Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan Volume 41, Number 2, 2015, Pages 77–82

BASIS PROPERTIES IN THE SPACE $L_p(0,1)$ OF ROOT FUNCTIONS OF THE BOUNDARY VALUE PROBLEM WITH SPECTRAL PARAMETER IN THE BOUNDARY CONDITIONS

AIDA A. DUNYAMALIYEVA

Abstract. In this paper we consider the Sturm-Liouville problem with spectral parameter in the boundary conditions. We study the basis properties in the space $L_p(0,1)$, 1 , of systems of root functions of this problem.

1. Introduction

In this paper, we continue the study [9] of the boundary value problem

$$-y''(x) = \lambda y(x), \ 0 < x < 1, \tag{1.1}$$

$$y'(0) = -a_0 \lambda y(0), \tag{1.2}$$

$$y'(1) = (a_1\lambda + b_1)y(1), \tag{1.3}$$

where $\lambda \in \mathbb{C}$ is a spectral parameter, a_0, a_1, b_1 are real constants, and $a_0 \neq 0$, $a_1 \neq 0$.

The structure of root subspaces and location of eigenvalues on the real axis of problem (1.1)-(1.3) were studied by Kapustin [9] for the case where $a_0 > 0$, $a_1 > 0$, $b_1 = 0$ and by Aliev [1, 3] for the cases where $a_0 > 0$, $a_1 < 0$, $b_1 = 0$ and $a_0 < 0$, $a_1 < 0$, $b_1 = 0$. In these papers, studied also basis properties of the system of root functions of the boundary value problem (1.1)-(1.3) in the space $L_p(0,1)$, 1 , where obtained necessary and sufficient conditions forthe basicity of subsystems of root functions. In [4, 5, 12-14] studied the eigenvalue problem for a second order differential equation with spectral parameter inthe boundary conditions in the more general case, where investigated oscillationproperties of eigenfunctions and obtained the sufficient condition for basicity of $subsystem of eigenfunctions in the space <math>L_p(0, 1)$, 1 .

In [9] were studied general characteristic of the location of eigenvalues on the real axis (the complex plane) and the structure of root subspaces of problem (1.1)-(1.3) in the case $a_0 < 0$, $a_1 < 0$, $b_1 \neq 0$. The subject of the present paper is the study of the basis property in the space $L_p(0,1), 1 , of the system of root functions of the boundary value problem (1.1)-(1.3) in the case <math>a_0 < 0$, $a_1 < 0$, $b_1 \neq 0$.

²⁰¹⁰ Mathematics Subject Classification. 34B05, 34B08, 34B24, 35P10, 47A75.

Key words and phrases. spectral parameter in boundary conditions, eigenvalue, eigenfunctions, root functions, basis properties of eigenfunctions.

2. Preliminaries

The considered problem (1.1)-(1.3) can be reduced to the eigenvalue problem for the linear operator L in the Hilbert space $H = L_2(0,1) \oplus \mathbb{C}^2$ with inner product

 $(\hat{u}, \hat{v})_H = (\{u(x), m, n\}, \{v(x), s, t\})_H = (u, v)_{L_2} + |a_0|^{-1} m\bar{s} + |a_1|^{-1} n\bar{t}$ (2.1) where $(\cdot, \cdot)_{L_2}$ is an inner product in $L_2(0, 1)$ and

$$L\hat{y} = L\{y(x), m, n\} = \{-y''(x), y'(0), y'(1) - b_1y(1)\}\$$

is an operator with the domain

$$D(L) = \{ \hat{y} \in H \mid y(x), y'(x) \in AC[0,1], m = -a_0y(0), n = a_1y(1) \}$$

dense everywhere in H (see [14]). Obviously, the operator L is well defined in H. Problem (1.1)-(1.3) takes the form

$$L\hat{y} = \lambda\hat{y}, \ \hat{y} \in D(L),$$

i.e., the eigenvalues λ_k , $k \in \mathbb{N}$, of the operator L and problem (1.1)-(1.3) coincide together with their multiplicities, and between the root functions, there is a one-to-one correspondence

$$y_k(x) \leftrightarrow \hat{y}_k = \{y_k(x), m_k, n_k\}, \ m_k = -a_0 y_k(0), \ n_k = a_1 y_k(1).$$

Throughout the following, we assume that

$$a_0 < 0$$
 and $a_1 < 0$.

