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GLOBAL BIFURCATION OF SOLUTIONS OF NONLINEAR

ONE-DIMENSIONAL DIRAC SYSTEM

HUMAY SH. RZAYEVA

Abstract. In this paper we investigate the structure of the solution
set for a linearizable and nonlinearizable boundary value problem for
one-dimensional Dirac system. We show the existence of two families of
continua of solutions, corresponding to the usual nodal properties and
bifurcating from the line of trivial solutions.

1. Introduction

We consider the following nonlinear Dirac equation

Bw′(x) = λw(x) + h(x,w(x), λ), 0 < x < π, (1.1)

with the boundary conditions U(w) =

(
U1(w)
U2(w)

)
= 0 given by

U1(w) := (sinα, cosα)w(0) = v(0) cosα+ u(0) sinα = 0, (1.2)

U2(w) := (sinβ, cosβ)w(π) = v(π) cosβ + u(π) sinβ = 0, (1.3)

where

B =

(
0 1
−1 0

)
, w(x) =

(
u(x)
v(x)

)
,

λ ∈ R is a spectral parameter, α and β are real constants: moreover 0 ≤ α, β < π.

We assume that the nonlinear term h has the form h = f + g, where f =

(
f̄
¯̄f

)
and g =

(
ḡ
¯̄g

)
are continuous functions on C

(
[0, π]× R2 × R ; R2

)
and satisfies

the conditions:

|f̄(x,w, λ)| ≤ K|u|, | ¯̄f(x,w, λ)| ≤ M |v| , x ∈ [0, π], 0 < |w| ≤ 1, λ ∈ R, (1.4)

where K and M are the positive constants;

g(x,w, λ) = o(|w|) as |w| → 0, (1.5)

uniformly with respect to x ∈ [0, π] and λ ∈ Λ, for every compact interval Λ ⊂ R
(here | · | denotes a norm in R2).
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The equation (1.1) is equivalent to the system of two consistent first-order
ordinary differential equations

v′ = λu+ f̄(x, u, v, λ) + ḡ(x, u, v, λ),

u′ = −λv + ¯̄f(x, u, v, λ) + ¯̄g(x, u, v, λ).
(1.6)

The global results for nonlinear Sturm-Liouville problems were obtained by
Rabinowitz [18], Berestycki [5], Schmitt and Smith [20], Chiapinelli [7], Przy-
bycin [16, 17], Aiyev [1], Rynne [19], Binding, Browne, Watson [6], G. Dai [8],
Aliyev and Mamedova [3], Mamedova [15]. These papers prove the existence
of global continua of nontrivial solutions in R × C1 corresponding to the usual
nodal properties and emanating from bifurcation intervals (in R × 0, which we
identify with R) surrounding the eigenvalues of the linear problem. Similar re-
sults for nonlinearizable Sturm-Liouville problems of fourth order were obtained
Makhmudov and Aliev [13, 14], Aiev [2].

Only Schmitt and Smith [18] are studied the nonlinear problem (1.1)-(1.3) un-
der certain restrictions on constants K and M . They show that, in certain cases,
for every large |k| there exists a family of unbounded subcontinua of solutions
bifurcating from intervals of the line of trivial solutions corresponding to the k-th
eigenvalue of linear problem.

In this paper we study the behavior of continua of solutions of problem (1.1)-
(1.3) bifurcating from the points and intervals of the line of trivial solutions.

2. Preliminary

If F ≡ 0, then (1.1)-(1.3) is a linear canonical one-dimensional Dirac system
[11, Ch. 1, § 10]

Bw(x) = λw(x), 0 < x < π,
w ∈ B.C. ,

(2.1)

where by B.C. denoted the set of boundary conditions (1.2)-(1.3).
It is known (see [11, Ch. 1, § 11]; [4, Ch. 8]) that eigenvalues of the boundary

value problem (2.1) are real, algebraically simple and the values range from −∞
to +∞ and can be numerated in increasing order.

The oscillation properties of eigenvector-functions of problem (2.1) is investi-
gated in [3], where, in particular, is proved the following result.

Theorem 2.1. The eigenvalues λk, k ∈ Z, of the problem (2.1) can be numbered
in ascending order on the real axis

... < λ−k < ... < λ−1 < λ0 < λ1 < ... < λk < ... .

