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SPECTRAL PROPERTIES FOR THE EQUATION OF

VIBRATING BEAM

ZIYATKHAN S. ALIYEV AND SEVINC B. GULIYEVA

Abstract. In this paper we study the properties of the natural frequen-
cies and the corresponding harmonics of transverse vibrations of a rod is
exposed to tracking and axial forces. It is known that problems of this
type leads to a spectral fourth-order problem with spectral parameter
in the boundary conditions. We study the general characteristics of the
location of the eigenvalues on the real axis and oscillation properties of
eigenfunctions of these problems.

1. Introduction

We consider the following boundary value problem problem

(p(x)y′′(x))′′ − (q(x)y′(x))′ + r(x)y(x) = λτ(x)y(x), 0 < x < l, (1.1)

y′(0) cosα− (py′′)(0) sinα = 0, (1.2)

y(0) cosβ + Ty(0) sinβ = 0, (1.3)

y′(l) cos γ + (py′′)(l) sin γ = 0, (1.4)

(aλ+ b)y(l)− (cλ+ d)Ty(l) = 0, (1.5)

where λ ∈ C is spectral parameter, Ty ≡ (py′′)′ − qy′, α, β, γ, a, b, c, d are real
constants such that 0 ≤ α, β, γ ≤ π/2 and

σ = bc− ad 6= 0. (1.6)

The coefficients p(x), q(x), r(x) and τ(x) are assumed to be real-valued contin-
uous functions on [0, l], moreover, p(x) is positive and has absolutely continuous
derivative, q(x) is non-negative and absolutely continuous on [0, l], and τ(x) is
positive on [0, l].

Problem (1.1)-(1.5) aries when variables are separated in the dynamical bound-
ary value problem describing small oscillation of a vibrating beam which is subject
to axial and servocontrol forces (see [13, 23, 25]).

The locations, multiplicities of the eigenvalues, the oscillation properties of
eigenfunctions, the basis properties in Lp(0, l), 1 < p < ∞, of the system of
root functions of the boundary value problem (1.1)-(1.5) with r ≡ 0, σ > 0, are
considered in [18, 19], and with r ≡ 0, σ < 0, are considered in [2, 9].
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The subject of the present paper is the investigate characteristics of eigenvalue
locations in real axis, the oscillation properties of eigenfunctions, and the basis
properties in Lp(0, l), 1 < p <∞, of the system of eigenfunctions of the boundary
value problem (1.1)-(1.5) in the presence of potential r (the function r(x) doesn’t
vanishes identically on any interval constituting the part of interval [0, l]).

2. Preliminaries

Consider the boundary condition (see [13])

y(l) cos δ − Ty(l) sin δ = 0, (2.1)

where δ ∈ [0, π).
Alongside the boundary value problem (1.1)-(1.5) we shall consider the spectral

problem (1.1)-(1.4), (2.1). The problem (1.1)-(1.4), (2.1) in the case r ≡ 0 and
δ ∈ [0, π/2] has been considered in [13] (see also [17]), where in particular proved
the following assertion.

Theorem 2.1. For fixed α, β, γ the eigenvalues of this problem are real, simple
and form an infinitely increasing sequence {µn(δ)}∞n=1 such that µn(δ) > 0 for all
n ∈ N\{1}; µ1(δ) > 0 for δ ∈ [ 0, π/2) and δ = π/2, β ∈ [ 0, π/2); µ1(π/2) = 0

for β = π/2. Moreover, the eigenfunction v
(δ)
n (x) corresponding to the eigenvalue

µn(δ) has n− 1 simple zeros in the interval (0, l).

In [17] it is shown that for each fixed λ ∈ C there exists a unique (up to a
constant factor) nontrivial solution v(x, λ) of problem (1.1)-(1.4), (2.1) for r ≡ 0.
For any fixed x ∈ [0, l] the function v(x, λ) is an entire function of λ .