We introduce an operator $J: H \to H$ as follows:

$$I\{y, m, n\} = \{y, -m, -n\}.$$

The operator J is unitary and symmetric in H with spectrum consisting of two eigenvalues, -1 with multiplicity 2 and 1 with infinite multiplicity [9, Theorem 2.1]. Consequently, this operator generates the Pontryagin space $\Pi_2 = L_2(0, 1) \oplus$ \mathbb{C}^2 with inner product (J - metric) [8, Ch.1]

$$(\hat{u},\hat{v})_{\Pi_2} = (\{u(x), m, n\}, \{v(x), s, t\})_{\Pi_2} = (u, v)_{L_2} + a_0^{-1} m \bar{s} + a_1^{-1} n \bar{t}.$$
 (2.2)

Theorem 2.1 [9, Theorem 2.2, Corollary 2.1]. The operator JL is selfadjoint in H, i.e. L is J-self-adjoint in Π_2 .

Lemma 2.1 [6]. Let L^* be the adjoint of the operator L. Then $L^* = JLJ$. The solution

$$y(x,\lambda) = a_0 \sqrt{\lambda} \sin \sqrt{\lambda} x - \cos \sqrt{\lambda} x \qquad (2.3)$$

of Eq. (1.1) satisfies the initial conditions

$$y(0,\lambda) = -1$$
, and $y'(0,\lambda) = a_0\lambda$. (2.4)

The eigenvalues of the boundary value problem

$$-y''(x) = \lambda y(x), \ 0 < x < 1,$$

$$a_0 \lambda y(0) + y'(0) = 0, \ y(1) = 0,$$

are real and simple and form an infinitely increasing sequence

$$\mu_1 < 0 < \mu_2 < \dots < \mu_k < \dots$$

Set $B_k = (\mu_{k-1}, \mu_k), \ k = 1, 2, \dots$, where $\mu_0 = -\infty$.

BASIS PROPERTIES IN THE SPACE $L_p(0,1)$ OF THE BOUNDARY VALUE PROBLEM ...79

Theorem 2.2 [9, Theorem 3.1]. If $b_1 < 0$, then all eigenvalues of problem (1.1)-(1.3) are real and simple; in this case B_2 contains two eigenvalues, and B_k , k = 1, 3, 4, ..., contain one eigenvalue. If $b_1 > 0$, then one of the following assertions holds: (i) all eigenvalues of problem (1.1)-(1.3) are real; in this case, B_2 contains algebraically two eigenvalues (either two simple eigenvalues or one double eigenvalue), and B_k , k = 1, 3, 4, ..., contains one simple eigenvalue; (ii) all eigenvalues of problem (1.1)-(1.3) are real; in this case, B_2 contains no eigenvalues, while there exists a positive integer M (M > 2) such that B_M contains algebraically three eigenvalues (either three simple eigenvalues, or one double eigenvalue and one simple eigenvalue, or one triple eigenvalue), and B_k , $k = 1, 3, 4, ..., k \neq M$, contains one simple eigenvalue; (iii) problem (1.1)-(1.3) has one pair of nonreal complex conjugate eigenvalues; in this case, B_2 contains no eigenvalues, and B_k , k = 1, 3, 4, ..., contains one simple eigenvalue.

We denote by $\rho(\lambda)$ the algebraic multiplicity of an eigenvalue λ of the boundary value problem (1.1)-(1.3).

By Theorem 3.1, we have $\rho(\lambda_k) = 2$ (i.e., $\lambda_k = \lambda_{k+1}$) if k = M - 1 or k = Mand $\rho(\lambda_k) = 3$ (i.e., $\lambda_k = \lambda_{k+1} = \lambda_{k+2}$) if k = M - 1. (If assertion (i) of second part in Theorem 3.1 holds, then we set M = 2.)

