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ON THE REPRESENTATION BY SUMS OF RIDGE

FUNCTIONS

RASHID A. ALIEV, VUGAR E. ISMAILOV, AND TARANA M. SHAHBALAYEVA

Abstract. In the current paper, we review some results on the repre-
sentation by sums of ridge functions with finitely many directions. In
the special case of three directions, we prove that if a function of a cer-
tain smoothness class is represented by sums of arbitrarily behaved ridge
functions, then it can also be represented by sums of ridge functions of
the same smoothness class.

1. Introduction

A ridge function, in its simplest format, is a multivariate function of the form

g (a·x) = g (a1x1 + . . .+ anxn) ,

where g : R → R and a = (a1, ..., an) is a fixed vector (direction) in Rn\ {0} .
These functions and their linear combinations appear in various areas. They
appear in the theory of PDE’s (where they are called plane waves, see, e.g., [17]),
in mathematical problems of computerized tomography (see, e.g., [18, 19, 24,
26, 27]), in the theory of projection pursuit and projection regression (see, e.g.,
[5, 6, 8, 9, 10]), and in neural networks (see [31] and many related references
therein). Ridge functions are also extensively used in modern approximation
theory as an effective tool for approximating complicated multivariate functions
(see, e.g., [11, 12, 13, 14, 15, 16, 22, 23, 25, 28, 30]).

In the current paper, we consider the problem of representation of multivariate
functions by sums of ridge functions with finitely many fixed directions. Assume
we are given r pairwise linearly independent directions ai, i = 1, ..., r, in Rn\ {0}.
The first problem arising here is about the representability of a given multivariate
function f : Rn → R as a linear combination of ridge functions with the directions
ai, i = 1, ..., r. That is, we want to know when f can be written in the form

f(x) =
r∑
i=1

gi(a
i · x). (1.1)

This problem has a simple solution if the dimension n = 2 and the given function
f(x, y) has partial derivatives up to r-th order. For the representation of f(x, y)
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in the following form

f(x, y) =

r∑
i=1

gi(aix+ biy),

it is necessary and sufficient that

r∏
i=1

(
bi
∂

∂x
− ai

∂

∂y

)
f = 0. (1.2)

Note that the last assertion is valid also for continuous bivariate functions pro-
vided that the derivatives are understood in the generalized sense. It should be
remarked that this simple assertion does not carry over to the general case when
the space dimension n > 2. In this case, there known several results, which will
be analyzed in Section 2.

Let a function f(x) can be represented in the form (1.1). Let, besides, f be of a
certain smoothness class. What can we say about the smoothness of gi? The case
r = 1 is clear. In this case, if f ∈ Ck(Rn), then for c ∈ Rn satisfying a1 ·c = 1 we
have that g1(t) = f(tc) is in Ck(R). The same argument can be carried out for
the case r = 2. In this case, since the vectors a1 and a2 are linearly independent,
there exists a vector c ∈ Rn satisfying a1 · c = 1 and a2 · c = 0. Therefore, we
obtain that the function g1(t) = f(tc) − g2(0) is in the class Ck(R). By the
same way, one can verify that g2 ∈ Ck(R). Note that the picture is completely
different if r ≥ 3. For r = 3, it was shown in [29] that, there are smooth functions
which decompose into sums of not only nonsmooth but very badly behaved ridge
functions.

It was first proved by Buhman and Pinkus [4] that if in (1.1) f ∈ Ck(Rn),
k ≥ r− 1 and gi ∈ L1

loc(R) for each i, then gi ∈ Ck(R) for i = 1, ..., r. Pinkus [29]
generalized this result and showed that the solution is quite simple and natural
if the functions gi are taken from a certain class of “reasonably well behaved
functions” As the mentioned class of “reasonably well behaved functions” one
may take, e.g., the set of functions that are continuous at a point, the set of
Lebesgue measurable functions, etc. In [29], such classes are denoted by B (for
the rigorous definition see [29]). The result of Pinkus states that if in (1.1)
f ∈ Ck(Rn) and each gi ∈ B, then necessarily gi ∈ Ck(R) for i = 1, ..., r. This
result gives rise to a natural and, in our opinion, important question. Assume in
the representation (1.1) f ∈ Ck(Rn) but the functions gi are badly behaved. Can
we write f as a sum

∑r
i=1 fi(a

i · x) but with the smooth fi, i = 1, ..., r? For the
case r = 3, this interesting question will be discussed in Section 3.

