max
t=T

ω(x, t), and W (x, t) = (ω − l)+, where T is a rather large

positive number. Obviously, W (x, t) = 0 for t = −T1, t = T and

W (x, t) ∈
◦
W

1
2(QT1,T ).

In defining the solution, as a test function we take ϕ (x, t) = W (x, t) ·k (x),
where k (x) is the positive solution of problem (2.1),(2.2) such that 0 < m1 6
k(x) 6 m2.

Then from the definition of the solution we have:∫
A+
l

|ωt|2 kdxdt+ ν1

∫
A+
l

|∇ω|2 kdxdt 6 −
∫
A+
l

q(x, t) · k · ω · (ω − l)+dxdt, (3.5)

where A+
l = {(x, t), W > 0}. Here we used that

−
n∑

i,j=1

∫
Π−T1,T

aij
∂ω

∂xj

∂k

∂xi
Wdxdt+

n∑
i=1

∫
Π−T1 ,T

ai
∂ω

∂xi
·W · kdxdt =

= −1

2

n∑
i,j=1

∫
Π−T1,T

ai,j
∂ω2

∂xj

∂k

∂xi
dxdt+

1

2

n∑
i=1

∫
Π−T1,T

ai
∂ω2

∂xi
kdxdt = 0.

Estimate the right hand side of (3.5) using the inequality [see. 7]

‖u‖ 2n
n−2
6 C ‖∇u‖2,Ω ,

where C is a constant dependent on the dimension of n.
Then:

−
∫
A+
l

q(x, t)ω(ω − l)+kdxdt 6
∫
A+
l

|q(x, t)| (ω − l + l)(ω − l)kdxdt =

=

∫
A+
l

|q(x, t)| · |ω − l|2 kdxdt+ l ·
∫
A+
l

|q(x, t)| · |ω − l| kdxdt 6

6 m2

∫
A+
l

t>t0

|q(x, t)| · |ω − l|2 dxdt+ l ·m2

∫
A+
l

t>t0

|q(x, t)| · |ω − l| dxdt. (3.6)
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At first estimate the first term:

F1 =

∫
A+
l

t>t0

|q(x, t)| · |ω − l|2 dxdt 6

6


∫
A+
l

t>t0

|ω − l|
2(n+1)
n−1 dxdt



n−1
n+1


∫
A+
l

t>t0

|q(x, t|
n+1
2 dxdt



2
n+1

6

6

 ∫
A+
l ∩QT1,T2

|ω − l|
2(n+1)
n−1 dxdt


n−1
n+1  ∫

A+
l ∩{t>t0}

|q(x, t)|
n+1
2 dxdt


2

n+1

6

6


 ∫
A+
l ∩QT1,T2

|ω − k|
2(n+1)
n−1 dxdt


n−2

2(n+1)


2 ∫

A+
k ∩{t>t0}

|q(x, t)|
n+1
2 dxdt


2

n+1

6

6 C ·

 ∫
A+
l ∩QT1,T2

|∇(ω − l)|2 dxdt

 · I2, (3.7)

where

I2 =

 ∫
A+
l ∩{t>t0}

|q(x, t)|
n+1
2 dxdt


2

n+1

.

Then estimate I2.

I2 =

 ∫
A+
l ∩{t>t0}

|q(x, t)|
n+1
2 dxdt


2

n+1

6 C1 ·

 ∫
A+
l ∩{t>t0}

t−(n+1)dxdt


2

n+1

6

6 C1 ·

 T∫
t0

t−(n+1)dxdt


2

n+1

6 C2 ·

(
t−n

−n

∣∣∣∣T
t0

) 2
n+1

=

= C2 ·
(
T−n

−n
+
t−n0

n

) 2
n+1

= C3 ·
(
t−n0 − T−n

) 2
n+1 .

take t0 so that |u(x, t)| < ε and C3 · t
− 2n
n+1

0 < m1ν1
4Cm2· . Then we get

I2 6
m1ν1

4C ·m2
.
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From (3.7) it follows

F1 6
ν1m1

4m2
·

∫
A+
l ∩QT1,T2

|∇(ω − l)|2 dxdt. (3.8)

Estimate that second term in the right side of (3.6).

F2 = l ·
∫
A+
l

|q(x, t)| · |ω − l| dxdt 6

6 l ·

∫
A+
l

|q(x, t)|p1 dxdt


1
p1

∫
A+
l

|ω − l|
2(n+1)
n−1 dxdt


n−1

2(n+1)

6

6 l · C1


∫
t>t0

A+
l

t−2p1dt



1
p1 ∫

A+
l

|∇(ω − l)|2 dxdt


1
2

6

6
ν1m1

4m2

∫
A+
l

|∇(ω − l)|2 dxdt+ l2 · C2


∫
t>t0

A+
l

t−2p1dt



2
p1

, (3.9)

here 1
p1

+ n−1
2(n+1) = 1.

Hence p1 = 1 + n−1
n+3 .

Combining (3.8) and (3.9), we get

m1

∫
A+
l

|ωt|2 dxdt+m1ν1

∫
A+
l

|∇ω|2 dxdt 6 m1

2

∫
A+
l

|ωt|2 dxdt+

+
m1ν1

2

∫
A+
l

|∇ω|2 dxdt+ l2 · C2

 T∫
t0

t−2p1dt

2/p1

.

As a result, for n > 1 we have:

m1

2
·
∫
A+
l

|ωt|2 dxdt+
m1ν1

2
·
∫
A+
l

|∇ω|2 dxdt 6 l2 · C

 T∫
t0

t−2p1dt

2/p1

.

From the fact l(T ) → 0 as T → 0 and from the convergence of the integral
T∫
t0

t−2p1dt we get mesA+
l = 0.

So ω − l 6 0. As l converges to zero, then ω < 0.
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In the similar way, we can prove that if a < 0, then ω(x, t) > 0.
Show that a = b = 0. Assume a > 0. So, ω(x, t) < 0 for t > t1. The function

ω1 = −tβ will be a supersolution of equation (3.4) for large in modulus negative
β.

Indeed:

ω1tt +Lω1− q(x, t)ω1 = −β(β− 1)tβ−2 + q(x, t)tβ = −tβ−2(β(β− 1)− qt−2) < 0.

Let t2 be rather large. Choose A so small positive number that −Atβ2 >
ω(x, t2). Then from W = ω(x, t2) +Atβ2 6 0, ω(x, t) +Atβ → 0 as t→ +∞ and

Wtt + LW − q (x, t)W > 0,

as above we can prove that

ω(x, t) +A tβ 6 0 as t > t2.

Let us consider the points set, where υ = u < 0, for them we have

−A · tβ > ω(x, t) > v1 > −C1e
−h t.

This contradiction proves that a can not be positive. We can similarly show
that a can not be negative, and that b = 0. Since ω → 0 as t→ ±∞, consequently
ω ≡ 0.
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