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FINITENESS OF THE NEGATIVE SPECTRUM OF THE

ONE-DIMENSIONAL MAGNETIC SCHRÖDINGER OPERATOR

ELSHAD H. EYVAZOV

Abstract. In the paper we find relation between the solutions of the
basic homogeneous equation of perturbation theory and eigen functions
of a self-adjoint magnetic Schrödinger operator responding to negative
eigenvalues. Under certain conditions on magnetic and electric poten-
tials, we prove finiteness of the negative spectrum of the one-dimensional
magnetic Schrödinger operator.

1. Introduction

Depending on behavior of magnetic and electric potentials, the spectrum of the
energy of the charged particle in the magnetic field contains, generally speaking,
both a continuous and discrete component. It is known well that the discrete
spectrum of the Schrödinger operator in quantum mechanics corresponds to the
bound state described by the Schrodinger equation. Furthermore, it is known that
the Schrödinger operator is an important device by integrating the Kortewag-de
Fries equation by the inverse method of scattering theory. As each negative eigen
value of the Schrödinger operator generates a solitone solution of the Kortewag-
de-Friez equation, then knowing the number of negative eigenvalues is of interest.
Furthermore, estimation of the number of negative eigen value plays an important
role both in quantum mechanics and in spectral theory of differential operators.

A lot of papers have been devoted to investigation of the negative part of
the spectrum of the Schrödinger operator. In the first turn point out the books
[8,10,13,15] and the references therein, and also the papers [5,7,18,19].

Recently, the researchers directed their interests to the operators connected
not only with electric and also with magnetic fields such as magnetic Schrödinger
and Paouli operators (see e.i. [1, 4, 11, 12, 16]).

In the present paper, in the space L2 (R1) (R1 = (−∞,+∞)) we study one-
dimensional Schrödinger operator generated by the differential expression

∆a,V =

(
1

i

d

dx
+ a (x)

)2

+ V (x) ,

where a (x) and V (x) are magnetic and electric potentials, respectively, and these
potential are real functions satisfying the following conditions:
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a) Φ (x) ≡ a2 (x) + V (x) + ia′ (x) ∈ L1 (R1);
b) a (x) ∈ L1 (R1).
In spite of the fact that in one-dimensional case the magnetic potential is gauge

equivalent to zero, in this paper we want to clear up how the interaction of electric
and magnetic fields influences on spectral properties of the Schrödinger operator;
how one can obtain from the found results of the general case the known results
at no magnetic potential case; how one can approach to the solution of arising
problems by applying in many-dimensional case the method developed in the
papers [11,12].

Let us consider in L2 (R1) the self-adjoint operators H0 := − d2

dx2
and H =

H0 + W ,responding to quadratic forms h0 (ϕ) =
∫ +∞
−∞ |ϕ

′|2 dx and ha,V (ϕ) =

h0 (ϕ) + (Wϕ,ϕ) respectively, where W is an operator acting by the formula
W = −2i ddxa (x) + Φ (x). Note that the self-adjointness of the one-dimensional
magnetic Schrödinger operator H = H0 +W was proved in the paper [6].

Denote by C (R1) a Banach space of continuous and bounded in R1 functions
with the norm sup

−∞<x<+∞
|f (x)| = ‖f‖C(R1)

< +∞.

Let h (x) ∈ C (R1) and z = λ2, Imλ > 0. Assume

u0 (λ) ≡ u0 (x, λ) = R0

(
λ2
)
h (x) , u (λ) ≡ u (x, λ) = R

(
λ2
)
h (x) ,

where R0

(
λ2
)

=
(
H0 − λ2

)−1
and R

(
λ2
)

=
(
H − λ2

)−1
are the resolvents of the

operators H0 and H, respectively. Taking into account that the operators −i ddx
and R0

(
λ2
)

are permutable, R0

(
λ2
)

is an integral operator with the kernel

G0 (x, y, λ) = −e
iλ|x−y|

2iλ
,

for u (λ) we get the inhomogeneous equation

u (λ) +K (λ)u (λ) = u0 (λ) ,

where K (λ) is an integral operator with the kernel

K (x, y, λ) = −e
iλ|x−y|

2iλ
[Φ (y) + 2λsgn (x− y) a (y)] .