This paper is organized as follows. It consists of this Introduction and two
more sections. In Section 2, we give a brief historical review of the known results
on the representation by ridge functions. Finally, in Section 3, we discuss the
possibility of smooth representation with the proviso that nonsmooth represen-
tation is possible. More precisely, for r = 3, we prove that if representation (1.1)
holds for f ∈ Ck(Rn), then the functions gi can be replaced by some functions
from the class Ck(R).
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2. A brief overview of the problem of representation by ridge
functions

The problem of representation by ridge functions appeared in connection with
the understanding of mathematics of computerized tomography. In tomography,
the reconstruction of a given multivariate function from values of its integrals
along certain lines in the plane is essential. The integrals along parallel lines can
be considered as a ridge function. Thus, the problem is to reconstruct f from
some set of ridge functions generated by the function f itself. In practice, one can
consider only a finite number of directions along which the above integrals are
taken. Obviously, reconstruction from such data needs some additional conditions
to be unique, since there are many functions g having the same integrals. For
uniqueness, Logan and Shepp in their pioneering paper [24] used the criterion of
minimizing the L2 norm of g. That is, they found a function g(x, y) with the
minimum L2 norm among all functions, which has the same integrals as f . More
precisely, let D be the unit disk in the plane and a function f(x, y) be square
integrable and supported on D. We are given projections Pf (t, θ) (integrals of
f along the lines x cos θ + y sin θ = t) and looking for a function g = g(x, y) of
minimum L2 norm, which has the same projections as f : Pg(t, θj) = Pf (t, θj),
j = 0, 1, ..., n − 1, where angles θj generate equally spaced directions, i.e. θj =
jπ
n , j = 0, 1, ..., n − 1. The authors showed that this problem of tomography is

equivalent to the problem of L2-approximation of a given function f by sums of
ridge functions with equally spaced directions (cos θj , sin θj), j = 0, 1, ..., n − 1.
They gave a closed-form expression for the unique function g(x, y) and showed
that the unique polynomial P (x, y) of degree n− 1 which best approximates f in
L2(D) is determined from the above n projections of f and can be represented
as a sum of n ridge functions.

Kazantsev [18] solved the above problem of tomography without requiring that
the considered directions be equally spaced. Marr [26] considered the problem of
finding a polynomial of degree n − 2 whose projections along lines joining each
pair of n equally spaced points on the circumference of D best matches the given
projections of f in the sense of minimizing the sum of squares of the differences.
Thus we see that the problems of tomography give rise to an independent study
of approximation-theoretic properties of the following set of ridge functions:

R
(
a1, ...,ar

)
=

{
r∑
i=1

gi
(
ai · x

)
: x ∈Rn, gi : R→ R, i = 1, ..., r

}
,

where directions a1, ...,ar are fixed and belong to n−dimensional Euclidean space.
Note that the set R

(
a1, ...,ar

)
is a linear space.

Besides R
(
a1, ...,ar

)
, we will also use the notation R

(
a1, ...,ar;X

)
which

stands for the set of functions from R
(
a1, ...,ar

)
but restricted to a set X ⊂ Rn.

One of the basic problems concerning sums of ridge functions with fixed di-
rections is the problem of verifying if a given function f belongs to the space
R
(
a1, ...,ar

)
. In introduction, we have seen that this problem has a simple so-

lution if the space dimension n = 2 and the given function f(x, y) has partial
derivatives up to r-th order. But if n ≥ 3, the picture drastically changes. Note
that in the left hand side of Eq. (1.2), the differential operator
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Af =
r∏
i=1

(
bi
∂

∂x
− ai

∂

∂y

)
f

involves vectors (bi,−ai), which are perpendicular to the directions (ai, bi), i =
1, ..., r. For the case n ≥ 3, there are many vectors perpendicular to ai, for each
i = 1, ..., r. Therefore, the resulting operator should involve all these vectors. The
corresponding theorem, highlighting this idea, belongs to Diaconis and Shahsha-
hani [7].

