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VARIATIONAL PRINCIPLE FOR TWO-PARAMETER

SPECTRAL PROBLEM UNDER LEFT DEFINITENESS

CONDITION

ELDAR SH. MAMEDOV

Abstract. In the paper we consider two-parameter spectral problem{
λ1Kr1ϕr + λ2Kr2ϕr = ϕr, ϕr ∈ Hr,

r = 1, 2

with compact self-adjoint operators in Hilbert space under left definite-
ness condition. The analog of the variational principle was obtained for
the two-parameter spectral problem.

1. Introduction

In some problems given by means of differential operators, at separation of vari-
ables we get multi-parameter spectral problems mainly. All these problems are
reduced to the from of weakly connected system of integral equations with spec-
tral parameters. The number of parameters equals the number of the variables
of the given initial problem.Therefore, it is interesting to consider the spectral
problem of the form

n∑
s=1

λsKrsϕr = ϕr; ϕr ∈ Hr; r = 1, ..., n (1.1)

where Krs are compact self-adjoint operators in Hilbert space Hr, r = 1, ..., n.
It is known that for any compact self-adjoint operator A, the number

λ0 = sup
ϕ∈H

(Aϕ,ϕ)

(ϕ,ϕ)

is an eigenvalue, i.e. we can solve the spectral problem Aϕ = λϕ by the variational
method (see[5],[7]). There arises a question if we can generalize this principle for
problem (1.1).

At different conditions of definiteness, the variational principle for a multi-
parameter problem of the form
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Tmxm =
n∑

k=1

λkVmkxm, 0 6= xm ∈ Hm m = 1; 2; ...;n,

was studied in the papers [1-4], where Vmk, m, k = 1, ..., n bounded operators,
Tm m = 1, ..., n are densely determined linear operators in Hilbert space Hm

m = 1, ..., n In these papers, both in finite-dimensional and in infinite-dimensional
cases the principle is given in the form of Rn -valued function in H1⊗, ....,⊗Hm or
H1×, ...,×Hn as the extremum of the function in definite sense. In the papers [2]
and [4] it is proved that to each multi-index i = (i1, i2, ..., in) (ir ≥ 0 are integers)
there corresponds such an eigenvalue λi and eigenvector xi = x1i1⊗ ...⊗xnin that

ρirr
(
λi
)

= 0, Wr

(
λi
)
xrir = 0,

where

ρirr
(
λi
)

= max
ym∈Hr
1≤m≤ir

min
ur∈Sr∩D(Tr)

(ur,yj)=0

(Wr(λ)ur, ur) ,

Sr is a unit ball in Hr,Wr(λ) = Tr −
n∑

k=1

λkVrk . The following geometrical

property is also proved. If j ≥ i (i.e.jr ≥ ir, r = 1; ...;n), then λj ∈ λi + C. In
particular, the spectrum σ ⊂ λ0 + C, where

C = { a ∈ Rn : V (u)a ≥ 0 for someur ∈ Sr, r = 1, ..., n}

It was proved that under some conditions (singularity conditions) , the cones C
is non-singular, i.e. the cones C is convex, closed and does not contain a straight
line. In the paper, a more constructive variational method for two-parameter
problem (1.1) is found and this enables to find the eigen value by means of the
extremum of a simple functional.

In the paper we study such a problem for a two-parameter problem.

2. Two-parameter variational problem

Let us consider the two-parameter problem{
λ1Kr1ϕr + λ2Kr2ϕr = ϕr, ϕr ∈ Hr,

r = 1, 2
(2.1)

where Hr, r = 1; 2 are Hilbert spaces, Kr1,Kr2 are compact self-adjoint operators
in the space Hr, r = 1; 2.

By virtue of compactuness of the operators Kr1,Kr2; r = 1; 2, the operators

∆0 = K11 ⊗K22 −K12 ⊗K21; ∆1 = J1 ⊗K22 −K12 ⊗ J2

∆2 = K11 ⊗ J2 − J1 ⊗K21

are bounded operators in the space H = H1 ⊗H2. Here the symbol ⊗ means a
tensor product of two spaces or two operators, respectively. Let in problem (2.1)
the left definiteness condition be fulfilled, i.e.

∆1 > 0; ∆2 > 0; (2.2)
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Let us consider the functional

f (ϕ) =
(∆0ϕ,ϕ)2

(∆1ϕ,ϕ) (∆2ϕ,ϕ)
(2.3)

Theorem 2.1. Under conditions (2.2)

(1) the functional f (ϕ) is bounded,
(2) there exists a sequence {ϕn} ⊂ H and ∃ϕ0 ∈ H such that

ϕn → ϕ0 ∈ H,
f (ϕn)→ f

(
ϕ0
)

= sup
ϕ∈H

f (ϕ)

(3) ϕ0 = ϕ0
1 ⊗ ϕ0

2 ∈ H is an eigenfunction of problem (2.1), corresponding to
the eigenvalue(

λ0
1, λ

0
2

)
=

((
∆1ϕ

0, ϕ0
)

(∆0ϕ0, ϕ0)
,

(
∆2ϕ

0, ϕ0
)

(∆0ϕ0, ϕ0)

)
Proof. It is easy to prove that∣∣∣∣(∆0ϕ,ϕ)

(∆1ϕ,ϕ)

∣∣∣∣ ≤ C;

∣∣∣∣(∆0ϕ,ϕ)

(∆2ϕ,ϕ)

∣∣∣∣ ≤ C
Indeed, under conditions (2.2) the following inequalities are fulfilled

Kt
r,r ≥ 0; Kt

r,3−r ≤ 0; r = 1; 2,

where Kt
1,r = K1,r ⊗ J2;Kt

2,r = J1 ⊗K21.