Denote by E+ the set of those points from the half-plane C+ = {λ ∈ C : Imλ > 0}
for which the homogeneous equation

f +K (λ) f = 0 (1.1)

has a nontrivial solution in C (R1).
In the paper [3, Theorem 1] it is proved that the operator K (λ) is analytic with

respect to λ in the upper part of the complex plane C+ = {λ ∈ C : Imλ > 0} in
uniform operator topology and for all λ from C+\ {0} = {λ ∈ C : Imλ ≥ 0, λ 6= 0}
is compact in C (R1) and is continuous in uniform operator topology. Using these
results, in the paper [6] it is established that if σ + iτ = λ ∈ E+ and f (x) is a
nontrivial solution of the homogeneous equation (1) from C (R1), and conditions
a), b) are fulfilled, then

sup
−∞<x<+∞

eτ |f (x)| < +∞ (1.2)

and f (x) ∈W 1
2 (R1).
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In the paper [2] it is proved that under the conditions a) and b) for the oper-
ator H a positive semi-axis is a double continuous spectrum and on the interval
(0,+∞) it has no eigenvalues.

The goal of the present paper is to study the negative spectrum of the one-
dimensional magnetic Schrödinger operator H.

2. Basic results

Theorem 2.1. Let σ + iτ = λ ∈ E+. Then λ = iτ, τ > 0. Therewith λ2 = −τ2
is the eigenvalue of the operator H of finite multiplicity.

Proof. Let σ + iτ = λ ∈ E+. Show that the number λ2 is the eigen value of the
operator H. It follows from estimation (1.2) that equation (1.1) has a nontrivial,
exponentially decreasing solution from the space W 1

2 (R1). Show that

ha,V (f) = h0 (f) + (Wf, f) = λ2 (f, f)

is valid.
From the everywhere density of the space of basic functions C∞0 (R1) inW 1

2 (R1)
it follows that there exists the sequence {fn (x)}∞n=1 ⊂ C∞0 (R1) such that

lim
n→∞

‖fn (x)− f (x)‖W 1
2 (R1)=0 .

As λ ∈ E+, the operator − d2

dx2
−λ2, is one-to-one maps the space of distributions

of slow growth S′ onto itself (S is the Schwarts space [17, p. 87]). It is known
that C∞0 (R1) ⊂ S′ and W 1

2 (R1) ⊂ S′. Hence it follows that the images of the

elements of the spaces C∞0 (R1) and W 1
2 (R1) by mapping − d2

dx2
− λ2 become

the elements of the space distributions of slow growth S′. In particular, the

linear manifold
(
− d2

dx2
− λ2

)
C∞0 (R1) is everywhere dense both in L2 (R1) and

in W 1
2 (R1). The similar results hold for the operator − d2

dx2
−λ2 as well. Let now

ψ ∈
(
− d2

dx2
− λ2

)
C∞0 (R1). Then there exists a unique element ϕ ∈ C∞0 (R1) such

that ψ =
(
− d2

dx2
− λ2

)
ϕ. Taking into account (1.1) and the equality K (λ) =

R0

(
λ2
)
W , we have:

0 = (f +K (λ) f, ψ) = lim
n→∞

(fn +K (λ) fn, ψ) =

lim
n→∞

(
fn +K (λ) fn,

(
− d2

dx2
− λ2

)
ϕ

)
=

lim
n→∞

((
− d2

dx2
− λ2

)
(fn +K (λ) fn) , ϕ

)
=

lim
n→∞

((
− d2

dx2
− λ2

)(
fn +R0

(
λ2
)
Wfn

)
, ϕ

)
=

lim
n→∞

((
− d2

dx2
− λ2

)
fn +Wfn, ϕ

)
=((

− d2

dx2
− λ2

)
f +Wf,ϕ

)
=
(
Hf − λ2f, ϕ

)
.
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By arbitrariness of ψ (together with it the arbitrariness of ϕ) we get