It is obvious that the eigenvalues µn(0) and µn(π/2), n ∈ N, of boundary value
problem (1.1)-(1.4), (2.1) for r ≡ 0 are the zeros of entire functions v(x, λ) and
Tv(x, λ), respectively. Notice that the function

F0(λ) = Tv(l, λ)/v(l, λ)

is will defined for

λ ∈ A ≡

( ∞⋃
n=1

An

)⋃
(C\R),

where An ≡ (µn−1(0), µn(0)) , n ∈ N, µ0(0) = −∞ and is meromorphic function
of finite order, µn(π/2) and µn(0), n ∈ N are the zeros and poles of these function,
respectively.

Denote:

δ0 =

{
π/2, if β ∈ [ 0, π/2),

arctg F0(0), if β = π/2,
.

The problem (1.1)-(1.4), (2.1) for r ≡ 0 and δ ∈ [ 0, π) was considered in [3]
(see also [17]), where in particular, it was proved the following theorem.

Theorem 2.2. For fixed α, β, γ the eigenvalues of problem (1.1)-(1.4), (2.1) for
r ≡ 0 and δ ∈ [ 0, π) are real, simple and form an infinitely increasing sequence
{µn(δ)}∞n=1 such that µn(δ) > 0 for n ∈ N0; µ1(δ0) = 0, µ1(δ) < 0 in the

case δ ∈ ( δ0, π). Furthermore, the eigenfunction v
(δ)
n (x) corresponding to the

eigenvalue µn(δ) for n ∈ N0 has exactly n−1 simple zeros in the interval (0, l), the
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eigenfunction v
(δ)
1 (x) corresponding to the eigenvalue µ1(δ) in the case δ ∈ ( δ0, π)

may have arbitrary number of zeros in the interval (0, l) which are also simple.

The problem (1.1)-(1.4), (2.1) in the case which the function r(x) doesn’t
vanishes identically on any interval constituting the part of interval [0, l] studied
in the papers [5] (see also [16]). On setting

r0 = min
x∈[0,l]

r(x), r1 = max
x∈[0,l]

r(x),

τ0 = min
x∈[0,l]

r(x), τ1 = max
x∈[0,l]

r(x),

denote by (Ψ1) the regular Sturmian system obtained from (1.1)-(1.4), (2.1) for
δ ∈ [0, π/2] by replacing r(x) by r0 and τ(x) by τ1. The substitution

λ′ = λτ1 − r0

transform (Ψ1) into an equivalent completely regular Sturmian system (Ψ2) of
the type to which cited above assertion from [13] may be applied. Let λ′n− nth
eigenvalue of the system (Ψ2) which is positive, and λn,0 = (λ′n + r0)/τ1− nth
eigenvalue of the system (Ψ1), n ∈ N. Then the eigenfunction yn,0(x), corre-
sponding to the eigenvalue λn,0, n ∈ N, has n − 1 simple zeros in the interval
(0, l).

Now, using the ”µ-process” (see [5, 16]) we pass from (Ψ1) to (1.1)-(1.4), (2.1)
by deformation

r(x, µ) ≡ (1− µ′′) r0 + µ′r(x),
τ(x, µ) ≡ (1− µ′′) τ1 + µ′′τ(x), x ∈ [0, l], µ′, µ′′ ∈ [0, 1].

since the coefficient r(x, µ) increases and τ(x, µ) decreases, then by [5] the positive
eigenvalues can not decrease. The condition

λ(µ) τ(x, µ)− r(x, µ) > 0 (2.2)

is a fortiori satisfied by the eigenvalues

λm+1(µ), λm+2(µ), ...

of Sturmian system which is obtained from (1.1)-(1.4), (2.1) by replacing r(x) by
r(x, µ) and τ(x) by τ(x, µ), where m is greatest of the two numbers m0 and 2,
and m0 is defined by:

λ′m0+1 ≥ (r1τ1 − r0τ0)/τ0 ≥ λ′m0
, λm0+1 ,0 > 0. (2.3)

Then by Theorem 2.1 we have the following oscillation theorem:

Theorem 2.3. The problem (1.1)-(1.4), (2.1) for δ ∈ [0, π/2] has infinitely many
eigenvalues which all real. With exception of no more than m of them, the eigen-
values are simple and positive. If we denote them by (for fixed α, β, γ)

0 < λm+1(δ) < λm+2(δ) < ...,

then the eigenfunction y
(δ)
n (x), corresponding to the eigenvalue λn(δ), has exactly

n− 1 simple zeros in the interval (0, 1).