Let $\{y_k(x)\}_{k=1}^{\infty}$ be the system of eigenfunctions and associated functions corresponding to the system of eigenvalues $\{\lambda_k\}_{k=1}^{\infty}$ of problem (1.1)-(1.3):

 $y_k(x) = y(x, \lambda_k)$ if $\rho(\lambda_k) = 1$;

 $y_k(x) = y(x, \lambda_k), \ y_{k+1}(x) = y_{k+1}^*(x) + c_k y_k(x), \text{ where } y_{k+1}^*(x) = \partial y(x, \lambda_k) / \partial \lambda,$ and c_k is an arbitrary constant if $\rho(\lambda_k) = 2$;

 $y_k(x) = y(x, \lambda_k), \ y_{k+1}(x) = y_{k+1}^*(x) + d_k y_k(x), \ y_{k+2}(x) = y_{k+2}^*(x) + d_k y_{k+1}^* + h_k y_k(x),$ where $y_{k+2}^*(x) = 2^{-1} \partial^2 y(x, \lambda_k) / \partial \lambda^2, \ d_k$ and h_k are arbitrary constants if $\rho(\lambda_k) = 3.$

Note that, the functions $y_k(x)$ and $y_{k+1}(x)$ for $\rho(\lambda_k) = 2$ and the functions $y_k(x)$, $y_{k+1}(x)$ and $y_{k+2}(x)$ for $\rho(\lambda_k) = 3$ form a chain of an eigenfunction and associated functions.

3. Basis properties of systems of root functions of problem (1.1)-(1.3)

Each element $\hat{y}_k = \{y_k(x), m_k, n_k\}, m_k = -a_0 y_k(0)$ and $n_k = a_1 y_k(1)$, of the system $\{\hat{y}_k\}_{k=1}^{\infty}$ of root vectors of the operator L satisfies the relation

$$L\hat{y}_k = \lambda_k \hat{y}_k + \theta_k \hat{y}_{k-1}, \qquad (3.1)$$

where θ_k is equal either to zero (in this case, \hat{y}_k is an eigenvector) or to unit (in this case, $\lambda_k = \lambda_{k-1}$ and \hat{y}_k is an associated vector) (e.g., see [10]).

Let $\{\hat{v}_k^*\}_{k=1}^{\infty}$, where $\hat{v}_k^* = \{v_k^*(x), s_k, t_k\}$, is the system of root vectors of the operator L^* , i.e.,

$$L^* \hat{v}_k^* = \bar{\lambda}_k \hat{v}_k^* + \theta_{k+1} \hat{v}_{k+1}^*.$$
(3.2)

By Lemma 2.1 and relations (3.1), (3.2), the following assertion holds.

Lemma 3.1. The following relations are true : $\hat{v}_k^* = J \,\overline{\hat{y}_k}$ if $\rho(\lambda_k) = 1$; $\hat{v}_k^* = J \,\hat{y}_{k+1}^* + \tilde{c}_k J \hat{y}_k$ and $\hat{v}_{k+1}^* = J \hat{y}_k$ if $\rho(\lambda_k) = 2$; $\hat{v}_k^* = J \hat{y}_{k+2}^* + \tilde{d}_k J \hat{y}_{k+1}^* + \tilde{h}_k J \hat{y}_k$, $\hat{v}_{k+1}^* = J \hat{y}_{k+1}^* + \tilde{d}_k J \hat{y}_k$ and $\hat{v}_{k+2}^* = J \hat{y}_k$ if $\rho(\lambda_k) = 3$, where $\hat{y}_{k+1}^* = \{y_{k+1}^*(x), m_{k+1}^*, n_{k+1}^*\}$, $m_{k+1}^* = m'(\lambda_k)$, $n_{k+1}^* = n'(\lambda_k)$, $\hat{y}_{k+2}^* = \{y_{k+2}^*(x), m_{k+2}^*, n_{k+2}^*\}$, $m_{k+2}^* = (1/2) m''(\lambda_k), \ m_{k+2}^* = (1/2) n''(\lambda_k); \ \tilde{c}_k, \ \tilde{d}_k \ and \ \tilde{h}_k$ are arbitrary constants.