Hf = − d2

dx2
f +Wf = λ2f. (2.1)

For proving the equality λ = iτ, τ > 0 it suffices to notice that λ ∈ E+ and
the eigenvalue λ2 of the self-adjoint operator H should be real. Note that the
finiteness of multiplicity of the eigenvalue λ2 = −τ2 of the operator H follows
from Fredholm’s analytic theorem (see e.i. [14, p. 87]). However, the last part
of the statement of the theorem is the consequence of general theory of ordinary
differential equations with regular generalized coefficients. �

Remark 2.1. In equality (3) the sum − d2

dx2
f + Wf should be understood in the

sense of quadratic forms but not the sum of operators. The matter is that though
both functions f (x) and (Hf) (x) belong to the space L2 (R1), but there may

happen so that none of the functions − d2

dx2
f and Wf belong to the space L2 (R1).

Theorem 2.2. Let conditions a), b) be fulfilled, and furthermore,

c)
∫ +∞
−∞ |xΦ (x)| dx < +∞.

Then the set E+ is finite.

Proof. Using the Fredholm analytic theorem, the lower boundedness of the self-
adjoint operator H, and Theorem 1, we get that E+ is a bounded set without
limit points, except may be λ = 0. Show that λ = 0 also may not be a limit point
of E+. Let λ = 0 be a limit point of the set E+. Then according to theorem 1,
there exists a sequence of numbers λn and sequence of functions fn (x) ∈W 1

2 (R1)
such that for any n

fn (x) +K (λn) fn (x) = 0, (2.2)

where λn = iτn, τn > 0, lim
n→∞

τn = 0. In view of inequality (1.2), without loss of

generality, we can choose the normalization fn (x) by the equality

fn (x) = e−τn|x|gn (x) , ‖gn‖C(R1)
= 1, (2.3)

where lim
n→∞

‖gn (x)− g0 (x)‖C(R1)
= 0, and the function f0 (x) ≡ g0 (x) ∈ C (R1)

is the solution of the integral equation

f0 (x) +K (0) f0 (x) = 0 (2.4)

with the kernel

K (x, y) =
1

2
|x− y|Φ (x) + isgn (x− y) a (y) .

Using∫ +∞

−∞

[
−1

2
|x|
]
e−ixpdx =

1

p2
,

∫ +∞

−∞

[
−e

iλ|x|

2iλ

]
e−ixpdx =

1

p2 − λ2

and passing to Fourier transformations

û (p) =

∫ +∞

−∞
e−ixpu (x) dx
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in equations (2.2) and (2.4) we get their p-representations

f̂n (p) = − 1

p2 + τ2n

[(
ˆΦfn

)
(p) + 2p

(
ˆafn

)
(p)
]
,

f̂0 (p) = − 1

p2

[(
Φ̂f0

)
(p) + 2p

(
ˆaf0

)
(p)
]
. (2.5)

By Theorem 2.1, the numbers λ2n = −τ2n are the eigenvalues of the self-adjoint
operator H, therefore for n 6= m the eigen functions fn (x) and fm (x) of the
operator H will be orthogonal in the space L2 (R1). Then from the Parseval

equality we have (fn, fm) =
(
f̂n, f̂m

)
= 0 for n 6= m. Hence, by (2.5) we have∫ +∞

−∞

1

p2 + τ2n

1

p2 + τ2m
ϕn (p)ϕm (p)dp = 0, n 6= m,n,m = 1, 2, ..., (2.6)

where ϕn (p) =
(

ˆΦfn

)
(p)+2p

(
ˆafn

)
(p), n = 0, 1, 2, .... From normalization (2.3)

it follows that

|ϕn (p)|2 ≤ 2
∣∣∣( ˆΦfn

)
(p)
∣∣∣2 + 4p2

∣∣∣( ˆafn

)
(p)
∣∣∣2 ≤

2

(∫ +∞

−∞
|Φ (x)| dx

)2

+ 4p2
(∫ +∞

−∞
|a (x)| dx

)2

.