However there are no results on the multiplicities of the first m eigenvalues
and on the oscillatory properties for the corresponding eigenfunctions. In future,
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in the paper [4, 6-8, 20] succeeded to study the structure of root subspaces cor-
responding of all eigenvalues and the oscillatory properties of all eigenfunctions
of regular Sturmian system (1.1)-(1.4), (2.1).

Denote:

N0 =

{
N, if δ ∈ [ 0, δ0],

N\{1}, if δ ∈ (δ0, π).

Theorem 2.4. For fixed α, β, γ the boundary value problem (1.1)-(1.4), (2.1) for
δ ∈ [0, π) has a sequence of real and simple eigenvalues

λ1(δ) < λ2(δ) < ... < λn(δ)→ +∞ .

Furthermore, the eigenfunction y
(δ)
n (x) corresponding to the eigenvalue λn(δ) for

n ∈ N0 has exactly n− 1 simple zeros in the interval (0, l).

By theorem 2.4 and max-min characterization of the eigenvalues [15, p.418] we
have that for any δ1, δ2 ∈ (0, π) such that δ1 < δ2 the relations are true

λ1(δ2) < λ1(δ1) < λ1(0) < λ2(δ2) < λ2(δ1) < λ2(0) < ... . (2.4)

3. Main properties of the solution of the problem (1.1)-(1.4)

Below we will need the following results of [13, Lemma 2.1 and Lemma 2.2].

Lemma 3.1. Let y(x) be a nontrivial solution of the differential equation (1.1)
for r ≡ 0 and λ > 0. If y(x), y′(x), y′′(x) and Ty(x) are nonnegative at x = x0

(but not all zero) they are positive for all x > x0. If y(x), −y′(x), y′′(x) and
−Ty(x) are nonnegative at x = x0 (but not all zero) they are positive for all
x < x0.

Lemma 3.2. Let y(x) be a nontrivial solution of the problem (1.1), (1.2) (1.4) for
r ≡ 0 and λ > 0. If x0 is zero of the function y(x) or y′′(x) in the interval (0, l),
then and y′(x)Ty(x) < 0 in a neighborhood of x0. If x0 is zero of the function
y′(x) or Ty(x) in the interval (0, l), then and y(x) y′′(x) < 0 in a neighborhood
of x0.

The following theorem is useful in the sequel.

Theorem 3.1. For each fixed λ ∈ C there exists a nontrivial solution y(x, λ) of
problem (1.1)-(1.4), with unique up to a constant coefficient.

Proof. Let yk(x, λ), k = 1, ... , 4 be solutions of equations (1.1) normalized for
x = 0 by the Caushy conditions

y
(s−1)
k (0, λ) = δks, s = 1, ... , 3, T yk(0, λ) = δk4, (3.1)

where δks is the Kronecker delta.
We shall seek the function y(x, λ) in the following form:

y(x, λ) =

4∑
k=1

Ck yk(x, λ), (3.2)

where the Ck, k = 1, ... , 4 are constants.
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Suppose that in boundary conditions (1.2)-(1.4) α, β, γ 6= 0. It follows by (3.1),
(3.2) and boundary conditions (1.2), (1.3) that

C3 =
C2

p(0)
ctgα, C4 = −C1ctgβ . (3.3)

Using (3.3), from (3.2) we obtain

y(x, λ) = C1 {y1(x, λ)− y4(x, λ)ctgβ}+ C2

{
y2(x, λ) + y3(x, λ)

ctgα

p(0)