The eigenvector-functions wk(x) = w(x, λk) =

(
u(x, λk)
v(x, λk)

)
=

(
uk(x)
vk(x)

)
have,

with a suitable interpretation, the following oscillation properties: if k > 0, and
k = 0, α ≥ β (except the cases α = β = 0 and α = β = π/2), then(

s(uk)
s(vk)

)
=

(
k − 1 + χ(α− π/2) + χ(π/2− β)

k − 1 + sgnα

)
; (2.2)
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if k < 0, and k = 0, α < β, then(
s(uk)
s(vk)

)
=

(
|k| − 1 + χ(π/2−α) + χ(β − π/2)

|k| − 1 + sgnβ

)
, (2.3)

where s(g) the number of zeros of the function g ∈ C([0, π] ; R) in the interval
(0, π) and

χ (x) =

{
0, if x ≤ 0,
1, if x > 0.

We define E to be the Banach space C
(
[0, π]; R2

)
∩B.C. with the usual norm

||w|| = max
x∈[0,π]

|u(x)|+ max
x∈[0,π]

|v(x)|.

Let S+
k be set of w =

(
u
v

)
∈ E which satisfy the conditions:

(i) |u(x)|+ |v(x)| > 0, for all x ∈ [0, π];
(ii) the zeros of functions u(x) and v(x) are nodal and interspersed, and if

k > 0, and k = 0, α ≥ β (except the cases α = β = 0 and α = β = π/2), then(
s(u)
s(v)

)
=

(
k − 1 + χ(α− π/2) + χ(π/2− β)

k − 1 + sgnα

)
,

if k < 0, and k = 0, α < β, then(
s(u)
s(v)

)
=

(
|k| − 1 + χ(π/2−α) + χ(β − π/2)

|k| − 1 + sgnβ

)
;

(iii) the function u(x) is positive in a deleted neighborhood of x = 0.
Let S−k = −S+

k and Sk = S−k ∪ S
+
k . It follows by Theorem 2.1] that wk ∈

Sk, k ∈ Z, i.e. the sets S−k , S
+
k and Sk are nonempty.

Remark 2.1. From the definition of the sets S−k , S
+
k and Sk, it follows di-

rectly that, they are disjoint and open in E. Furthermore, if w ∈ ∂Sk (∂Sνk , ν =
+ or −), then there exists a point τ ∈ [0, π] such that |w(τ)| = 0, i.e. u(τ) =
v(τ) = 0.

Lemma 2.1. If (λ,w) ∈ R × E is a solution of problem (1.1)-(1.3) and w ∈
∂Sνk , ν = + or −, then w ≡ 0.

Proof. Let (λ,w) is a solution of problem (1.1)-(1.3) and w ∈ ∂Sνk . Then,
by Remark 2.1, there exists ζ ∈ (0, π) such that u(ζ) = v(ζ) = 0. Taking into
account conditions (1.4) and (1.5) from (1.1) we obtain that in some neighborhood
of ζ the following inequality holds:

|w′(x)| ≤ c0 |w(x)|, (2.4)

where c0 is a positive constant and | · | denotes a norm in R2.
Integrating both sides of the inequality (2.4) from ζ to x, we obtain∣∣∣∣∣∣∣

x∫
ζ

|w′(t)|dt

∣∣∣∣∣∣∣ ≤ c0

∣∣∣∣∣∣∣
x∫
ζ

|w (t)|dt

∣∣∣∣∣∣∣ .
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Consequently, by virtue of this inequality and equality |w(ζ)| = 0, we have

|w(x)| =

∣∣∣∣∣∣∣
x∫
ζ

w′(t) dt

∣∣∣∣∣∣∣ ≤ c0

∣∣∣∣∣∣∣
x∫
ζ

|w (t)|dt

∣∣∣∣∣∣∣ . (2.5)

Using Gronwall’s inequality, we conclude from (2.5) that |w(x)| = 0 in a neigh-
borhood of ζ. This shows that the functions u(x) and v(x) is equal to zero in
a neighborhood of ζ. Continuing the specified process, we obtain w(x) ≡ 0 on
[0, π]. The proof of Lemma 2.1 is complete.

Assume that λ = 0 is not an eigenvalue of (1.1)-(1.3). Then the problem
(1.1)-(1.3) can be converted to the equivalent integral equation

w(x) = λ

π∫
0

K(x, t)w(t)dt+

π∫
0

K(x, t)h(t, w(t), λ)dt, (2.6)

where K(x, t) = K(x, t, 0) is the appropriate Green’s matrix (see [19, Chapter 1,
formula (13.8)]).