Hence, for the arbitrary positive number δ we obtain:∣∣∣∣∣
∫
|p|≥δ

1

p2 + τ2n

1

p2 + τ2m
ϕn (p)ϕm (p)dp

∣∣∣∣∣ ≤
∫
|p|≥δ

1

p4
|ϕn (p)|

∣∣∣ϕm (p)
∣∣∣ dp ≤

1

2

∫
|p|≥δ

1

p4
|ϕn (p)|2 dp+

1

2

∫
|p|≥δ

1

p4
|ϕm (p)|2 dp ≤

2

(∫ +∞

−∞
|Φ (x)| dx

)2 ∫
|p|≥δ

1

p4
dp+

4

(∫ +∞

−∞
|a (x)| dx

)2 ∫
|p|≥δ

1

p2
dp ≤ c,

where c > 0 is a constant dependent only on δ. From the weak compactness of
the space L2 (R1) it follows that for the arbitrary positive number δ from the
sequence ϕn (p) one can choose a subsequence (for simplicity we again denote it
by ϕn (p)), that

lim
m,n→∞

∫
|p|≥δ

1

p2 + τ2n

1

p2 + τ2m
ϕn (p)ϕm (p)dp =

lim
n→∞

∫
|p|≥δ

1

p2 + τ2n

1

p2
ϕn (p)ϕ0 (p)dp =

∫
|p|≥δ

1

p4
|ϕ0 (p)|2 dp. (2.7)

Then from (2.6) and (2.7) it follows that for the arbitrary positive number δ there
should exist the finite

lim
n→∞

∫
|p|≥δ

1

p2 + τ2n

1

p2
ϕn (p)ϕ0 (p)dp. (2.8)
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Now we should answer the following question. Which conditions should satisfy
the function f0 (x) for the existence of the limit (2.8) To this end we investigate
the function ϕn (p) in the vicinity of the point p = 0. According to the expansion

e−ipx = 1− ixp+O
(
p2x2

)
in δ-vicinity of the point p = 0, we have

ϕn (p) = An − ipBn + 2pCn + ψn (p) , n = 1, 2, ...,

where

An =

∫ +∞

−∞
Φ (x) fn (x) dx, Bn =

∫ +∞

−∞
xΦ (x) fn (x) dx,

Cn =

∫ +∞

−∞
a (x) fn (x) dx,

ψn (p) = O
(
p2
)
, n = 1, 2, ....

From the equalities∫
|p|≤δ

1

p2 + τ2n

1

p2 + τ2m
dp =

2

τ2m − τ2n

[
1

τn
arctg

δ

τn
− 1

τm
arctg

δ

τm

]
,

∫
|p|≤δ

p2

p2 + τ2n

1

p2 + τ2m
dp =

2

τm
arctg

δ

τm
−

− 2τ2n
τ2m − τ2n

[
1

τn
arctg

δ

τn
− 1

τm
arctg

δ

τm

]
and ∫

|p|≤δ

p

p2 + τ2n

1

p2 + τ2m
dp = 0

it follows that for the existence of the limit

lim
m,n→∞

∫
|p|<δ

1

p2 + τ2n

1

p2 + τ2m
ϕn (p)ϕm (p)dp

the solution f0 (x) of equation (2.4) should satisfy the following conditions:∫ +∞

−∞
Φ (x) f0 (x) dx = 0,

∫ +∞

−∞
xΦ (x) f0 (x) dx = 0,∫ +∞

−∞
a (x) f0 (x) dx = 0. (2.9)

