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ON BEHAVIOR AT INFINITY OF THE SOLUTIONS OF A
SEMILINEAR ELLIPTIC EQUATION OF SECOND ORDER

SHIRMAIL G. BAGIROV

Abstract. Asymptotic behavior of the solution of a semilinear elliptic
equation of second order in a cylindrical domain, satisfying the Neumann
boundary condition on the lateral surface, is studied.

1. Introduction and the main result

Denote: I, = G x (a,b), Il o0 =11, I'yp = 0G x (a,b), 'y oo = 'y, where G
is a bounded domain in R™ with the Lipschits boundary.
Let L be an operator of the form

"9 0 " 0
L= Z Ere (aij(fﬁ)axj> + ;“Z’(””)axi’

,j=1

where x = (z1,...,2,) € R", the coefficients a;j(x), a;(z) are bounded, measur-
able functions, a;; = a;; and the following ellipticity condition be fulfilled

n

Z a;j(z)&& > Vi \§|2, r € G, Vi =const >0, |§]2 = ng, e R
i=1

ij=1
We study the behavior at infinity of the solutions of the equation:

u + Lu — (t+ 1)# |u|” =0 in I, (1.1)
satisfying the condition:
ou = ou
— = Z aij(w)5— cos(zi,n) on Ty, (1.2)
ov = Ox;

where o > 1, 4 > —2, n is a unit vector of the external normal to 0G.

The case p = 0 was considered in the paper [1].

Similar problems with nonlinearity of the form |u|” " u were investigated in
the papers [2]-[6].

As the solution of problem (1.1), (1.2) we understand a generalized solution.
The function u(z,t) is said to be the generalized solution of equation (1.1) satis-
fying condition (1.2) if u(z,t) € W3 (Ilyp) N Loo(Ilyp) for any 0 < a,b < oo and
it holds the equality:

/utgotdxdt—i— Z /aij(x)uxjcpxidxdt—

Ha,b Z7]:11_10,,17
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Z/az X ) Uy, pdrdt + /( D |u|” pdzdt = 0

ub

for any function go(x,t) € W (I, ) such that ¢(z,a) = p(z,b) =0

From the classic results on smoothness of generalized solutions of linear elliptic
equations it follows that u(x,t) in any closed domain f[a,b satisfies the Holder
condition [7].

The following theorem is the main result

Theorem 1.1. a) If u(xz,t) > 0 is the solution of equation (1.1), satisfying
ut2
1

condition (1.2), then u(x,t) = O (t*af

b) If u(x,t) is the solution of equation (1.1), satisfying condition (1.2), that
changes the sign at any domain Il,, a > 0, then

u(z,t) = O(e™ M),

where h is independent of u(x,t).

2. Absence of negative solutions and auxiliary lemma.

Let us consider the following problem:

"9 ou "9
F a() ) =57 L (ai(2)u) =0, 2.1
> o (am) )~ 2 gy e =0 )
0 - Z azj cos n, ;) Zazucos n,x;) = 0. (2.2)
v
i,j=1

It is known that problem (2.1), (2.2) has a solution k(z) such that 0 < m; <
k(x) < mg, my1, mg = const > 0 (see. [8]).

Lemma 2.1. For any o > 1, u > —2 problem (1.1), (1.2) has no negative
solutions.

Proof. In defining the solution, as a test function we take ¢(z,t) = t(t)k(z),
where 9(t) € CP(R), ¥(t) =1 for 0 <t < R, ¥(t) =0 for t > 2R and k(zx) is
the solution of problem (2.1), (2.2).

Then we get:

/ |ul” (t + V)P tpkdrdt = — /ut(twl + ) kdxdt—

Ip2r
_ Z / e um]kxltwdxdt—l—z / a; () ug, ktdrdt =
b= 1H0 2R = IHo 2R

=— / ur(t + )k dodt = / uk(t” + 29" )dzdt —I—/ku(m,O)daj <
G

o2r IMo2r
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1o 1/q
"+ 20/
g 12 <
< mg ‘/m!u\(t+-1)t¢dxdt L/‘tq_%t+_0#@_ndﬂ_ldxdt <
o2r o 2r
<2 / al” (¢ + 1)Ptpdadt+
o
Io2r
t 1 2 1149
mo [ty" + 29| dwdt—i—mg/u(x,o)da:,
gl-1q ta=1(t + 1)nla=1)qpa—1
Mo 2r
where % + % =1.
Then as a result we have:
Cm5>-/|m%H1WWMﬁ<
ma o
Ip2r
! " + 20/
< . / o 1)M(q_1)tq_1¢q_1da¢dt+ /u(m,O)daﬁ. (2.3)

o2r

we take 9)(t) in the form ¥ (t) = (7R) = (0o(7))* = (), where 7 = t/R, ©o(T) =
0form <1,7>2 ¢o(t) € C°(R), Ais arather large positive number. Estimate
the first term in the right hand side of (2.3):

|t¢//+_2¢/w
/ (t + 1)M(q_1)tq_1¢q_1d:1:dt <
Iy 2r
176" + 20| (142 (14g)
</ / (u+2)(g—1) 1\#Ma=1) 41 q_ldmdthM J+e - A(po),
G 1<7<2 R (T+ E) T

where
q
T)\goé_ltpf)’ + 7\ — 1)903_2 + 2)\<p6‘_1<p6

dr.
(7_ i %)u(q—l) TQ_ISOS(Q_D

Algn) = mesG; | |

1<7<2

Obviously, by chosing A, ¢y we can choose so that there would be A(pg) < co.
Then from (2.3) we obtain:

Cm—g)-/zW@+UWMﬁ<(mﬂﬁ>-/WMUHJWWMﬁé

mo g mo g

0,R Ho2r
1
< —- RUHDU=a) 4(p0) + /u(fc,O)d:E. (2.4)
qe™
G
Since ¢ > 1, then for [u(z,0)dz < 0 and as R — oo from (2.4) we get u =0
G

in IIy. This proves Lemma 2.1. O
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If in the proof of Lemma 2.1 as a test function we take p(z,t) = (t—to)y(t)k(x)
for t > to, p(x,t) = 0 for t < tg, then we get that for any nontrivial solution
u(z,t) of problem (1.1), (1.2)

/u(x,to)dx > 0. (2.5)

G
Lemma 2.2. If u(x,t) is the non-trivial solution of problem (1.1), (1.2), then
_put2
u(z,t) =0 (t 0—1> .
Since
wy + Lu — (E+ D) |ul” 7w > ug 4+ Lu — (84 1) |ul”
then any solution of equation (1.1) is the subsolution of the equation
ug + Lu — (t+1)" ju)” tu=0. (2.6)
Equation (2.6) has a strong positive solution w(t), satisfying the relations
w(to) = 1, W'(tp) = 0 at the points ty + T (where T is independent of ¢y) (see.
[4]). Then for rather large ¢ from the maximum principle the subsolution is less
than the solution i.e. u(z,t) < w(t) in Hyy—7 ¢47-

Thus, u(x,t) is upper bounded, as for large ¢ is less than the value at the vertex
of the parabola.

1
2
The function v(z,t) = u(x,t) — cotf%l, where ¢y = [W} , is also

an upper bounded subsolution of equation (2.6). Then:
vy + Lv — a(x, t)v > 0, (2.7)

where a(z,t) > 0.

Let us consider the function v —et. This function also satisfies inequality (2.7)
and is negative for ¢ = 0. There exists Ty(e) such that for T' > Ty(e), v — T < 0.
Then from the maximum principle it follows that v — eT" < 0 for ¢ > 0. Having
tending € to zero, we get v < 0.

So:
ut(x,t) < cot_%?. (2.8)
As
lu| =ut —u", u=ut+u,

then by (2.5) we get:

fvtda= [~y = [ - <2 [ a7
G

Hence for large T

/ luldodt < ey [ tTotdt <dey(T—2) o1 =

r_2 742 T-2

3 To-1
— 4o (T +1) 51 (1 - ) < eo(T +1) 750, (2.9)
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From the theory of linear differential equations we know that (see. [7])

max |u| <c / |u| dzdt.
Or_1,741
Hr_1,741

Using (2.9), from this inequality we get that for large T’
+2
max |u| < co(T +1) o1

Mr_1,741

Hence for t € [T'— 1,T + 1]

So
This proves lemma 2.2.

3. The proof of the main result.
Point a) was already proved, prove b). Write equation (1.1) in the form
ug + Lu — qo(x, t)u = 0,

where qo(z,t) = (t + 1) |u|” " signu.
As qo(w,t) = O(t2), then there exists ¢y such that for t > ¢,
|QO($at)’ <Eé.
Take 6(t) € C3° such that 0(t) = 1 for t > to + 1, 6(t) = 0 for t < ¢p and
0<0(t) <1.
Assume
v(z,t) = 0(t)u(x,t).
The function v(z,t) satisfies the equation
vy + Lv — q(z,t)v = F(x,t), (3.1)
and the boundary condition
0
8—3 =0 on Iy, (3.2)

where
| qo(z,t) for t>to+1
q(@,t) _{ 0 for < to,

F(.T,t) = (‘915 . u)t + 0 - uy.
Show that |v(z,t)| < ¢ - exp{—ht}, ¢ = const. As the function F(z,t) has a

compact support, then from theory of linear equations (see. [9], [10]) it follows
that problem (3.1), (3.2) has the solution v;(x,t) such that

oz 1) = O(e=h) as t— 400
DOV at+b4 0@ as t— —oc.

The function w(zx,t) = vi(z,t) — v(z,t) satisfies the equation:

wi + Lw — q(z,t)w =0 (3.4)

(3.3)
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and the boundary condition :

0
8—(::0 on Iy,

w(z,t) = 0ast — +oo and w = at + b+ O(eM) as t — —oo . If we prove that
w = 0, then the problem statement follows. Show that a = 0, b = 0. Suppose
that a > 0. So, w(x,t) < 0 for t < —Ty, where T} is a rather large positive
number. Prove w < 0 for ¢t > —T3. As q(z,t) = qo(z,t) for t > tog + 1, then
q(x,t) = O(t™?) as t — +o0.