Proposition 2.1 (Diaconis, Shahshahani [7]). Let a1, ...,ar be pairwise inde-
pendent vectors in Rn. Let for i = 1, 2, ..., r, H i denote the hyperplane {c ∈ Rn:
c · ai = 0}. Then a function f ∈ Cr(Rn) can be represented as

f(x) =

r∑
i=1

gi
(
ai · x

)
+ P (x),

where P (x) is a polynomial of degree not more than r, if and only if

r∏
i=1

n∑
s=1

cis
∂f

∂xs
= 0,

for all vectors ci = (ci1, c
i
2, ..., c

i
n) ∈ H i, i = 1, 2, ..., r.

The main drawback of this proposition is the “unwanted term” P (x) in the
representation formula. There are examples (see [7]) showing that one cannot
simply dispense with the polynomial P (x) in Proposition 2.1.

Lin and Pinkus [23] obtained more general result on the representation by
ridge functions. We need some notation to present their result. First note that
each polynomial p(x1, ..., xn) generates the differential operator p( ∂

∂x1
, ..., ∂

∂xn
).

Let P (a1, ...,ar) denote the set of polynomials which vanish on all the lines
{λai, λ ∈ R}, i = 1, ..., r. Obviously, this is an ideal in the ring of all polynomials.
Let Q be the set of polynomials q = q(x1, ..., xn) such that p( ∂

∂x1
, ..., ∂

∂xn
)q = 0,

for all p(x1, ..., xn) ∈ P (a1, ...,ar).

Proposition 2.2 (Lin, Pinkus [23]). Let a1, ...,ar be pairwise linearly inde-
pendent vectors in Rn. A function f ∈ C(Rn) can be expressed in the form

f(x) =
r∑
i=1

gi(a
i · x),

if and only if f belongs to the closure of the linear span of Q.

What can we say about the representation of arbitrary (not necessarily con-
tinuous or differentiable) multivariate function f : Rn → R by sums of ridge
functions with the given directions a1, ...,ar. This problem was considered in [14].
The corresponding solution uses such objects as “paths” and “path functionals”.
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Definition 2.1. A set of points l = {x1, . . . ,xm} ⊂ Rn is called a closed path
with respect to the directions a1,a2, ...,ar if there exists a vector λ = (λ1, . . . , λm) ∈
Zm \ {0} such that

m∑
j=1

λjδai ·xj = 0, for all i = 1, . . . , r. (2.1)

Here δa is the characteristic function of a set {a} and ai ·xj is the inner product
of these two vectors.

The idea of closed paths with respect to r directions in Rn was first consid-
ered in the paper by Braess and Pinkus [3]. Klopotowski, Nadkarni, Rao [21]
defined these objects with respect to canonical projections. In our paper [14],
which deals with linear superpositions and the Kolmogorov superposition theo-
rem, closed paths have been generalized to those having association with r arbi-
trary functions. In these three works, it was shown that nonexistence of closed
paths of the respective form is both necessary and sufficient for

1) interpolation by ridge functions [3];
2) representation of multivariate functions by sums of univariate functions [21];
3) representation by linear superpositions [14].
Closed paths are also appeared in duality relations in approximation by sums

of univariate functions. They are necessary for description of extreme points of
the set of measures orthogonal to such sums (see [12]).

Let for i = 1, ..., r, the set {ai ·xj , j = 1, ...,m} have si different values. Then it
is not difficult to see that Eq. (2.1) stands for a system of

∑r
i=1 si homogeneous

linear equations in unknowns λ1, ..., λm. If this system has any solution with
nonzero integer components, then the given set {x1, . . . ,xm} is a closed path.

For example, the set l = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} is a
closed path in R3 with respect to the basic directions. The vector λ in Definition
2.1 can be taken as (−2, 1, 1, 1,−1).

In the case r = 2, the picture of closed paths becomes more clear. Let, for
example, a1 and a2 be the basic directions in R2. In this case, a closed path is the
union of some sets A with the property: each A consists of vertices of a closed
broken line with the sides parallel to the coordinate axis. These objects (sets
A) have been exploited in practically all works devoted to the approximation of
bivariate functions by univariate functions, although under the different names
(see, for example, [20, Chapter 2]). IfX and the directions a1 and a2 are arbitrary,
the sets A can be described as a trace of some point traveling alternatively in two
hyperplanes perpendicular to these directions and then returning to its primary
position. It should be remarked that in the case r > 2, closed paths do not admit
such a simple geometric description.

