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NECESSARY OPTIMALITY CONDITIONS OF
QUASI-SINGULAR CONTROLS IN OPTIMAL CONTROL

MISIR J. MARDANOV AND KAMIL B. MANSIMOV

Abstract. An optimal control problem described by a system of Volterra
type integro-differential equations is considered. Assuming the control
domain to be convex, the necessary optimality condition in the form of
a linearized maximum condition is proved. Investigating special incre-
ments in the quality criterion, different necessary optimality conditions
of quasi-singular controls are established.

1. Introduction

The fundamental result of theory of necessary optimality conditions-the Pon-
tryagin maximum principle [23] to present time was proved for different problems
of optimal control of ordinary dynamical systems (see e.g. [2,3,10,12,13,16,19,22,
23,24,25,28,29]). But there are cases when the Pontryagin maximum principle
or its corollaries degenerate and become inefficient. Such cases,are called singu-
lar cases and appropriate controls, singular controls [1,5,6,25]. Singular controls
arise in many practical problems from rocket dynamics, space navigation, etc [see
e.g. 5,22]. Furthermore, in many cases the number of controls selected by the
maximum principle or by its corollaries, is rather great. Thus, these is a need
to obtain necessary optimality conditions of second order that admit to narrow
essentially the set of controls suspicious on optimality.

Different necessary optimality conditions of singular in this or other sense con-
trols described by ordinary differential equations were obtained in [1,3,5,6,14,18,
20,22] and others in different ways.

In spite of the fact that in continuous optimal control problems the linearized
maximum principle at some assumptions is the corollary of the maximal principle,
there are cases when the admissible control without degeneration satisfies the
maximum condition, but along it the linearized maximal principle degenerates.
The case of degeneration of the linearized maximum condition [5] is called a quasi-
singular case. It is clear that necessary optimality conditions of quasi-singular
controls admit to study optimality of the controls that satisfy the maximum
condition without degeneration, as well.
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It is clear that the controls singular in the sense of the Pontryagin maximal
principle at appropriate conditions will be quasi-singular as well. And the con-
trary one, generally speaking, is not true, i.e. a quasi-singular control may also
be not singular in the sense of the Pontryagins maximum principle. Therefore,
necessary optimality conditions of quasi-singular controls admit to reveal also the
controls that satisfy the Pontryagin maximum condition without degeneration.
Some necessary optimality conditions as the Pontryagin maximum principle and
linearized maximum condition in the processes described by the system of integro-
differential equations of Volterra type have been obtained in [9,17,21,30,31] and
others.

In the present paper, we consider an optimal control problem described by a
system of integro-differential equations of Volterra type. A number of necessary
optimality conditions of quasi-singular controls, i.e. of controls along of which
the linearized maximal principle degenerates, were established.

2. Problem statement

Assume that the controlled process on a fixed interval of time T' = [to, 1] is
described by the following system of integro-differential equations of Volterratype.

z(t) = f(t,z(t),u(t)) + | K, 7,2(7),u(r))dr (2.1)

to

with initial condition

x(to) = 2o, (2'2)

Here f(t,x,u), K(t,7,z,u) are the given n-dimensional vector-functions con-
tinuousin T'x R™ x R" and T x T x R™ x R", respectively, together with partial
derivatives withrespect to (x,u)to second order inclusively, tg,t1,z¢ are given,
u = u(t) is an r-dimensional piecewise - continuous (with finite number of discon-
tinuity points) vector ofcontrol actions with the values from the given non-empty,
bounded and convex set U C R, i.e.

u(t)eUCR", teT. (2.3)

Such control functions are called admissible.

It is assumed that to each admissible control u(t) there corresponds a unique,
continuous and piecewise-smooth solution z(t) of problem (2.1)-(2.2).

If in place of admissible controls we take a class of measurable and bounded
vector-functions, then the solution of problem (2.1)-(2.2) will belong to the class
of absolutely-continuous vector functions.

The existence and uniqueness of the solution of Cauchy problem (2.1)-(2.2)
may be proved by the known methods (see e.g. [29,30,31,32]).

On the solutions of problem (2.1)-(2.2) generated by all possible admissible
controls define the multi-point functional

S(u) = p(x(T1), x(T2), ..., x(Tk)). (2.4)
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Here p(ay, as, ..., az,) is the given twice continuously differentiable in R"* scalar-
function, T; € (to,t1], i = 1,n are the given points, moreover, to < T} < Ty <
< Ty < ty.

