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ALTERNATING ALGORITHM FOR THE APPROXIMATION

BY SUMS OF TWO COMPOSITIONS AND RIDGE

FUNCTIONS

VUGAR E. ISMAILOV

Abstract. In the current paper, we consider the problem of approxima-
tion of a continuous multivariate function defined on a convex compact
set X by sums of compositions of univariate functions with two fixed
multivariate functions, in particular, by sums of ridge functions with
two fixed directions. Under some assumptions imposed on X, we prove
that the sequence produced by the alternating algorithm converges to
the error of approximation.

1. Introduction

Let X be a convex compact subset of the space Rd. Fix two continuous maps
s : X −→ R, p : X −→ R and consider the following spaces of compositions of
functions:

S = {h ◦ s : h ∈ C(R)},
P = {g ◦ p : g ∈ C(R)},
U = S + P.

We are going to deal with the problem of approximating a continuous function
f : X → R using functions from the space U. By s(X) and p(X) we will denote
the images of X under the mappings s and p respectively. Define the following
operators

H : C(X)→ S, (Hf)(a) =
1

2

 max
x∈X

s(x)=a

f(x) + min
x∈X

s(x)=a

f(x)

 , for all a ∈ s(X)

and

G : C(X)→ P, (Gf)(b) =
1

2

 max
x∈X
p(x)=b

f(x) + min
x∈X
p(x)=b

f(x)

 , for all b ∈ p(X).

We are interested in algorithmic methods for computing the distance to a
given continuous function f : X → R from the manifold U . Historically, there is
one procedure called the Diliberto-Straus algorithm [3]. This procedure can be
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described as follows: Starting with f1 = f compute f2 = f1−Hf1, f3 = f2−Gf2,
f4 = f3 − Hf3, and so forth. Clearly, f − fn ∈ U and the sequence {‖fn‖}∞n=1

is nonincreasing. The question is if and when ‖fn‖ converges to the error of
approximation from U?

Many approximation theoretic problems associated with the set U were con-
sidered in the relatively recent monograph by Khavinson [11]. In this monograph,
the Diliberto-Straus algorithm was given a special attention (see [11, p.112-126]).
Khavinson analyzed the algorithm in its simplest case, in which s(x) and p(x)
are the coordinate functions and X is a rectangle in R2 with sides parallel to the
coordinate axes. But the question on the convergence of the algorithm for other
sets and other approximating functions remained unanswered there.

Note that the space U, in a particular case, turns into the space of sums of two
ridge functions with fixed directions. A ridge function is a multivariate function
of the form g(a ·x), where a ∈ Rd\{0} is a fixed vector (direction), x ∈ Rd is the
variable, a · x is the Euclidean inner product and g is a univariate function. The
literature abounds with the use of ridge functions and their linear combinations.
Ridge functions arise naturally in various fields. They arise in partial differential
equations (where they are called plane waves), in computerized tomography (the
name ridge function was coined by Logan and Shepp [14] in one of the semi-
nal papers on tomography), in statistics (especially, in the theory of projection
pursuit and projection regression). Ridge functions are also the underpinnings
of many central models in neural networks which has become increasing more
popular in computer science, statistics, engineering, physics, etc. (see [17] and a
great deal of references therein). A ridge function has a very simple structure.
This structure makes ridge functions an interesting and useful approximating tool
in multivariate approximation theory (see, e.g., [2, 5, 6, 9, 15, 16] and references
therein).

2. Convergence of the algorithm

We start with the definition of the following objects called paths.

Definition 2.1 (see [8]). An ordered set l = (x1, x2, ..., xn) ⊂ X, where xi 6=
xi+1, with either s(x1) = s(x2), p(x2) = p(x3), s(x3) = s(x4), ... or p(x1) =
p(x2), s(x2) = s(x3), p(x3) = p(x4), ... is called a path with respect to the func-
tions s and p.

If in a path (x1, ..., xn, xn+1), xn+1 = x1 and n is an even number, then the
path l = (x1, ..., xn) is called to be closed. If s(x) and p(x) are the coordinate
functions on R2, then definition 2.1 defines an ordinary path (or a bolt of lightning
in a number of papers, see, e.g., [1, 11]). It is well known that the idea of ordinary
paths, first introduced by Diliberto and Straus [3], played significant role in many
problems of the approximation and interpolation of bivariate functions by sums
of univariate functions (see, e.g., [4, 10, 11, 12, 13]). Paths with respect to two
directions a and b (that is, with respect to the functions a · x and b · x) were
exploited in some papers devoted to ridge functions (see, e.g., [2, 5, 9]). In [7],
paths were generalized to those with respect to a finite set of functions. The
last objects turned out to be very useful in problems of representation by linear
superpositions.
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With each path l = (x1, ..., xn), we associate the following path functional

rl(f) =

n∑
i=1

(−1)n+1f(xi).