Denote | = rtna%w(x,t), and W(x,t) = (w — )T, where T is a rather large

positive number. Obviously, W(x,t) =0 for t = =T, t =T and
W (z,t) € W 3(Qr,.1)-

In defining the solution, as a test function we take ¢ (z,t) = W(z,t) -k (z),
where k (x) is the positive solution of problem (2.1),(2.2) such that 0 < m; <
k(z) < ma.

Then from the definition of the solution we have:

/ |wi|? kdadt + 11 / \Vw|? kdzdt < — / q(z,t) - k-w-(w—1DTdxdt, (3.5)
Af Af Af
where A" = {(z,t), W > 0}. Here we used that

Oow Ok
_Z / e e dt+z / aig
T

L= 1HTT /LlHT17

S Z / da:dt+1§n: / 0. 09 et — 0
N g 837] ox; 2 'O -

W=l =
Estimate the right hand side of (3.5) using the inequality [see. 7]
lull 22, < C I Vallyg,

where C' is a constant dependent on the dimension of n.
Then:

- / oz, w(w — 1) kdadt < / g(2, )| (@ — 1 + ) (w — 1) dadt —
Af Af

:/|q(w,t)]'|w—l]2kda:dt+l-/q(x,t)|‘\w—l|kdxdt§

+ +
Al Al

< my / (2, )] - |w — 1| dadt + 1 - mo / (2. 0)| - |w — U] dedt.  (3.6)

+ +
4 4

t>10 t>to
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At first estimate the first term:
P = / lq(x, t)] - |w — I|? dadt <

Af
t>to
n—1 2
n+1 n+1
2(n+1) nt1
< / lw—1| =1 dxdt / lg(z,t| 2 dxdt <
Al Af
t>to t>to
n—1
n+tl 7L~2+~1
2(n41) ntl
< / w— 15 dt / () dedt | <
ATHQTLB l*ﬂ{t>t0}
ne2 72
e 2
2(n+1)
< / w — kT ddt / (o) dedt | <
A;LDQT17T2 Zﬁ{t>t0}
V(w — )| dadt (3.7)
Af mQT1 Ty
where
T
q(zx t)
+m{t>z&o}
Then estimate Io.
2 2
n+1 n+1
I = / lq(z, )" dadt <O - / =D dpdt <
F{t>to}

Fo{t>to} ;

2
T\ nt1
to

2
T g\ 2
:02-< + 2 ) =Cy- (tg" =T~ ™).

—-n n

T n+1l 4
/ (+1) g dt <Cy- <

-

take to so that |u(z,t)| < & and C3 - ¢, on < 76~ Then we get
mi
40 . mz.

I> <
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From (3.7) it follows

Flglzll;nl- / V(w — 1)|? dadt. (3.8)
2

AlerQT1 ,To

Estimate that second term in the right side of (3.6).

o) :z-/yq(x,t)\ o — 1] dadt <

Af
n—1
2(n+1)
2(n+1)
/ g, D) dadt / w — 15 <
+ +
1
Pr1
1
2
<1-0y / t=2Pdt /|V(w—l)|2da:dt <
t>to 1
Af
2
r1
< ”””1 /va—m dwdt + 12 - Oy / =g | (3.9)
A+ t>to

+
Al

here - —1— 2(n+1) =1.
Hence pp=1+2 n+3
Combining (3.8) and (3.9), we get

m1/|wt|2dxdt+m11/1/|Vw\2d:vdt< W;/|wt|2da€dt+

Af Af Af
T 2/p1
mlyl /|Vw| dadt + 12 - Cy /t—%dt
A to
As a result, for n > 1 we have:
T 2/p1
T;Ll-/|wt]2dmdt—|—mlyl /|w| dedt <1%-C /t_Qpldt
A to

From the fact [(T') — 0 as 7' — 0 and from the convergence of the integral

T
ft_2p1dt we get mes A = 0.
to

So w — 1< 0. As [ converges to zero, then w < 0.
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In the similar way, we can prove that if a < 0, then w(z,t) > 0.
Show that a = b = 0. Assume a > 0. So, w(z,t) < 0 for ¢t > ¢;. The function
w1 = —t? will be a supersolution of equation (3.4) for large in modulus negative

B.
Indeed:

wie + Lwi — gz, thwy = —B(B — P2 + gz, )t? = —t772(B(B—1) —qt™2) < 0.

Let t3 be rather large. Choose A so small positive number that —At’g >
w(x,t3). Then from W = w(x,ts) + Atg <0, w(x,t)+ AtP — 0 as t — +oo and

Wy + LW —q(z,t) W >0,
as above we can prove that
w(x,t)+ AP <0 as t > ty.
Let us consider the points set, where v = u < 0, for them we have
—A-tP > w(x,t) > v > —Cre M

This contradiction proves that a can not be positive. We can similarly show
that a can not be negative, and that b = 0. Since w — 0 as ¢t — £o00, consequently
w=0.
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