}
. (3.4)

Taking into account (3.4) and (1.4), to determine C1 and C2 we obtain the relation

c1α
∗(λ) + c2β

∗(λ) = 0,

where

α∗(λ) =
{
y1(l, λ) ctgγ + p(l)y′′1(l, λ)

}
−ctgβ

{
y′4(l, λ) ctgγ + p(l)y′′4(l, λ)

}
, (3.5)

β∗(λ) =
{
y′2(l, λ) ctgγ + p(l)y′′2(l, λ)

}
+
ctgα

p(0)

{
y′3(l, λ) ctgγ + p(l)y′′3(l, λ)

}
. (3.6)

For the completion of the proof of Theorem 3.1 it is sufficient to demonstrate
that

|α∗(λ)|+ |β∗(λ)| > 0 . (3.7)

It follows by Lemma 3.1 that y′k(l, λ) > 0, y′′k(l, λ) > 0, k = 1, ... , 4 for
λ > λ∗, where λ∗ = inf {λ ∈ R : λ τ(x)− r(x) > 0, x ∈ [0, l]}. Hence, by (3.6)
the relation (3.7) holds for λ > λ∗.

Let λ ∈ C\[λ1(δ0), +∞). If (3.7) fails for such λ, then the functions

φ1(x, λ) = y1(x, λ)− ctgβ y4(x, λ) and φ2(x, λ) = y2(x, λ) +
ctgα

p(0)
y3(x, λ)

solve the problem (1.1)-(1.4). We define the function v(x, λ):

ϕ(x, λ) = Tφ2(l, λ)φ1(x, λ)− Tφ1(l, λ)φ2(x, λ).

Since ϕ(l, λ) = 0, the function ϕ(x, λ) is an eigenfunction of the problem (1.1)-
(1.5) with δ = π/2 corresponding to the eigenvalue λ ∈ C\[λ1(δ0),+∞), with is
impossible, because in this case must be λ = λk(π/2) for some k ∈ N and by
(2.4) we have that λ ≥ λ1(π/2) ≥ λ1(δ0).

Now let λ ∈ [λ1(δ0), λ∗). It follows from (2.3) and Theorem 2.4 that λ∗ =
λm(0). We define the function ψ(x, λ):

ψ(x, λ) = φ2(l, λ)φ1(x, λ)− φ1(l, λ)φ2(x, λ),

Since ψ(l, λ) = 0 and Tϕ(l, λ) = 0, the functions ψ(x, λ) and ϕ(x, λ) are eigen-
functions of the problem (1.1)-(1.5) with δ = 0 and δ = π/2 corresponding to
the same eigenvalue λ ∈ [λ1(π/2), λm(0)). However, this contradicts the relation
(2.4).

The remaining cases are considered similarly. Theorem 2.1 is proved.
In fact, the functions yk(x, λ), k = 1, ..., 4, and their derivatives are entire

functions of λ (see [21, Ch. 1]), and therefore y(x, λ) is also an entire function of
λ for each fixed x ∈ [0, l].
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It is obvious that the eigenvalues λn(0) and λn(π/2), n ∈ N, of boundary value
problem (1.1)-(1.4), (2.1) are the zeros of entire functions y(x, λ) and Ty(x, λ),
respectively. We observe that the function

Fr(λ) = Ty(l, λ)/y(l, λ)

is will defined for

λ ∈ A ≡

( ∞⋃
n=1

An

)⋃
(C\R),

where An ≡ (λn−1(0), λn(0)) , n ∈ N, λ0(0) = −∞ and is meromorphic function
of finite order, λn(π/2) and λn(0), n ∈ N are the zeros and poles of these function,
respectively.