It is an exercise to check that rl is a linear bounded functional on C(X) with
the norm ‖rl‖ ≤ 1 and ‖rl‖ = 1 if and only if the set of points xi with odd
indices i does not intersect with that of even indices. Besides, if l is closed, then
the closed path functional rl ∈ U⊥, where U⊥ is the annihilator of the subspace
U ⊂ C(X).

In the sequel, we assume that max and min functions in the definition of the
operators H and G are continuous. Note that in the case of ridge functions, that
is, when s(x) and p(x) are scalar product functions, the mentioned max and min
functions are always continuous (see [9]).

The following theorem is valid.

Theorem 2.1. Let X ⊂ Rd be a convex compact set with the property: for
any path l = (x1, ..., xn) ⊂ X there exist points xn+1, ..., xn+m ∈ X such that
(x1, ..., xn+m) is a closed path and m is not more than some positive integer N
independent of l. Then ‖fn‖ converges to the error of approximation dist(f, U).

Proof. Let us write the above iteration (see Introduction) in the following form

f1 = f, fn+1 = fn − qn, where

qn = Hfn, if n is odd;

qn = Gfn, if n is even.

By the above assumption, all the functions qn are continuous. Introduce the
functions

un = q1 + · · ·+ q2n−1;

vn = q2 + · · ·+ q2n.

Clearly, un ∈ S and vn ∈ P. Besides, f2n = f − un − vn−1 and f2n+1 =
f − un − vn.

It is easy to see that the following inequalities hold

‖f1‖ ≥ ‖f2‖ ≥ ‖f3‖ ≥ · · · ≥ dist(f, U). (2.1)

From (2.1) it follows that there exists the limit

M = lim
n→∞

‖fn‖ ≥ dist(f, U).

It is a consequence of the Hahn-Banach extension theorem that

dist(f, U) = sup
r∈U⊥

‖r‖≤1

|r(f)| ,

where sup is attained by some functional. To complete the proof it is enough for
arbitrary positive number ε to find a functional r such that r ∈ U⊥, ‖r‖ ≤ 1 and

|r(f)| ≥M − ε. (2.2)

Let ε be arbitrarily small positive real number. Choose an integer k such that
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(2k + 2)M

2k + 2 +N
> M − ε

2
and

N ‖f‖
2k + 2 +N

<
ε

4
. (2.3)

Set now α = ε
22k+2 . There exists a number nk such that for all n ≥ nk

‖fn‖ ≤M + α

Now we construct a path l = [x1, ..., x2k+2] with the property that |rl(fnk
)| ≥

M−ε/4. Without loss of generality we may assume that nk is even. Then nk+2k
is also even and since

max
x∈X

s(x)=a

fnk+2k(x) = − min
x∈X

s(x)=a

fnk+2k(x), for all a ∈ s(X),

there exists points x1 and x2 such that fnk+2k(x1) = ‖fnk+2k‖, fnk+2k(x2) =
−‖fnk+2k‖ and s(x1) = s(x2). This can be written in the form

fnk+2k−1(x1)−Hfnk+2k−1(s(x1)) = ‖fnk+2k‖ ; (2.4)

fnk+2k−1(x2)−Hfnk+2k−1(s(x2)) = −‖fnk+2k‖ . (2.5)

Therefore,

Hfnk+2k−1(s(x1)) = Hfnk+2k−1(s(x2)) =

= fnk+2k−1(x1)− ‖fnk+2k‖ ≤ ‖fnk+2k−1‖ −M ≤ α (2.6)

and

Hfnk+2k−1(s(x1)) = Hfnk+2k−1(s(x2)) =

= fnk+2k−1(x2) + ‖fnk+2k‖ ≥ −(‖fnk+2k−1‖ −M) ≥ −α. (2.7)

From (2.4)-(2.7) we also can obtain that

fnk+2k−1(x1) = Hfnk+2k−1(s(x1)) + ‖fnk+2k‖ ≥M − α; (2.8)

fnk+2k−1(x2) = Hfnk+2k−1(s(x1))− ‖fnk+2k‖ ≤ −M + α. (2.9)