Let X be a subset of Rn and T (X) denote the set of all functions on X. With
each pair 〈l, λ〉 , where l = {x1, . . . ,xm} is a closed path in X and λ = (λ1, ..., λm)
is a vector known from Definition 2.1, we associate the functional

Gl,λ : T (X)→ R, Gl,λ(f) =

m∑
j=1

λjf(xj).
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It is clear that the functional Gl,λ is linear and Gl,λ(g) = 0 for all functions
g ∈ R

(
a1, ...,ar;X

)
.

Definition 2.2. A closed path l = {x1, . . . ,xm} is said to be minimal if l does
not contain any closed path as its proper subset.

For example, the set l = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} consid-
ered above is a minimal closed path with respect to the coordinate directions in
R3. Adding the point (0, 1, 1) to l, we will have a closed path, but not minimal.
The vector λ associated with l∪{(0, 1, 1)} can be taken as (3,−1,−1,−2, 2,−1).

It is not difficult to verify that a minimal closed path l uniquely defines the
functional

Gl(f) =

m∑
j=1

λjf(xj),
m∑
j=1

|λj | = 1.

The following proposition is valid.

Proposition 2.3 (see [14]). Let X ⊂ Rn and a1, ...,ar be arbitrarily fixed
directions in Rn.

1) Let X have closed paths with respect to the directions a1, ...,ar. A function
f : X → R belongs to the space R

(
a1, ...,ar;X

)
if and only if Gl(f) = 0 for any

minimal closed path l ⊂ X.
2) Let X have no closed paths. Then R

(
a1, ...,ar;X

)
= T (X).

The above problem of representation of a multivariate function by ridge func-
tions gives rise to the problem of representation of some classes of functions by
such sums. For example, one may consider the following problem. Let X be a
subset of the n−dimensional Euclidean space. Let C(X), B(X), T (X) denote
the set of continuous, bounded and all real functions defined on X correspond-
ingly. In the first case, we additionally suppose that X is a compact set. Let
Rc
(
a1, ...,ar;X

)
and Rb

(
a1, ...,ar;X

)
denote the subspaces of R

(
a1, ...,ar;X

)
comprising only sums of continuous and bounded terms gi

(
ai · x

)
, i = 1, ..., r,

correspondingly. The following questions naturally arise: For which sets X,
one can claim that Rc

(
a1, ...,ar;X

)
= C(X), Rb

(
a1, ...,ar;X

)
= B(X), and

R
(
a1, ...,ar;X

)
= T (X)? The first two problems in more general setting were

solved by Sternfeld [32, 33]. The third problem was solved in [14]. Let us consider
the corresponding results. Assume we are given directions a1, ...,ar ∈ Rn\{0}
and some set X ⊆ Rn. The family F = {a1, ...,ar} uniformly separates points of
X if there exists a number 0 < λ ≤ 1 such that for each pair {xj}mj=1, {zj}mj=1

of disjoint finite sequences in X, there exists some direction ak ∈ F so that if
from the two sequences {ak · xj}mj=1and {ak · zj}mj=1 we remove a maximal num-

ber of pairs of points ak · xj1 and ak · zj2 with ak · xj1 = ak · zj2 , then there
remains at least λm points in each sequence (or , equivalently, at most (1− λ)m
pairs can be removed). Sternfeld [33], in particular, proved that a finite fam-
ily of directions F = {a1, ...,ar} uniformly separates points of X if and only if
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Rb
(
a1, ...,ar;X

)
= B(X). In [33], Sternfeld also obtained a practically conve-

nient sufficient condition for the equality Rb
(
a1, ...,ar;X

)
= B(X).To describe

this condition, define the set functions

τi(Z) = {x ∈ Z : |p−1i (pi(x))
⋂
Z| ≥ 2},

where Z ⊂ X, pi(x) = ai · x, i = 1, . . . , r, and |Y | denotes the cardinality of

a considered set Y . Define τ(Z) to be
⋂k
i=1 τi(Z) and define τ2(Z) = τ(τ(Z)),

τ3(Z) = τ(τ2(Z)) and so on inductively.