Define L : E → E by

Lw(x) =

π∫
0

K(x, t)w(t)dt, (2.7)

F : R× E → E by

F (λ,w(x)) =

π∫
0

K(x, t)f(t, w(t), λ)dt, (2.8)

F : R× E → E by

G(λ,w(x)) =

π∫
0

K(x, t)g(t, w(t), λ)dt. (2.9)

The operators F and G can be represented as a compositions of a Fredholm opera-
tor L and the superposition operators f(λ,w(x)) = f(x,w(x), λ) and g(λ,w(x)) =
g(x,w(x), λ) respectively. By [11, Ch.1, formula (13.8)] L can be regarded
as a compact operator in E. Since f(x,w, λ) ∈ C

(
[0, π]× R2 × R ; R2

)
and

g(x,w, λ) ∈ C
(
[0, π]× R2 × R ; R2

)
, then the operators f and g maps R× E to

C
(
[0, π]; R2

)
. Hence the operators F and G are completely continuous. Further-

more, by virtue of (1.5) we have

G(λ,w) = o(||w||) as ||w|| → 0, (2.10)

uniformly with respect to λ ∈ Λ.
On the base (2.6)-(2.9) problem (1.1)-(1.3) can be written in the following

equivalent form

w = λLw + F (λ,w) +G(λ,w), (2.11)

and therefore, it is enough to investigate the structure of the set of solutions of
(1.1)-(1.3) in R× E.
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We suppose that

f ≡ 0 (2.12)

(in effect, we suppose that the nonlinearity h itself satisfies (1.4)). Then, by
(2.11), problem (1.1)-(1.3) is equivalent to the following problem

w = λLw +G(λ,w). (2.13)

Note that problem (2.13) is of the form (0.1) of [18]. The linearization of this
problem at w = 0 is the spectral problem

w = λLw. (2.14)

Obviously, the problem (2.14) is equivalent to the spectral problem (2.1).
We denote by Y the closure in R×E of the set of nontrivial solutions of (2.11)

(i.e. of (1.1)-(1.3)).

In the following, we will denote by w
(
kx)+ =

(
u+
k (x), v+

k (x)
)t
, k ∈ Z, the

unique eigenvector-function of linear problem (2.1) associated to eigenvalue λk
such that lim

x→0+
sgnu+

k (x) = 1 and ||w̃+
k || = 1.

The linear existence theory for the problem (2.1) (or problem (2.14)) can be
stated as: for each integer k and each ν = + or −, there exists a half line of
solutions of problem (2.1) in R×Sνk of the form (λk, γ w

+
k ), γ ∈ Rν . This half line

joins (λk, 0) to infinity in E. (Here Rν = {ς ∈ R : 0 ≤ ςν ≤ +∞} , ν = + or −).
An analogous result holds for problem (2.13).

Theorem 2.2. Suppose that (2.12) holds. Then for every integer k and each
ν = + or −, there exists a continuum of solutions Cνk of problem (1.1)-(1.3) (or
problem (2.13)) in (R× Sνk ) ∪ {(λk, 0)} which meets (λk, 0) and ∞ in R× E.

The proof of this theorem is similar to that of Theorem 2.3 of [18] (see also
[9]), using the above arguments, relation (2.10) and Lemma 2.1.

3. Global bifurcation of solutions of problem (1.1)-(1.3) in the
case g ≡ 0

We suppose that

g ≡ 0 (3.1)

(in effect, we suppose that the nonlinearity h itself satisfies (1.4)). Then the
problem (1.1) -(1.3) takes the form

Bw(x) = λw(x) + f(x,w, λ), 0 < x < π,
w ∈ B.C. .

(3.2)

Together with (3.2), we consider the following approximation problem

Bw(x) = λw(x) + f(x, |w|εw, λ), 0 < x < π,
w ∈ B.C. ,

(3.3)

where ε ∈ (0, 1]. By (1.6) the problem (3.3) is equivalent to the following system
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v′ = λu+ f̄(x, |w|εu, |w|εv, λ),

u′ = −λv + ¯̄f(x, |w|εu, |w|εv, λ),

w = (u, v)t ∈ B.C. .

(3.4)

Lemma 3.1. For every integer k and each ν = + or −, and for any 0 < κ < 1
there exists solution (λκ, wκ) of problem (3.2) such that λκ ∈ Jk, wκ ∈ Sνk and
||wκ|| = κ, where Jk = [λk − (K +M), λk + (K +M)].