In equation (1.1) we set λ = ρ4. By Theorem 1 in [21, p.59], in each subdomain
of the complex ρ− plane equation (1.1) has four linearly independent solutions
zk(x, ρ), k = 1, 4, which are regular with respect to ρ (for sufficiently large ρ)
and satisfying the relations

z
(s)
k (x, ρ) =

(
ρωk (r/p)

1
4

)s
eρωkX [1 +O (1/ρ)] , k = 1, 4, s = 0, 3, (3.8)

where ωk, k = 1, 4, are the distinct fourth roots of unity, and X =
x∫
0

(r/p)
1
4dt.

For brevity, we introduce the notation s(δ1, δ2) = sgnδ1 + sgnδ2. Let ω1 =

−i, ω2 = i, ω3 = −1, ω4 = 1, and h =
l∫

0

(r/p)
1
4dt. We shall seek the solution

y(x, λ) in the following form:

y(x, λ) =
4∑

k=1

ckzk(x, ρ),

where ck, k = 1, 2, 3, 4, are constants depending only on λ . Taking into account
(3.8) and boundary conditions (1.2)-(1.4), we obtain for large |λ | the asymptotic
estimate

y (x, λ) =


(
sin
(
ρX + π

2 sgnβ
)
− cos

(
ρh+ π

2 s(β, γ)
)
eρ(X−h)

)
[1],

if s(α, β) = 1,(
sin ρX − cos ρX + (−1)sgnαe−ρX + (−1)1−sgnγ

√
2

× sin(ρh + π
4 (−1)sgnγ

)
eρ(X−h)

)
[1], if s(α, β) 6= 1,

(3.9)

where [1] = 1+O
(

1
ρ

)
. Similarly, for the function Ty(x, λ) we obtain the following

asymptotic estimate

Ty(x, λ) =


−ρ3(pr3)

1
4
(
cos
(
ρX + π

2 sgnβ
)

+ cos
(
ρh+ π

2 s(β, γ)
)

× eρ(X−h)
)

[1], if s(α, β) = 1,

−ρ3(pr3)
1
4
(
cos ρX + sin ρX + (−1)sgnαe−ρX − (−1)1−sgnγ

√
2 sin

(
ρh+ π

4 (−1)sgnγ
)
eρ(X−h)

)
[1], if s(α, β) = 1,

(3.10)

Remark 3.1. As an immediate consequence of (3.9), we obtain that the number
of zeros in the interval (0, l) of function y(x, λ) tends to +∞ as λ→ ±∞.
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Taking into account relations (3.9) and (3.10), we obtain the asymptotic for-
mulas

Fr(λ) =



−ρ3(p(1)r3(1))
1
4

(
√

2)
1−2sgnγ

cos(ρh+π
2

sgnβ+π
4

sgnγ)
cos(ρl+π

2
sgnβ+π

4
(1+sgnγ))

[1],

if s(α, β) = 1,

−ρ3(p(1)r3(1))
1
4

(
√

2)
1−2sgnγ

cos(ρh−(1−sgnγ)π
4 )

cos(ρh+π
4

sgnγ)
[1],

if s(α, β) = 1,

(3.11)

In turn, from (3.11) should the asymptotic formula

Fr(λ) = −
(√

2
)1−2sgnγ

(p(1)r3(1))
1
4 4
√
|λ|3

(
1 +O

(
1
/

4
√
|λ|
))

, as λ→ −∞ .

(3.12)
From (3.12) follows immediately

Lemma 3.3. The following relation holds:

lim
λ→−∞

Fr(λ) = −∞ . (3.13)

We also have the following result.

Lemma 3.4. The following formula holds:

dFr(λ)

dλ
=

1

y2(l, λ)

l∫
0

ry2(x, λ)dx, λ ∈ A (3.14)

The proof is similar to that of [17, lemma 5; 3, Lemma 1].
Now we investigate the problem on the number of zeros of function y(x, λ).

Lemma 3.5. Every zero x(λ) of the function y(x, λ) is simple and is a differen-
tiable function of λ ∈ [λ1(δ0),+∞).