Proposition 2.4 (Sternfeld [33]). If τk(X) = ∅ for some k, then
Rb
(
a1, ...,ar;X

)
= B(X). If X is a compact subset of Rn, and τk(X) = ∅ for

some k, then Rc
(
a1, ...,ar;X

)
= C(X).

The sufficient condition “τn(X) = ∅ for some n” turns out to be also necessary
for the case r = 2. In this case the equality Rb

(
a1,a2;X

)
= B(X) is equiv-

alent to the equality Rc
(
a1,a2;X

)
= C(X). In another work [32], Sternfeld

obtained a measure-theoretic necessary and sufficient condition for the equality
Rc
(
a1, ...,ar;X

)
= C(X). Let a1, ...,ar ∈ Rn\{0}, pi(x) = ai · x, i = 1, . . . , r,

X be a compact set in Rn and M(X) be a class of measures defined on some field
of subsets of X. The family F = {a1, ...,ar} uniformly separates measures of the
class M(X) if there exists a number 0 < λ ≤ 1 such that for each measure µ in
M(X) the equality

∥∥µ ◦ p−1k ∥∥ ≥ λ ‖µ‖ holds for some direction ak ∈ F . Sternfeld

[32], in particular, proved that the equalityRc
(
a1, ...,ar;X

)
= C(X) holds if and

only if the family of directions {a1, ...,ar} uniformly separates measures of the
class C(X)∗ (that is, the class of regular Borel measures). Besides, he proved
that Rb

(
a1, ...,ar;X

)
= B(X) if and only if the family of directions {a1, ...,ar}

uniformly separates measures of the class l1(X) (that is, the class of finite mea-
sures defined on countable subsets of X). Since l1(X) ⊂ C(X)∗, the first equality
Rc
(
a1, ...,ar;X

)
= C(X) implies the second equality Rb

(
a1, ...,ar;X

)
= B(X).

The inverse is not true (see [32]).
For the problem of representation R

(
a1, ...,ar;X

)
= T (X), Ismailov [14] ob-

tained the following necessary and sufficient condition in terms of closed paths.

Proposition 2.5 (see [14]). R
(
a1, ...,ar;X

)
= T (X) if and only if X has no

closed paths with respect to the directions a1, ...,ar.

It should be remarked that the above results of Sternfeld and Ismailov were
obtained for more general functions, than linear combinations of ridge functions,
namely for functions of the form

∑r
i=1 gi(hi(x)), where hi are arbitrarily fixed

functions defined on X.

3. Smoothness in representation by three ridge functions

In this section we consider and solve partially the following problem. Let a
function f ∈ Ck(Rn) can be represented in the form

∑r
i=1 gi(a

i ·x) and we know
nothing about the behavior of the functions gi. Can we represent f in the form∑r

i=1 fi(a
i · x) but with sufficiently smooth functions fi? For the case r ≤ 2,
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as we have already seen in Introduction, such representation is possible with
fi ∈ Ck(R), i = 1, 2. That is, we can chose representing ridge functions fi(a

i · x)
from the class of smoothness, to which the represented function f belongs. This
is an ideal situation. For r ≥ 3, the problem is quite difficult to have such a
simple solution. In this section, we prove that if r = 3 and the representation
(1.1) holds for f ∈ Ck(Rn), k ≥ 2, then the functions gi can be replaced by some
functions fi from the class Ck(R). In the case r = 3 and k = 1, this statement
is valid under a mild assumption that the first order partial derivatives of f are
Hölder continuous.

Theorem 3.1. Assume ai, i = 1, 2, 3, are pairwise linearly independent direc-
tions in Rn\{0}. Assume that a function f ∈ Ck(Rn) is of the form

f(x) =
3∑
i=1

gi(a
i · x). (3.1)

1) If k ≥ 2, then f can be represented also in the form

f(x) =
3∑
i=1

fi(a
i · x),

where the functions fi ∈ Ck(R), i = 1, 2, 3.
2) If k = 1, then the above statement holds with the proviso that f ∈ C1,α(Ω)

for any bounded subset Ω of Rn (α is not fixed and depends on Ω).

Remark. Theorem 3.1 in a more general form, involving any number of r ≥ 3
directions, will appear in [2].