Proof. By virtue of condition (1.4) we have

f(x, |w|εw, λ) = o(|w|) as |w| → 0, (3.5)

uniformly with respect to x ∈ [0, π] and λ ∈ Λ, for every compact interval Λ ⊂ R.
Then, by Theorem 2.2, for every integer k and each ν = + or −, there exists an
unbounded continuum Cνk,ε of solutions of (3.3) (or (3.4)), such that

(λk, 0) ∈ Cνn,ε ⊂ (R× Sνk ) ∪ {(λk, 0)} .

Hence, for every ε ∈ (0, 1] there exists a solution (λε, wε) ∈ R × Sνk of problem
(3.3) such that ||wε|| ≤ 1. Then we have |wε(x)| ≤ 1. We define the functions
ϕε(x) and ψε(x) as follows:

ϕε(x) =

{
f̄(x, |wε(x)|εuε(x),|w(x)|εvε(x),λε)

uε(x) , if uε(x) 6= 0,

0, if uε(x) = 0,

ψε(x) =

{
−

¯̄f(x, |wε(x)|εuε(x),|w(x)|εvε(x),λε)
vε(x) , if vε(x) 6= 0,

0, if vε(x) = 0.

(3.6)

From (3.4) and (3.6) it is seen that (λε, wε(x)) =
(
λε, (uε(x), vε(x))t

)
is a

solution of linear eigenvalue problem

v′ = λu+ ϕε(x)u,
u′ = −λv − ψε(x) v,

w = (u, v)t ∈ B.C. .
(3.7)

Taking into account (1.4), from (3.6) we obtain

|ϕε(x)| ≤ K|w(x)|ε ≤ K, x ∈ [0, π],
|ψε(x)| ≤ M |w(x)|ε ≤M, x ∈ [0, π].

(3.8)

Remark 3.1. Following the arguments conducted in [2, Lemma 4.3] and using
Theorem 2.2 we are convinced that Theorem 2.1 is true also for the linear problem
(3.7).

Multiplying the first equation in (3.7) on uε(x), the second equation on vε(x)
and subtracting from the first equation the second one, we find

v′ε(x)uε(x)− u′ε(x) vε(x) =
λε(u

2
ε(x) + v2

ε(x)) + ϕε(x)u2
ε(x) + ψε(x) v2

ε(x),
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from which it follows by the uniqueness of the initial problem that(
vε(x)
uε(x)

)′
1 +

(
vε(x)
uε(x)

)2 = λε + ϕε(x)
u2
ε(x)

u2
ε(x) + v2

ε(x)
+ ψε(x)

v2
ε(x)

u2
ε(x) + v2

ε(x)
.

Integrating both sides of this equality from 0 to π, and taking into account
conditions (1.2)-(1.3), we obtain

−β + kπ + α = λεπ +

π∫
0

{
ϕε(x)

u2
ε(x)

u2
ε(x) + v2

ε(x)
+ ψε(x)

v2
ε(x)

u2
ε(x) + v2

ε(x)

}
dx.

Note that, for eigenvalues λk of problem (2.1) following equality holds

λkπ = −β + kπ + α .

Hence, from the last two relations, we obtain

λkπ = λεπ +

π∫
0

{
ϕε(x)

u2
ε(x)

u2
ε(x) + v2

ε(x)
+ ψε(x)

v2
ε(x)

u2
ε(x) + v2

ε(x)

}
dx,

from where it follows by (3.8) that

|λε − λk| < K +M,

i.e., λε ∈ Jk.
Let {εn}∞n=1, 0 < εn < 1, be a sequence converging to 0. Since Cνk,ε is un-

bounded continuum of the set of solutions of (3.4) containing the point (λk, 0),
then for every εn and for any κ ∈ (0, 1) there exists a solution (λεn , wεn(x))
of this problem such that λεn ∈ Jk, wεn ∈ Sνk and ||wεn || = κ. Since wεn is
bounded in C

(
[0, π];R2

)
and f is continuous in C

(
[0, π]× R× R2;R2

)
, then from

(3.3) (or (3.4)) implies that wεn is bounded in C1
(
[0, π];R2

)
. Therefore, by the

Arzela-Ascoli theorem, we may assume that wεn → w, n→∞, in C
(
[0, π];R2

)
,

||w|| = κ. For all n, wεn ∈ Sνk , hence w lies in the closure of Sνk . Since ||w|| = κ,
then by virtue of Lemma 2.1 we have w ∈ Sνk . The proof of Lemma 3.1 is
complete.