Proof. If λ > λ∗ , then by Lemma 3.2 the function y(x, λ) does not have
multiple zero in the interval (0, l). Let λ ∈ [λ1(δ0), λm(0)]. We define the angle
δλ by the equality δλ = cot−1 (Ty(l, λ)/y(l, λ)) ∈ [0, π). Then λ is a eigenvalue of
the problem (1.1)-(1.4), (2.1) with the serial number of the [1, m]∩ N0. Hence, by
Theorem 2.4 the zeros of function y(x, λ) contained in (0, l) are simple. The rest
of the proof concerning the smoothness of x(λ) follows the well-known implicit
function theorem. The Lemma 3.5 is proved.

By τ(λ), we denote the number of zeros of y(x, λ) in the interval (0, l). Lemma
3.5 and Theorem 2.4 readily imply the following assertion.

Lemma 3.6. Let λ > λ1(δ0). If λ ∈ (λn−1, λn] for n > 1, then τ(λ) = n− 1.

4. Oscillatory and basis properties of eigenfunctions of the
problem (1.1)-(1.5)

The considered problem (1.1)-(1.5) can be reduced to the eigenvalue problem
for the linear operator L in the Hilbert space H = L2(0, l)⊕ C with inner product

(ŷ, û) = ({y, k}, {u, s}) = (y, u)Lτ2 + |σ|−1 k s̄, (4.1)
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where (· , · )Lτ2 is an inner product in Lτ2(0, l) and

Lŷ = L{y(x), k} =

{
1

τ(x)

(
(Ty(x))′ + r(x)y(x)

)
, dTy(l)− by(l)

}
is an operator with the domain

D(L) =
{
{y(x), k} ∈ H : y(x) ∈W 4

2 (0, l), (Ty(x))′ + r(x)y(x) ∈ L2(0, l) ,
y(x) ∈ B.C0. , k = ay(l)− cTy(l)} .

dense everywhere in H (see [24]). Obviously, the operator L is well defined in H.
Problem (1.1)-(1.5) acquires the form

Lŷ = λŷ, ŷ ∈ D(L),

i.e., the eigenvalues λn, n ∈ N, of the operator L and problem (1.1)-(1.5) coincide
together with their multiplicities, and between the root functions, there is a one-
to-one correspondence

ŷn = {yn(x), kn} ↔ yn(x), kn = ayn(l)− c Tyn(l).

Problem (1.1)-(1.5) is strongly regular in the sense of [24]; in particular, this
problem has discrete spectrum.

We define a number κ and an operator J : H → H as

κ =

{
0, if σ > 0,
1, if σ < 0,

J{y, k} = {y, k signσ}.

The operator J is unitary and symmetric on H, and its spectrum consists of two
eigenvalues, 1 with multiplicity κ and +1 with infinite multiplicity. Therefore,
this operator generates the Pontryagin space Πκ = L2(0, l) ⊕ C with the inner
product (J− metric) [11, 12]

(ŷ, û)Πκ = [{y, k}, {u, s}] = (y, u)L2 + σ−1 k s̄. (4.2)

Theorem 4.1. The operator L is J−self-adjoint in Πκ.

The proof is similar to that of Proposition 1 in [10] (see also [14, Theorem
2.2]).

Remark 4.1. In the case σ > 0 (i.e., if κ = 0) J = I and Πκ = Π0 = H, where
I denotes the identity operator on H. Hence, in this case the operator L is
self-adjoint on H.

Let λ be an eigenvalue of L of algebraic multiplicity ν. We set ρ(λ) to be equal
to ν if Imλ 6= 0 and to the integer part ν/2 if Imλ = 0.

Theorem 4.2. The eigenvalues of the operator L are arranged symmetrically

around the real axis, and
n∑
τ=1

ρ(λτ ) ≤ κ for any system {λτ}nτ=1 (n ≤ +∞) of

eigenvalues with nonnegative imaginary parts.