To prove the above result we need the following lemmas, which can be proven
by using two basic theorems of calculus (namely, the mean value theorem and
the term by term differentiation theorem).

Lemma 3.1. Let h ∈ C1(R), h(0) = h
′
(0) = 0 and h

′
is Hölder continuous

on any finite interval [a, b]. Then the function

H(t) =

∞∑
k=1

2k−1h(
t

2k
) (3.2)

is well defined and continuously differentiable on the real axis.

Lemma 3.2. Let h ∈ Cp(R), p ≥ 2 and h(0) = h
′
(0) = 0. Then the function

H(t) (defined by (3.2)) is in the class Cp(R).

Proof of Theorem 3.1. We start with the second part of the theorem. That
is, let f ∈ C1,α(Ω) for any bounded subset Ω of Rn (here α is different for different
sets Ω) and the formula (3.1) holds.

First assume that the vectors a1,a2,a3 form a linearly independent system.
Complete this system to a linearly independent system consisting of n vectors
a1,a2, ...,an. Consider the linear transformation yi = ai · x, i = 1, ..., n. Let A
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be matrix of this transformation. Using this transformation, we can write the
formula (3.1) in the form

f(A−1y) =

3∑
i=1

gi(yi). (3.3)

Here, y = (y1, ..., yn)T . In (3.3), taking sequentially y2 = y3 = 0, y1 = y3 = 0
and y1 = y2 = 0, we obtain correspondingly that g1 ∈ C1(R), g2 ∈ C1(R) and
g3 ∈ C1(R).

Now assume that the vectors a1,a2,a3 are linearly dependent. Since these vec-
tors are pairwise linearly independent, there exist numbers λ1, λ2 ∈ R\{0} such
that a3 = λ1a

1 + λ2a
2. Complete the system {a1,a2} to a linearly independent

system {a1,a2,b3, ...,bn} and consider the linear transformation y = Bx, where
x = (x1, ..., xn)T , y = (y1, ..., yn)T and B is the matrix, rows of which are formed
by the coordinates of the vectors a1,a2,b3, ...,bn. Using this transformation, we
can write (3.1) in the form

f(A−1y) = g1(y1) + g2(y2) + g3(λ1y1 + λ2y2). (3.4)

In (3.4), taking sequentially y2 = 0 and y1 = 0, we obtain that

g1(y1) = f(A−1y)|y2=0 − g2(0)− g3(λ1y1), (3.5)

and

g2(y2) = f(A−1y)|y1=0 − g1(0)− g3(λ2y2). (3.6)

Considering (3.5) and (3.6) in (3.4), we obtain the equality

g3(λ1y1 + λ2y2)− g3(λ1y1)− g3(λ2y2) =
= f(A−1y)− f(A−1y)|y1=0 − f(A−1y)|y2=0 + g1(0) + g2(0).

(3.7)

One can easily observe that the right hand side of (3.7) depends only on the
variables y1 and y2. Denote the right hand side of (3.7) by F (y1, y2). That is, set
the following function

F (y1, y2)
def
= f(A−1y)− f(A−1y)|y1=0 − f(A−1y)|y2=0 + g1(0) + g2(0). (3.8)

Along with (3.8) we repeatedly use the following identity, which follows from
(3.7) and (3.8)

F (y1, y2) = g3(λ1y1 + λ2y2)− g3(λ1y1)− g3(λ2y2). (3.9)

By the hypothesis of the theorem, the partial derivatives of F (y1, y2) is Hölder
continuous over any bounded set in R2. Consider the function

h(t) = F (
t

λ1
,
t

λ2
)− F (0, 0). (3.10)

Let us check that the function h(t) satisfies all the conditions of Lemma 3.1.

First note that h
′

is Hölder continuous on any finite interval [a, b]. Besides,

h(0) = F (0, 0)− F (0, 0) = 0.

To prove h
′
(0) = 0, note that by (3.9),
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F (∆t, 0)− F (0, 0) = g3(λ1∆t)− g3(λ1∆t)− g3(0) + g3(0) = 0,

F (0,∆t)− F (0, 0) = g3(λ2∆t)− g3(λ2∆t)− g3(0) + g3(0) = 0.