The admissible control u(t) delivering minimum to functional (2.4) at restric-
tions (2.1)-(2.3) is said to be an optimal control, and the appropriate process
(u(t),z(t)) an optimal process.

3. Calculation of the special increment of the quality functional

Let (u(t), z(t)) be a fixed admissible process. Because of convexity of the
control domain U ”the perturbed” control may be defined by the formula

uu(t) = u(t) + p(o(t) —u(t)), teT. (3.1)

Here p € [0,1] is an arbitrary number, v(t) € U, ¢t € T is an arbitrary admis-
sible control.

Denote by Az, (t) the special increment of the trajectory z(t) responding to
the special increment

Auy(t) = plo(t) — u(t)
of the control wu(t).
It is clear that Ax,(t) is the solution of the problem

Axy(t) = [f(t,2(t) + Azu(t), u(t) + Auy(t)) — f(E2(t), u(t)] +

—i—/ (K (t,7,2(7) + Az (1), u(T) + Auy(1))—]

to

—K(t,7,z(7),u(r))]dr, teT, (3.2)

Az, (to) = 0. (3.3)

Using (3.2)-(3.3), by the scheme similar to the scheme for example from [5],
we prove

Lemma 3.1. The special increment Ax,(t) of the trajectory x(t) admits the
representation

Ay (t) = pb(t) + o (1), (3.4)
where €(t) is the solution of the variations equation

(t) = folt, x(t), () £(t) + fult, x(t), u(t)) (v(t))(v(t) — u(t))+

—I-/ (K (t, 7, 2(7),u(r))l(T) + Ky(t, 7, 2(7),u(r))(v(T)) — u(r))]dr, (3.5)

to

0(to) = 0. (3.6)
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Introduce the analogue of the Hamilton-Pontryagin function

H(t, x(t),u(t),(t) = ' () f(t,2(t), ult) + 1 () K (7.t x(t), u(t))dr,

t

where ¢ = 1(t) is an n-dimensional vector-function of adjoint variables being
the solution of the adjoint equation (linear non-homogeneous integral equation
of Volterra type)

. i x oy T
P(t) = Ho (1, 2(7), u(r), (7))dr — Zai(t)(990( (T1()9,a‘ ,2(Ty))
' i=1 %

(3.7)

Here «;(t) is a characteristic function from the interval [to, T;].
Using (3.1), (3.4), the special increment of the quality creation (2.4) may be
represented as follows
t1

S(u+ Auy (1) = S(u) = —p | H(t2(t), ult), $(6)(v(t) — ult))dt+

to

‘/t 1 [0/ (£) Haa (8, (), u(t), 1 ()€(2) + 2(v(t)—
ORI

—u(t)) Huz (£, 2(t), u(t), $(£))£(t)+
+H(0(t) = w(t) Huu(t 2(8), u(t), v (1) (0(t) — u(®)] dt] +o(u?®).  (3.8)

4. Integral necessary optimality conditions of quasisingular
controls

From the expansion (3.8) of the quality functional (2.4) it follows that along
the optimal control w(t)

t1
H,,(0,2(0), u(9),1(0))(v(t) — u(t)dt < 0. (4.1)
to
Here and in the sequel, 6 € [to, t1] is an arbitrary continuity point of the control

u(t).

Relation (4.1) is the analogue of the linearized integral maximum condition
(see e.g. [4,9]) for the problem under consideration and is a first order necessary
optimality condition.

Using for example the lemma from [26, p. 8], we prove the equivalence of
optimality condition (4.1) to the following:

H;, (0, 2(0), u(0), ¥(0) (w — u(9)) <0, (4.2)
for all 6 € [tg,t1) and w € U.
We can show that necessary optimality conditions (4.1) and (4.2) are equiva-
lent.
Relation (4.2) is the analogue of the pointwise linearized maximum condition.
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Study the case of degeneration of the pointwise linearized maximum condition
(4.2).

Definition 4.1. Call the admissible control u(¢) a quasisingular control in prob-
lem (2.1)-(2.4) if for all 6 € [to,t1) and w € U

H, (0, 2(6), u(0), ¥ (0)) (w — u(0)) = 0. (4.3)

The case when relation (4.3) is fulfilled, is called a quasisingular case. It is

clear that in quasisingular case the linearized necessary optimality conditions
lose substantial value.