Now from (2.9) it follows that if the conditions∫ +∞

−∞
x2 |Φ (x) f0 (x)| dx < +∞,

∫ +∞

−∞
|xa (x) f0 (x)| dx < +∞, (2.10)

are fulfilled, then

ϕ0 (p) = O
(
p2
)
, p→ 0. (2.11)

From the conditions a)-c) it follows that if the solution f0 (x) of equation (2.4)
satisfies the condition

sup
−∞<x<+∞

(
1 + x2

)
|f0 (x)| < +∞, (2.12)
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then estimations (2.10) and (2.11) are valid. Now prove inequality (2.12).
Using condition (2.9), rewrite equation (2.4) in the form:

f0 (x) =∫ +∞

−∞

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
f0 (y) dy. (2.13)

Multiply equation (2.13) by the function 1+x2 and assume l0 (x) =
(
1 + x2

)
f0 (x).

Then l0 (x) satisfies the equation

l0 (x) =∫ +∞

−∞

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy.

After elementary transformations we get the equality

l0 (x) =∫ +∞

−∞

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy+∫ x

−x

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy+∫ +∞

x

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy =∫ −x

−∞

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy+∫ +∞

x

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2
l0 (y) dy =

L(1)l0 (x) + L(2)l0 (x) ,

where

L(1)l0 (x) =

∫ −x
−∞

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) +

+i [sgn (x− y)− 1] a (y)} 1 + x2

1 + y2
l0 (y) dy,

L(2)l0 (x) =

∫ +∞

x

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) +

+i [sgn (x− y)− 1] a (y)} 1 + x2

1 + y2
l0 (y) dy.

If we take into account the inequality 1+x2

1+y2
≤ 1 in the representation

L(2)l0 (x) =

∫ +∞

x
[(y − x) Φ (y)− 2ia (y)]

1 + x2

1 + y2
l0 (y) dy,

from the conditions a)-c) it follows that the operator L(2) is bounded in C (R1).

The boundedness of the operator L(1) in C (R1) is proved in the same way. Fur-
ther, as in [3], we can show that the linear integral

L0f (x) =

∫ +∞

x
L0 (x, y) f (y) dy
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with the kernel

L0 (x, y) =

{[
1

2
|x− y| − 1

2
x+

1

2
y

]
Φ (y) + i [sgn (x− y)− 1] a (y)

}
1 + x2

1 + y2

is completely continuous in C (R1).

Assume L
(n)
0 = L0χn, where χn is the operator of multiplication by the

characteristic function of the section [−n, n] and l0 (x) = L
(n)
0 l0 (x). Accord-

ing to general theory of compact operators (see [13, p. 41] or [12]) there ex-
ists a sequence of numbers {γn} converging to a unit such that the sequence

l
(0)
n (x) = −γnL(n)

0 l
(0)
n (x) converges to l0 (x) =

(
1 + x2

)
f0 (x) as n → ∞ in uni-

form topology of the space C (R1). Thus, inequality (2.12) is proved. Taking into
account equalities (2.6), (2.7) and formula (2.11), we get∫ +∞

−∞

1

p4
|ϕ0 (p)|2 dp = lim

δ→0

∫
|p|≥δ

1

p4
|ϕ0 (p)|2 dp = 0,

whence ϕ0 (p) = 0. Hence it follows the equality f0 (x) = 0. This contradicts the
fact that ‖f0 (x)‖C(R1)

= 1. �

From Theorems 2.1 and 2.2 it follows that the following theorem is valid.

Theorem 2.3. If conditions a)-c) are fulfilled, then the negative part of the
spectrum of the self-adjoint operator H consists of a finitely many non-negative
eigenvalues of finite multiplicity.

Remark 2.2. For a (x) = 0 this result agrees well with the well known result for
the Sturm-Liouville operator (see [9, p. 264]).
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