We say that the point (λ, 0) is a bifurcation point of problem (1.1) -(1.3) by
the set R × Sνk , k ∈ Z, ν = + or−, if in every small neighborhood of this point
there is solution to this problem which contained in R× Sνk .

Corollary 3.1. The set of bifurcation points of problem (3.2) is nonempty, and
if (λ, 0) is a bifurcation point of (3.2) by the set R× Sνk , then λ ∈ Jk.

Interval Jk, k ∈ Z, is called the bifurcation interval of problem (3.2) by the set
R× Sνk , ν = + or − .

For each k ∈ Z and ν = + or−, we define the set D̃ν
k ⊂ Y to be the union

of all the components Dν
k,λ of Y which bifurcating from the bifurcation points

(λ, 0) of (3.2) by the set R× Sνk . By Lemma 3.1 and Corollary 3.1 the set D̃ν
k is

nonempty.

Let Dν
k = D̃ν

k ∪ (Jk × 0). Note that the set Dν
k is connected in R×E, but D̃ν

k
may not be connected in R× E.
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Theorem 3.1. For every k ∈ Z and each ν = + or − , the connected component
Dν
k of Y lies in (R× Sνk ) ∪ (Jk × 0) and is unbounded in R× E.

Proof of theorem 3.1. By Lemma 3.1, Corollary 3.1 and an argument sim-
ilar to that of [12, Theorem 2.1], we can obtain the desired conclusion.

Assume that the function f(x,w, λ) satisfies the condition (1.4) for all x ∈ [0, π]
and (w, λ) ∈ R2 × R. Thus we have the following result.

Lemma 3.2. Let (λ̂, ŵ) =
(
λ, (û , v̂)t

)
∈ R× E be a solution of problem (3.2).

Then ŵ ∈
∞⋃

n=−∞
Sn, and if ŵ ∈ Sk, then λ̂ ∈ Jk.

Proof. Suppose that (λ̂, ŵ) ∈ R× E is a solution of problem (3.2). Let

ϕ(x) =

{
f̄(x,û(x),v̂(x),λ̂)

û (x) , if û(x) 6= 0,

0, if û(x) = 0.

ψ(x) =

{
¯̄f(x,û(x),v̂(x),λ̂)

v̂ (x) , if v̂(x) 6= 0,

0, if v̂(x) = 0.

(3.9)

Then (λ̂, ŵ) is a solution of the following spectral problem

v′ = λu+ ϕ(x)u,
u′ = −λv + ψ(x) v,

w = (u, v)t ∈ B.C. .
(3.10)

Then, by Remark 3.1, we have ŵ ∈
∞⋃

n=−∞
Sn.

Let ŵ ∈ Sk for some k ∈ Z. According to Remark 3.1 λ̂ is a kth eigenvalue of
problem (3.2). Then, from the proof of Lemma 3.1 it follows that λ̂ ∈ Jk. The
proof of Lemma 3.2 is complete.

By virtue of Lemma 3.2 from Theorem 3.1 we obtain the following result.

Theorem 3.2. Let the function f(x,w, λ) satisfies the condition (1.4) for all
(x,w, λ) ∈ [0, π] × R2 × R. Then for every k ∈ Z and each ν = + or − , the
connected component Dν

k of Y , lies in Jk × Sνk and is unbounded in R× E.

4. Global bifurcation of solutions of problem (1.1)-(1.3)

Lemma 4.1. For each k ∈ Z, ν = + or − , and for sufficiently small τ > 0 there
exists a solution (λτ , wτ ) of problem (1.1)-(1.3) such that wτ ∈ Sνk and ||wτ || = τ .

Proof. Alongside with the problem (1.1)-(1.3) we shall consider the following
approximate problem

`w(x) = λw(x) + f(x, |w|εw, λ) + g(x,w, λ), 0 < x < π,
w ∈ B.C. ,

(4.1)

where ε ∈ (0, 1].
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By (1.4) the function f(x, |w|εw, λ) satisfies the condition (3.5). Then, by
Theorem 2.2, for every integer k and each ν = + or −, there exists an unbounded
continuum T νk,ε of solutions of (4.1) such that

(λk, 0) ∈ T νk,ε ⊂ (R× Sνk ) ∪ {(λk, 0)} .