The proof of this theorem follows from [22].
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Remark 4.2. In the case σ > 0 (i.e., if κ = 0) the all eigenvalues of problem
(1.1)-(1.5) are real and simple. In the case σ < 0 (i.e., if κ = 1) this problem
may have either one pair of complex conjugate nonreal eigenvalues or one real
multiple eigenvalue whose multiplicity does not exceed 3.

Lemma 4.1. [11]. Let L∗ be the adjoint operator of L in H. Then L∗ = JLJ .

The proof of this lemma follows from [11, Section 3, Proposition 5].
For c 6= 0 let N be an integer such that µN−1 < d/c ≤ µN .

Theorem 4.3. Let σ > 0. Then the eigenvalues of the boundary value problem
(1.1)-(1.5) are form an infinitely increasing sequence λ1 < λ2 < ... < λn < ... ,
where λn ∈ (λn−1(0), λn(0)) if c = 0 or c 6= 0 and n < N ; λN , λN+1 ∈
(λN−1(0), λN (0)]; λn ∈ (λn−2(0), λn−1(0)) if c 6= 0 and n > N + 1 Moreover,
the corresponding eigenfunctions y1(x), y2(x), ..., yn(x), ... have the following os-
cillatory properties :(a) if c = 0 and n > 1, then yn(x) has exactly n − 1 simple
zeros in the interval (0, l); (b) if c 6= 0 and n > 1, then yn(x) has exactly n − 1
simple zeros for n ≤ N and exactly n− 2 simple zeros for n > N in the interval
(0, l).

The proof is similar to that [19, Theorem 2.2] (see, also [18, Theorem 2]) in
view formula (3.12) and Lemmas 3.3, 3.4 and 3.6.

If σ > 0, then by theorems 4.1 - 4.3 and remarks 4.1, 4.2 L is a self-adjoint
discrete lower-semibounded operator in H and hence the system of eigenvectors
{yn(x), kn}, n ∈ N, of this operator forms an orthogonal basis in H.

Throughout the following, we assume that the condition σ > 0. By (4.1) (or
(4.2)) we have

(ŷn, ŷn)H = ‖yn‖2Lr2 + σ−1k2
n. (4.3)

We denote:

δn = ||yn||2Lr2 + σ−1k2
n, n = 1, 2, ... . (4.4)

Then, by σ > 0, from (4.4), we obtain

δn > 0, n = 1, 2, ... . (4.5)

Note that,

kn = ayn(l)− cTyn(l) 6= 0, n = 1, 2, ... . (4.6)

Indeed, if kn = 0 for some n ∈ N, then yn(l) = Tyn(l) = 0 by (1.5) and (1.6),
which contradicts the relation (2.4). Then, by virtue of (4.3), (4.5) and (4.6),

the elements ϑ̂n = {ϑn(x), sn} of the system {ϑ̂n}∞n=1 conjugated to the system
{ŷn}∞n=1 are defined by the relation

ϑ̂n = δ−1
n ŷn, n ∈ N. (4.7)

Hence, from (4.7), by (4.5) and (4.6), we find that

sn = δ−1
n kn 6= 0, n ∈ N. (4.8)

Let ς be an arbitrary fixed positive integer.

Theorem 4.4. The system of eigenfunctions {yn(x)}∞n=1, n 6=ς of problem (1.1)-

(1.5) forms a Riesz basis in the space Lr2(0, l) and basis in the space Lrp(0, l), 1 <
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p < ∞, and the conjugate system {un(x)}∞n=1,n 6=ς of the system {yn(x)}∞n=1, n 6=ς
is given by the formula

un(x) = yn(x)− sns−1
ς yς(x)

The basicity of the system {yn(x)}∞n=1, n 6=ς in the space Lr2(0, l) follows from

Corollary 3.1 of [1] by (4.8). Next, the basis property of this system in the space
Lrp(0, l), p ∈ (1, ∞)\{2} can be proved in accordance with the scheme of the proof
of Theorem 5.1 in [2].

Remark 4.3. In the case σ < 0 the spectral properties of problem (1.1)-(1.5) are
studied similar to that of [2].
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