Allowing for (4.3), from expansion (3.8) we get that for the optimality of the

quasi-singular controlu(¢)in problem (2.1)-(2.4) it is necessary that the inequality

k

/ aQW(x(Tl)ax(Tﬂv'“’x(Tk))
S ) St (T~

1,j=1

_/1 [0 () Ho (8, 2(8), (), () 0()+

to
+2(v(t) — u(t)) Hua (£, 2(t), u(t), 1 (£))(t) + (v(t) — u(t))'x
X Hy (t, (1), u(t), 1 (2)) (v(t) — u(t))] dt = 0 (4.4)
to, be fulfilled for all v(t) € U, t € T.

Inequality (4.4) is an implicit necessary optimality condition of quasi-singular
controls. Therefore its practical usefulness is not great. But using it, we can get
a number of necessary optimality conditions explicitly expressed directly by the
parameters of problem (2.1)-(2.4).

The solution of problem (3.5)-(3.6) based on the formula on integral repre-
sentation of solutions of linear non-homogeneous integro-differential equations of
Volterra type (see e.g. [33]) admits the representation

t
6z(t) = [ Q(t,7)(v(7) —u(r))dr, (4.5)
to
Where, Q(t,7) is (n x n) matrix function defined by the formula

t

Qt,7) = F(t,7) fu(r, (1), u(r)) + / F(t,s)Ku(s, 7, 2(T),u(r))ds.

.
Here F(t,7) is the analogue of the Cauchy matrix being the solution of the
problem

t
F (t,7)=—F(t,7)fo(r,2(7),u(r)) — / F(t,s)Ky(s,7,2(7),u(r))dr, (4.6)

F(t,t) = E(E — (n x n)-is unit matrix).
Let by definition

b 2 X X ey L
M) == 3 ailrlay(oQ (1, It g

i,j=1
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+ / 1 o QD 120,00 9 0)Q( ) (4.7)

Theorem 4.1. (Integral necessary optimality condition, of quasi-singular con-
trols). For the optimality of the quasi-singular control u(t)in problem (2.1)-(2.4)
it 1is necessary that the inequality

/t 1 /t 1(U(T) — (7)) M(,8)(v(s) — u(s))dsdr+
t1
+/t (0(t) — w(t)) Hyu(t, (), u(t), (1)) (v(t) — u(t)dt+

1o / i " (0(r) — () Hu (. (), (), () Q. )

(v(t) — u(t))dt <0 (4.8)
to be fulfilled for all v(t) e U, t € T.

Proof. Using representation (4.5), we obtain

k
ol Tl’aafiii ) =

—u(1))'Q"(T3, 7) %

to

2 p(a(T. >’< (1),
aalaaj Q(Tj, 5)(v(s) — u(s))dsdr. (4.9)

Using the Foubini theorem, we have

/t (0(t) — u(t)) Haa (b, 2(t), u(t), () £(t)dt =

=[] €0 = s Htratr e s e

(v(t) — u(t))dt. (4.10)
Finally, similar to the papers [14,16] we get
t1

() Hao (1, (), u(t), 9 (£)€(8)di—

to

_/tt< QU T w(t) — ulr ))dT) Hao (£, (1), u(t), (1)) x

to

< Qt.5)(0(s) — u(s))ds ) e =

_/tl/tl(v(r)—u(r))/{/l( )Q/(t,T)Ha;x(t,x(t),u(t),z/z(t))@(t,s)dt}

(v(s) — u(s))dsdr. (4.11)
Taking into account identities (4.9)-(4.11) and considering denotation (4.7) in
inequality
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(4.4), we arrive at relation (4.8).

The direct corollary of Theorem 4.1 is

Corollary 4.1. For the optimality of the quasisingular control u(t) in problem
(2.1)-(2.4)it is necessary thatthe inequality

(v —u(0)) Huw(0, 2(0),u(0))(v — u(h)) <0 (4.12)
to be fulfilled for allv € U and 0 € [to,t1).

5. Multi-point necessary optimality conditions of second order
quasisingular controls

Study the case of degeneration of optimality condition (4.12).
Definition 5.1. If for all v € U and 0 € [to, 1)

(v = u(0)) Huu (0, 2(6), u(6),(0)) (v — u(9)) = 0, (5.1)

thenu(t)is said to be a quasi-singular control of second order.