Hence it follows that for any ε ∈ (0, 1] there exists a solution (λτ, ε, wτ, ε) of
problem (4.1) such that wτ, ε ∈ Sνk and ||wτ, ε|| = τ . It is obvious that (λτ, ε, wτ, ε)
is a solution of the nonlinear problem

Bw(x) = λw(x) + Pε(x)w(x) + g(x,w(x), λ), 0 < x < π,
w ∈ B.C. .

(4.2)

where

P (x) =

(
ϕε(x) 0
0 ψε(x)

)
and the functions ϕε(x) and ψε(x) are determined of right hand sides of (3.6)
with (λτ, ε, wτ, ε) instead of (λε, wε).

Taking into account condition (1.4) we have

|ϕε(x)| ≤ K, x ∈ [0, π],
|ψε(x)| ≤ M, x ∈ [0, π].

Therefore, from the proof of Lemma 3.1 it follows that the k-th eigenvalue λk, ε
of the linear problem

Bw(x) = λw(x) + Pε(x)w(x), 0 < x < π,
w ∈ B.C. .

(4.3)

is contained in Jk. By [10, Ch. 4, § 2, Theorem 2.1], Theorem 2.1 and Remark 3.1
(λk, ε, 0) is a only bifurcation point of problem (4.2) by the set R× Sνk , and this
point corresponds to a continuous branch of nontrivial solutions. Consequently,
each sufficiently small τ > 0 responds arbitrarily small ρτ,ε such that

λτ, ε ∈ (λk, ε− ρτ, ε, λk, ε + ρτ, ε) ⊂ [λk− (K +M)− ρ0, λk + (K +M) + ρ0], (4.4)

where ρ0 = sup
ε,τ

ρτε > 0.

Since the set {wτ, ε ∈ E : 0 < ε ≤ 1} is bounded in C([0, π];R2), the functions
f and g are continuous in [0, π] × R2 × R and {λτ, ε ∈ R : 0 < ε ≤ 1} is
bounded in R, then by (4.2) the set {wτ, ε ∈ E : 0 < ε ≤ 1} is also bounded in
C1([0, π];R2). Then, by the Arzela Ascoli theorem this set is compact in E.

Let {εn}∞n=1, 0 < εn < 1, be a sequence converging to 0, and such that
(λτ, εn , wτ, εn) → (λτ , wτ ) in R × E. Passing to the limit as n → ∞ in (4.2)
we obtain that (λτ , wτ ) is a solution of the nonlinear problem (1.1)-(1.3). Since
||wτ || = τ then by Lemma 2.1 we have wτ ∈ Sνk . The proof of Lemma 4.1 is
complete.

Corollary 4.1. The set of bifurcation points of problem (1.1)-(1.3) by the set
R× Sνk is nonempty.

Lemma 4.2. Let εn, 0 ≤ εn ≤ 1, n = 1, 2, ... , be a sequence converging to 0. If
(λεn , wεn) is a solution of problem (4.1) corresponding to ε = εn, and sequence
{(λεn , wεn)}∞n=1 converges to (ξ, 0) in R× E, then ξ ∈ Jk.
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Proof. Assume the contrary, i.e. let ξ /∈ Jk. We denote σ = dist{ ξ, Jk} .
Since λεn → ξ, then there exists nσ ∈ N such that for all n > nσ we have the
inequality |λεn − ξ| < σ/2. Hence, dist{λεn , Jk} > σ/2 at n > nσ.

Note that (λεn , wεn) is a solution of nonlinear problem (4.2) for ε = εn. Since
(λk, n, 0) is a only bifurcation point of problem (4.2) by the set R×Sνk , then every
sufficiently large n > nσ corresponds to a arbitrarily small ρn > 0 that ρn <
σ/2 and λεn ∈ (λk, n − ρn, λk, n + ρn), where λk,n is the k-th eigenvalue of the
linear problem (4.3) for ε = εn. Consequently, λεn ∈ (λk, n − σ/2, λk, n + σ/2).
From the proof of Lemma 3.1 we have λk, n ∈ Jk, whence it follows inequality
dist{λεn , Jk} < σ/2, which contradicts dist{λεn , Jk} > σ/2. The proof of Lemma
4.2 is complete.

Corollary 4.2. If (λ, 0) is a bifurcation point of problem (1.1)-(1.3) by the set
Sνk , then λ ∈ Jk.