From the above equalities, we obtain that

∂F

∂y1
(0, 0) =

∂F

∂y2
(0, 0) = 0

and hence

h
′
(0) =

1

λ1

∂F

∂y1
(0, 0) +

1

λ2

∂F

∂y2
(0, 0) = 0.

Now by Lemma 3.1, the H(t) defined in (3.2) is continuously differentiable on
the real axis.

Let us now prove that

F (y1, y2)− F (0, 0) = H(λ1y1 + λ2y2)−H(λ1y1)−H(λ2y2). (3.11)

Define the following functions

Hn(t) =
n∑
k=1

2k−1h(
t

2k
), n = 1, 2, ... (3.12)

It can be shown that the sequence {Hn(t)}∞n=1 uniformly converges to the function
H(t) on any finite interval [−T, T ]. Consider the difference

∆n = [F (y1, y2)− F (0, 0)]− [Hn(λ1y1 + λ2y2)−Hn(λ1y1)−Hn(λ2y2)]. (3.13)

Considering (3.12) in (3.13) and then using (3.10), we can write the following
equalities

∆n = F (y1, y2)− F (0, 0)−
∑n

k=1 2k−1
[
h
(
λ1y1+λ2y2

2k

)
− h

(
λ1y1
2k

)
− h

(
λ2y2
2k

)]
=

= F (y1, y2)− F (0, 0)−
∑n

k=1 2k−1Sk,
(3.14)

where

Sk = F

(
λ1y1 + λ2y2

2kλ1
,
λ1y1 + λ2y2

2kλ2

)
−F

(
λ1y1
2kλ1

,
λ1y1
2kλ2

)
−F

(
λ2y2
2kλ1

,
λ2y2
2kλ2

)
+F (0, 0),

for the indices k = 1, ..., n. Considering (3.9) in (3.14) we obtain that

∆n = g3(λ1y1 + λ2y2)− g3(λ1y1)− g3(λ2y2)− F (0, 0)−
n∑
k=1

2k−1Bk,

where

Bk = g3

(
λ1y1+λ2y2

2k−1

)
− 2g3

(
λ1y1+λ2y2

2k

)
− g3

(
λ1y1
2k−1

)
+

+2g3

(
λ1y1
2k

)
− g3

(
λ2y2
2k−1

)
+ 2g3

(
λ2y2
2k

)
+ F (0, 0),

(3.15)
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for k = 1, ..., n. Now from (3.15) it is easy to see that

∆n = 2n
[
g3

(
λ1y1 + λ2y2

2n

)
− g3

(
λ1y1
2n

)
− g3

(
λ2y2
2n

)
− F (0, 0)

]
.

This formula together with (3.9) yield

∆n = 2n
[
F
( y1

2n
,
y2
2n

)
− F (0, 0)

]
. (3.16)

By the mean value theorem, it follows from (3.16) that

∆n =
∂F

∂y1

(
θy1
2n

,
θy2
2n

)
y1 +

∂F

∂y2

(
θy1
2n

,
θy2
2n

)
y2, (3.17)

where θ ∈ (0, 1). Now (3.11) follows from (3.17) after taking limits on both sides
of (3.17) as n→∞.

Set the following functions

f1(y1) = f(A−1y)|y2=0 −H(λ1y1)− g2(0),

f2(y2) = f(A−1y)|y1=0 −H(λ2y2)− g1(0),

f3(t) = H(t) + F (0, 0).

Note that by (3.4) the function f(A−1y) depends only on the two variables y1
and y2 , hence the functions f1 and f2 are well defined. Clearly, fi ∈ C1(R), for
i = 1, 2, 3. Besides, using (3.8) and (3.11), we can write that

∑3
i=1 fi(a

i · x) = f1(y1) + f2(y2) + f3(λ1y1 + λ2y2) = f(A−1y)|y2=0 −H(λ1y1)
−g2(0) + +f(A−1y)|y1=0 −H(λ2y2)− g1(0) +H(λ1y1 + λ2y2) + F (0, 0) =

= F (y1, y2) + f(A−1y)|y1=0 + f(A−1y)|y2=0 − g1(0)− g2(0) = f(A−1y) = f(x).

The second part of the theorem has been proved. The first part is proved analo-
gously by using Lemma 3.2 instead of Lemma 3.1.
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