Using inequality (4.8) for quasisingular second order controls we can get point
wise necessary optimality conditions.

Now derive necessary optimality conditions of quasi-singular controls.

Let u(t) be a quasi-singular second order control.

Define the special variation of the control u(t) by the formula

m
€)= oult,&;0ili,v;) (5.2)

i=1
Here m is an arbitrary natural number, ¢; > 0, i = 1, m are arbitrary numbers,
v; € U, i = 1,m are arbitrary vectors, 0; € [tg,t1), i = 1,m are arbitrary continu-
ity points of the function u(t) such that tg < 6 <y <05 < ... <0, <t1, €>0
is a rather small arbitrary number such that 6,, + ¢ < t; and ou(t,e;6;, 4;,v;) is

a special variation of the control u(t) defined by the formula

g vy, t € [0;,0; + Lig) ,
Oult,;0;, b, vi) = { w(t), t €T\ [0, 6: + ;c)
Summation of special variations (5.3) of the control u(t) it defined as follows
(see e.g.[7,11]).
If 61 = 0, then the sum of variations du(t,e; 01, ¢1,v1) and du(t,e; b2, l2,v9) is
understood as the variation of the control u(t) of the form

(5.3)

V1, t € 01,01 + tie),
U(t; E) = V2, t e [01 + l1e, 01 + (41 + fg)&) ,
u(t), t ET\ [01,(91 +(1+€2)€).
But if 6; # 603 (01 < 63) then the sum of variations du(t,e;60,¢1,v1) and
du(t, e; 62, L2, v2) is understood as the variation of the control u(t) of the form
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V1, t€01,01 + te),
v(t; 6) = V2, te [02,91 + 426) R
u(t), teT\Ui, [0i,0; + Lic).
In the similar way, summation of needle-shaped variations (5.3) of the control
u(t) is extended on any finite number of variations of the control wu(t).
Taking into attention (5.2) in inequality (4.8), after some transformations we
get

e2 0> Ll (vi — u(0;)) M (05, 05)(v; — u(0;))+
j=1
+ > (v — u(0:) Hua (05, 2(0), u(6;)
=1

i—1

X | 4Q(0:, 0:)(vi — w(0:)) +2 ) £i(v; — u(0;));Q(0:,05) | p +0(*) <0. (5.4)
j=1

The following theorem follows from inequality (5.4) because of arbitrariness of

e > 0.

Theorem 5.1. For the optimality of the quasi-singular second order controlu(t)
i the problem under consideration, it is necessary that for any natural number
m the inequality

D iti(vi = u(8)) M(6;,05) (v — w(9;))+
4,j=1

+ Z l; (Ui — u(HZ))’HW(GZ, x(ﬁz), u(ﬁz)), w(ﬁz) X
=1

i—1
X | 6iQ(6:, 0) (vi —ul6:) +2) £;Q(6:,05) (v —u(B:))| <O (5.5)
j=1
to be fulfilled for all

v, €U, i=1m,£;>0,1=1,m, 0 € [to,tl),izl,m(t()g@l < ...§0m<t1).

Necessary optimality condition (5.5) belongs to the class of multi-point nec-
essary optimality conditions for quasi-singular controls and admits to narrow
essentially the set of controls suspicious on optimality [11,14,15,16,18,20, 21, 27].

The direct corollary of theorem 5.1 is

Theorem 5.2. For the optimality of the quasisingular second order control u(t)it
18 necessary that the inequality

(v —u(9))" [M(0,0) + Hux (0, 2(0), u(9),1(0))Q(0,0)] (v —u(d)) <0 (5.6)
to be fulfilled for allv € R", 6 € [to,t1).
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Necessary optimality condition (5.6) is an analogue of the Gabasov-Kirillova
condition from [8].

As it is seen, multi-point optimality condition (5.5) remains valid also in de-
generation of the analogue of the Gabasov-Kirillova condition (5.6).

Conclusion

In the paper, we consider an optimal control problem described by a system
of integro-differential equations assuming that the control domain is convex. An
analogue of the linearized maximum condition is proved. The case of linearized
maximum condition (quasi-singular case) is studied. Integral necessary optimality
conditions are obtained.
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