For each k ∈ Z and ν = + or−, we define the set T̃ νk ⊂ Y to be the union of
all the components T νk,λ of Y which bifurcating from the bifurcation points (λ, 0)

of (1.1)-(1.3) by the set R× Sνk . Let T νk = T̃ νk ∪ (Jk × 0).

Theorem 4.1. For every k ∈ Z and each ν = + or − , the connected component
T νk of Y lies in (R× Sνk ) ∪ (Jk × 0) and is unbounded in R× E.

The proof of Theorem 4.1 is similar to that of [12; Theorem 2.1] using Lemmas
4.1, 4.2 and Corollaries 4.1, 4.2.

References

[1] Z.S. Aliyev, Global bifurcation of solutions of some nonlinear Sturm-Liouville prob-
lems, News of Baku State University, series of phys.-math. sciences (2) (2001),
115-120.

[2] Z.S. Aliyev, Some global results for nonlinear fourth order eigenvalue problems,
Cent. Eur. J. Math. 12 (12) (2014), 1811-1828.

[3] Z.S. Aliyev, G.M. Mamedova, Some global results for nonlinear Sturm-Liouville
problems with spectral parameter in the boundary condition, Annales Polonici
Mathematici, (2015), to appear.

[4] F.V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New
York, London, 1964.

[5] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equa-
tions 26 (1977), 375-390.

[6] P.A. Binding, P.J. Browne, B.A. Watson, Spectral problem for nonlinear Sturm-
Liouville equations with eigenparameter dependent boundary conditions, Canad. J.
Math. 52(2) (2000), 248-264.

[7] R. Chiappinelli, On eigenvalues and bifurcation for nonlinear Sturm-Liouville oper-
ators, Boll. Uni. Math. Ital. A-4 (1985), 77-83.

[8] G. Dai, Global bifurcation from intervals for Sturm-Liouville problems which are
not linearizable, Elec. J. Qual. Theory of Diff. Equat. 65 (2013), 1-7.

[9] E.N. Dancer, On the structure of solutions of nonlinear eigenvalue problems, Indiana
Univ. Math. J. 23 (1974), 1069-1076.

[10] M. A. Krasnoselski, Topological methods in the theory of nonlinear integral equations,
Macmillan, New York, 1965.



46 HUMAY SH. RZAYEVA

[11] B.M. Levitan, I.S. Sargsjan, Introduction tospectral theory: Selfadjoint ordinary dif-
ferential operators , in Translation of mathematical Monographs, v. 39, AMS Prov-
idence, Rhode Island, 1975.

[12] A.P. Makhmudov, Z.S. Aliev, Global bifurcation of solutions of certain nonlineariz-
able eigenvalue problems, Differential Equations 25 (1989), 71-76.

[13] A.P. Makhmudov, Z.S. Aliev, Nondifferentiable perturbations of spectral problems
for a pair of selfadjoint operators and global bifurcation, Soviet Mathematics 34 (1)
(1990), 51-60.

[14] A.P. Makhmudov, Z. S. Aliev, Some global results for linearizable and nonlineariz-
able Sturm-Liouville problems of fourth order, Soviet Math. Dokl. 40, (1990), 472-
476.

[15] G.M. Mamedova, Local and global bifurcation for some nonlinearizable eigenvalue
problems, Proceedings of the Institute of Mathematics and Mechanics, National
Academy of Sciences of Azerbaijan 40 (2) (2014), 45-51.

[16] J. Przybycin, The connection between number and form of bifurcation points and
properties of the nonlinear perturbation of Berestycki type, Annales Polonici Math-
ematici 50 (1989), 129-136.

[17] J. Przybycin, Some theorems of Rabinowitz type for nonlinearizable eigenvalue prob-
lems, Opuscula Mathematica 24 (1) (2004), 115-121.

[18] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct.
Anal. 7 (1971), 487-513.

[19] B.P. Rynne, Bifurcation from zero or infinity in Sturm-Liouville problems which are
not linearizable, J. Math. Anal. Appl. 228 (1998), 141-156.

[20] K. Schmitt, H.L. Smith, On eigenvalue problems for nondifferentiable mappings, J.
Differential Equations 33 (1979), 294-319.

Humay Sh. Rzayeva
Ganja State University, Ganja, AZ2000, Azerbaijan.
E-mail address: humay rzayeva@bk.ru

Received: July 7, 2015; Accepted: November 2, 2015