Lemma 3.2. Let

$$\delta_k = \begin{cases} ||y_k||_{L_2}^2 + a_0 y_k^2(0) + a_1 y_k^2(1), & \text{if } \rho(\lambda_k) = 1, \\ (\hat{y}_k, \hat{y}_{k+1}^*)_{\Pi_2}, & \text{if } \rho(\lambda_k) = 2, \\ ||\hat{y}_{k+1}^*||_{\Pi_2}^2, & \text{if } \rho(\lambda_k) = 3, \end{cases}$$

where $\|\cdot\|_{\Pi_2}$ is the norm in the space Π_2 . Then $\delta_k \neq 0, \ k = 1, 2, ...$

The proof of this lemma is similar to that of [2, Lemma 6.2]. **Lemma 3.3.** An element $\hat{v}_k = \{v_k(x), s_k, t_k\}$ of the system $\{\hat{v}_k\}_{k=1}^{\infty}$ adjoint to the system $\{\hat{y}_k\}_{k=1}^{\infty}$ is given by the relation

$$\hat{v}_k = \bar{\delta}_k^{-1} \hat{v}_k^*, \tag{3.3}$$

where the \hat{v}_k^* , $k = 1, 2, ..., are defined in Lemma 3.1, and the <math>\delta_k$, $k = 1, 2, ..., are defined in Lemma 3.2; in addition <math>\tilde{c}_k = -c_k - \delta_k^{-1} ||\hat{y}_{k+1}^*||_{\Pi_2}^2$ if $\rho(\lambda_k) = 2; \tilde{d}_k = -d_k - \delta_k^{-1} (\hat{y}_{k+1}^*, \hat{y}_{k+2}^*)_{\Pi_2}$ and $\tilde{h}_k = -h_k - \delta_k^{-1} ||\hat{y}_{k+2}^*||_{\Pi_2}^2 + \delta_k^{-2} (\hat{y}_{k+1}^*, \hat{y}_{k+2}^*)_{\Pi_2}^2 + d_k (d_k + \delta_k^{-1} (\hat{y}_{k+1}^*, \hat{y}_{k+2}^*)_{\Pi_2})$ if $\rho(\lambda_k) = 3.$

The proof of Lemma 3.3 is similar to that of [2, Lemma 6.3].

If $\rho(\lambda_k) = 1$, then it follows by (2.3) that

$$m_k = -a_0 y_k(0) = -a_0 y(0, \lambda_k) = a_0.$$
(3.4)

The following result is a straightforward consequence of Lemma 3.3 and formula (2.3).

Corollary 3.1. *The following assertions hold:*

 $\begin{aligned} &(i) \ if \ \rho(\lambda_k) = 1, \ then \ s_k = -\bar{\delta}_k^{-1} \ \overline{m}_k = -a_0 \bar{\delta}_k^{-1} \ and \ t_k = -\bar{\delta}_k^{-1} \ \overline{n}_k = -a_1 \bar{\delta}_k^{-1} y_k(1); \\ &(ii) \ if \ \rho(\lambda_k) = 2, \ then \ s_k = -\delta_k^{-1} \bar{c}_k m_k = -a_0 \delta_k^{-1} \bar{c}_k, \ s_{k+1} = -\delta_k^{-1} m_k = -a_0 \delta_k^{-1}, \ t_k = -\delta_k^{-1} \{n_{k+1}^* + \bar{c}_k n_k\} \ and \ t_{k+1} = -\delta_k^{-1} n_k = -a_1 \delta_k^{-1} y_k(1); \\ &(iii) \ if \ \rho(\lambda_k) = 3, \ then \ s_k = -\delta_k^{-1} \tilde{h}_k m_k = -a_0 \delta_k^{-1} \tilde{h}_k, \ s_{k+1} = -\delta_k^{-1} \tilde{d}_k m_k = -a_0 \delta_k^{-1} \tilde{d}_k, \ s_{k+2} = -\delta_k^{-1} m_k = -a_0 \delta_k^{-1}, \ t_k = -\delta_k^{-1} \{n_{k+2}^* + \tilde{d}_k n_{k+1}^* + \tilde{h}_k n_k\}, \ t_{k+1} = -\delta_k^{-1} \{n_{k+1}^* + \tilde{d}_k n_k\} \ and \ t_{k+2} = -\delta_k^{-1} n_k = -a_1 \delta_k^{-1} y_k(1). \end{aligned}$