Now since

max
x∈X
p(x)=b

fnk+2k−1(x) = − min
x∈X
p(x)=b

fnk+2k−1(x), for all b ∈ p(X),

and (2.9) is valid, there exist points x3 and x
′
3 such that

fnk+2k−1(x3) ≥M − α, p(x3) = p(x2) (2.10)

and

fnk+2k−1(x
′
3) ≤ −M + α, p(x

′
3) = p(x1) (2.11)

In the inequalities (2.8)-(2.11), replace fnk+2k−1 by fnk+2k−2 − Gfnk+2k−2.
Then we will have

fnk+2k−2(x1)−Gfnk+2k−2(p(x1)) ≥M − α; (2.12)
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fnk+2k−2(x2)−Gfnk+2k−2(p(x2)) ≤ −M + α; (2.13)

fnk+2k−2(x3)−Gfnk+2k−2(p(x3)) ≥M − α; (2.14)

fnk+2k−2(x
′
3)−Gfnk+2k−2(p(x

′
3)) ≤ −M + α. (2.15)

If take into account the inequalities

fnk+2k−2(x1) ≤ ‖fnk+2k−2‖ ≤M + α,

fnk+2k−2(x3) ≤ ‖fnk+2k−2‖ ≤M + α,

fnk+2k−2(x2) ≥ −‖fnk+2k−2‖ ≥ −M − α,
fnk+2k−2(x

′
3) ≥ −‖fnk+2k−2‖ ≥ −M − α,

in the above inequalities (2.12)-(2.15), we can write that

−2α ≤ Gfnk+2k−2(p(x1)) = Gfnk+2k−2(p(x
′
3)) ≤ 2α; (2.16)

−2α ≤ Gfnk+2k−2(p(x2)) = Gfnk+2k−2(p(x3)) ≤ 2α. (2.17)

Considering these inequalities in (2.12)-(2.15), we obtain that

fnk+2k−2(x1) ≥ M − 3α;

fnk+2k−2(x2) ≤ −M + 3α;

fnk+2k−2(x3) ≥M − 3α; (2.18)

Now since

max
x∈X

s(x)=a

fnk+2k−2(x) = − min
x∈X

s(x)=a

fnk+2k−2(x), for all a ∈ s(X),

and (2.18) is valid, there exists a point x4 such that s(x4) = s(x3) and

fnk+2k−2(x4) ≤ −M + 3α.

Repeating the above process for the function

fnk+2k−2(x) = fnk+2k−3(x)−Hfnk+2k−3(s(x))

we obtain that

−4α ≤ Hfnk+2k−3(s(xi)) ≤ 4α, i = 1, 2, 3, 4, (2.19)

and

fnk+2k−3(x1) ≥ M − 7α;

fnk+2k−3(x2) ≤ −M + 7α;

fnk+2k−3(x3) ≥ M − 7α;

fnk+2k−3(x
′
4) ≤ −M + 7α.

By the same way as above, we can find a point x5 such that p(x5) = p(x4) and

fnk+2k−3(x5) ≥M − 7α.
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Continuing this process sequentially backwards until the function fnk
, we ob-

tain the points x1, x2, ..., x2k+2 with the property that s(x1) = s(x2), p(x2) =
p(x3), ..., s(x2k+1) = s(x2k+2). In other words, these points form a path, which
we denote by l. Note that in the above process, we also deal with the points
like x

′
3, but these points play only auxiliary role: they are needed in obtaining

inequalities like (2.16), (2.17), (2.19), etc. At the points of the path l the function
fnk

will obey the inequalities:

fnk
(xi) ≥M − (22k − 1)α ≥M − ε/4, for i = 1, 3, ..., 2k + 1

and

fnk
(xj) ≤ −M + (22k − 1)α ≤ −M + ε/4, for j = 2, 4, ..., 2k + 2.

Using these inequalities, we can estimate the value of the functional rl at fnk
:

|rl(fnk
)| ≥ (k + 1)(M − ε/4)− (k + 1)(−M + ε/4)

2k + 2
= M − ε/4. (2.20)

By the hypothesis of the theorem we can close the path l by adding to it not
more than N points. Without loss of generality we may assume that a closed
path t ⊂ X is obtained from l by adding precisely N points. Then we can write
that

|rt(f)| = |rt(fnk
)| > (2k + 2) |rl(fnk

)|
2k + 2 +N

− N ‖fnk
‖

2k + 2 +N
(2.21)

Now since ‖fnk
‖ ≤ ‖f‖ it follows from (2.3), (2.20) and (2.21) that

|rt(f)| > M − ε. (2.22)

Since the functional rt ∈ U⊥, ‖rt‖ ≤ 1, the inequality (2.22) together with
(2.2) completes the proof. �
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