Let $r, l, r \neq l$ be arbitrary fixed positive integers and

$$\Delta_{r,l} = \left| \begin{array}{cc} s_r & s_l \\ t_r & t_l \end{array} \right|.$$

Theorem 3.1. If $\Delta_{r,l} \neq 0$, then the system of root functions $\{y_k(x)\}_{k=1, k\neq r, l}^{\infty}$ of problem (1.1)-(1.3) forms a basis in the space $L_p(0,1), 1 (even a Riesz basis for <math>p = 2$); if $\Delta_{r,l} = 0$, then this system is neither complete nor minimal in the space $L_p(0,1), 1 .$

The proof of this theorem is similar to that of [5, Theorem 4.1]. **Theorem 3.2.** There exists positive integer \tilde{k} such that the system of eigenfunctions $\{y_k(x)\}_{k=1, k \neq r, l}^{\infty}$ of problem (1.1)- (1.3) for $r, l \geq \tilde{k}$ forms a basis in the space $L_p(0, 1), 1 (even a Riesz basis for <math>p = 2$). Proof. If $\rho(\lambda_k) = 1$, then by [13, formula (10)] we obtain

$$y_k(1) = (-1)^k \left(\frac{a_0^2 \lambda_k^2 + \lambda_k}{(a_1 \lambda_k + b_1)^2 + \lambda_k}\right)^{1/2}.$$
(3.5)

BASIS PROPERTIES IN THE SPACE $L_p(0,1)$ OF THE BOUNDARY VALUE PROBLEM ...81

Let $\rho(\lambda_r) = \rho(\lambda_l) = 1$. Then by Corollary 3.1 it follows that

$$\Delta_{r,l} = \begin{vmatrix} -a_0 \bar{\delta}_r^{-1} & -a_0 \bar{\delta}_l^{-1} \\ -a_1 \bar{\delta}_r^{-1} y_r(1) & -a_1 \bar{\delta}_r^{-1} y_r(1) \end{vmatrix} = a_0 a_1 \bar{\delta}_r^{-1} \bar{\delta}_l^{-1} \begin{vmatrix} 1 & 1 \\ y_r(1) & y_l(1) \end{vmatrix}.$$
(3.6)

Hence in view of (3.5), by (3.6) we obtain

$$\Delta_{r,l} = (-1)^{r+l} a_0 a_1 \bar{\delta}_r^{-1} \bar{\delta}_l^{-1} \left| \begin{array}{c} 1 \\ \left(\frac{a_0^2 \lambda_r^2 + \lambda_r}{(a_1 \lambda_r + b_1)^2 + \lambda_r}\right)^{1/2} \left(\frac{a_0^2 \lambda_l^2 + \lambda_l}{(a_1 \lambda_l + b_1)^2 + \lambda_l}\right)^{1/2} \right|. \quad (3.7)$$

We introduce the function

$$F(\lambda) = \left(\frac{a_0^2 \lambda_k^2 + \lambda_k}{(a_1 \lambda_k + b_1)^2 + \lambda_k}\right)^{1/2}.$$
(3.8)

By virtue of [13, formula (18)] that

$$F'(\lambda) = \frac{1}{2} \left(F(\lambda) \right)^{-1/2} \frac{\left(2a_0^2 a_1 b_1 + a_0^2 - a_1^2 \right) \lambda^2 + 2a_0^2 b_1^2 \lambda + b_1^2}{\left\{ (a_1 \lambda + b_1)^2 + \lambda \right\}^2}.$$
 (3.9)

Since $a_0b_1 \neq 0$, it follows from (3.9) that there exists $\tilde{\lambda} > 0$ such that $F'(\lambda) \neq 0$ for $\lambda > \tilde{\lambda}$. Hence the function $F(\lambda)$ is strictly monotonic in the interval $(\tilde{\lambda}, +\infty)$. Consequently, there exists $\tilde{k} \in \mathbb{N}$ such that $\Delta_{r,l} \neq 0$ for $r, l \geq \tilde{k}$, by (3.7) and (3.8). Then on the base of Theorem 3.1 the eigenfunctions system $\{y_k(x)\}_{k=1, k\neq r, l}^{\infty}$ of problem (1.1)- (1.3) for $r, l \geq \tilde{k}$ forms a basis in the space $L_p(0, 1), 1$ (even a Riesz basis for <math>p = 2). The proof of Theorem 3.2 is complete.

Acknowledgments. The author thank professor Z.S. Aliyev for useful discussions.

References

- Z.S. Aliev, Basis properties of the root functions of an eigenvalue problem with a spectral parameter in the boundary conditions, *Doklady Mathematics*, 82 (1) (2010), 583-586.
- [2] Z.S. Aliev, Basis properties in L_p of systems of root functions of a spectral problem with spectral parameter in a boundary condition *Differential Equations*, **47** (6) (2011), 766-777.
- [3] Z.S. Aliev, On basis properties of root functions of a boundary value problem containing a spectral parameter in the boundary conditions, *Doklady Mathematics*, 87 (2) (2013), 137-139.
- [4] Z.S. Aliev, A.A.Dunyamalieva, On defect basicity of the system of eigenfunctions of a spectral problem with a spectral parameter in the boundary conditions, *Trans. NAS Azerb., ser. phys.-tech. math. sci., math. mech.*, **32** (4) (2012), 21-28.
- [5] Z.S. Aliyev, A.A. Dunyamaliyeva, Defect basicity of the root functions of the Sturm -Liouville problem with spectral parameter in the boundary conditions, *Differentsial*nye Uravneniya, **51** (10) (2015), 1259-1276 (DOI:10.1134/S03740641150).
- [6] T.Ya. Azizov, I.S. Iokhvidov, Linear operators in Hilbert spaces with G-metric, Russian Mathematical Surveys, 26 (4) (1971), 43-92.
- [7] T.Ya. Azizov, I.S. Iokhvidov, A criterion for completeness and the basis property of root vectors of a completely continuous self-adjoint operator in a Pontryagin space Π_κ, Mathematical research, 6 (1) (1971), 158-161.

- [8] T.Ya. Azizov, I.S. Iokhvidov, Foundations of the theory of linear operators in spaces with indefinite metric, Nauka, Moscow, 1986.
- [9] A.A.Dunyamalieva, Some spectral properties of the boundary value problem with spectral parameter in the boundary conditions, Proc. Inst. Math. and Mech., Nat. Acad. Scien. Azerbaijan, 40 (2) (2014), 52-64.
- [10] V.A. Il'in, Unconditional basis property on a closed interval of systems of eigenand associated functions of a second-order differential operator, *Dokl. Akad. Nauk SSSR*, **273** (5) (1983), 10481053 (in Russian).
- [11] N.Yu. Kapustin, On a spectral problem arising in a mathematical model of torsional vibrations of a rod with pulleys at the ends, *Differential Equations*, **41** (10) (2005), 1490-1492.
- [12] N.B. Kerimov, R. G. Poladov, Basis properties of the system of eigenfunctions in the Sturm-Liouville problem with a spectral parameter in the boundary conditions, *Doklady Mathematics*, 85 (1) (2012), 8-13.
- [13] R.G. Poladov, On the basis properties in the space $L_p(0,1)$, 1 of the system of eigenfunctions of Sturm-Liouville problem with a spectral parameter in boundary counditions,*Trans. NAS Azerb., ser. phys.-tech. math. sci., math. mech.,***32**(4) (2012), 87-94.
- [14] E.M. Russakovskii, Operator treatment of boundary problems with spectral parameters entering via polynomials in the boundary conditions, *Functional Analysis and Its Applications*, 9 (4) (1975), 358-359.

Aida A. Dunyamaliyeva

Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku AZ 1141, Azerbaijan

E-mail address: aida.dunyamaliyeva@mail.ru

Received: May 4, 2015; Revised: September 22, 2015; Accepted: November 16, 2015