Using the permutability of the operators Kt
1,r; Kt

2,r, we get

|(∆0ϕ,ϕ)| =
∣∣((Kt

1,1K
t
2,2 −Kt

1,2K
t
2,1)ϕ,ϕ

)∣∣ ≤
≤
∣∣(Kt

1,1K
t
2,2ϕ,ϕ

)∣∣+
∣∣(Kt

1,2K
t
2,1ϕ,ϕ

)∣∣ =

=
∣∣∣(Kt

1,1(Kt
2,2)

1
2ϕ, (Kt

2,2)
1
2ϕ
)∣∣∣+

∣∣∣(−Kt
2,1(−Kt

1,2)
1
2 ϕ, (−Kt

1,2)
1
2 ϕ
)∣∣∣ ≤

≤
∥∥Kt

1,1

∥∥ (Kt
2,2ϕ,ϕ) +

∥∥Kt
2,1

∥∥ (−Kt
1,2ϕ,ϕ) ≤

≤ C1

[
(Kt

2,2ϕ,ϕ)− (Kt
1,2ϕ,ϕ)

]
= C1(∆1ϕ,ϕ)

|(∆0ϕ,ϕ)| ≤ C1 (∆1ϕ,ϕ), ∀ϕ ∈ H = H1 ⊗H2

In the same way we can prove |(∆0ϕ,ϕ) | ≤ C2 (∆2ϕ,ϕ), ∀ϕ ∈ H = H1 ⊗H2

Consequently the functional f (ϕ) is bounded. �

Let sup
ϕ∈H

f (ϕ) = α. Then there exist a sequence {ϕn} ∈ H such that

lim
n→∞

f (ϕn) = α (2.4)

Without loss of generality, we can assume |ϕn|H = 1. Therefore, from the
sequence {ϕn} we can extract a weakly convergent subsequence. Without loss of
generality, we assume that the sequence {ϕn} weakly converges to the element
ϕ0 ∈ H. Prove that f

(
ϕ0
)

= α. Let, vice versa, the inequality

f
(
ϕ0
)
< α (2.5)

be fulfilled.
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The operator ∆0 is a compact operator, therefore for the weakly convergent
sequence {ϕn} the relation

lim
n→∞

(∆0ϕ
n, ϕn) =

(
∆0ϕ

0, ϕ0
)

is fulfilled.
The operators ∆1 and ∆2 are not compact operators. But inspite of this fact,

we prove that under conditions (2.4), (2.5) the relations

(∆jϕ
n, ϕn)→

(
∆jϕ

0, ϕ0
)
;

j = 1, 2
(∆jϕ

n, ϕn)→
(
∆jϕ

0, ϕ0
)

j = 1, 2

are fulfilled.
∆1 and ∆2 are positive and bounded operators. Therefore, from the sequences

(∆jϕ
n, ϕn) , j = 1, 2 one can choose a convergent subsequence. Consequently,

without loss of generality, assume that these sequences converge to some numbers
dj , i.e.

(∆jϕ
n, ϕn)→ dj , j = 1, 2

Compare the numbers dj and
(
∆jϕ

0, ϕ0
)
, j = 1, 2.

Note that the inequalities

d1 >
(
∆1ϕ

0, ϕ0
)
, d2 >

(
∆2ϕ

0, ϕ0
)

may not be fulfilled simultaneously. As therewith

(∆0ϕ0,ϕ0)
2

(∆1ϕ0,ϕ0)(∆2ϕ0,ϕ0)
>

(∆0ϕ0,ϕ0)
2

d1,d2
=

lim
n→∞

(∆0ϕn,ϕn)2

lim
n,→∞

(∆1ϕn,ϕn) lim
n,→∞

,(∆2ϕn,ϕn) =

= lim
n→∞

(∆0ϕn,ϕn)2

(∆1ϕn,ϕn)(∆2ϕn,ϕn) = α

This contradicts equality (2.5), i.e. definition of the number α. In the similar
way, it is proved that the relations

d1 >
(
∆1ϕ

0, ϕ0
)
, d2 =

(
∆2ϕ

0, ϕ0
)

or
d1 =

(
∆1ϕ

0, ϕ0
)
, d2 >

(
∆2ϕ

0, ϕ0
)

may not be fulfilled simultaneously.
None of ineqalities

d1 <
(
∆1ϕ

0, ϕ0
)
or d2 <

(
∆2ϕ

0, ϕ0
)

not be true. As if the inequality

d2 <
(
∆2ϕ

0, ϕ0
)

(2.6)

is fulfilled, then there exists a natural number N such that for all n > N the
inequality

(∆2ϕ
n, ϕn) <

(
∆2ϕ

0, ϕ0
)

is fulfilled.
Using this inequality, we write(

∆2

(
ϕn − ϕ0

)
, ϕn − ϕ0

)
= (∆2ϕ

n, ϕn)− 2
(
∆2ϕ

n, ϕ0
)

+
(
∆2ϕ

0, ϕ0
)
<

< 2
(
∆2ϕ

0, ϕ0
)
− 2

(
∆2ϕ

n, ϕ0
)
→ 2

(
∆2ϕ

0, ϕ0
)
− 2

(
∆2ϕ

0, ϕ0
)

= 0

i.e. (
∆2

(
ϕn − ϕ0

)
, (ϕn − ϕ0

)
)→ 0
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The operator ∆2 is a positive self-adjoint operator and consequently there exists

the operator ∆
1/2
2 and this operator determines a new norm in the space H.

‖Ψ‖∆2
= (∆2Ψ,Ψ)1/2 ; ∀Ψ ∈ H

For this norm the triangle inequality is fulfilled:∣∣∣‖ϕn‖∆2
−
∥∥ϕ0

∥∥
∆2

∣∣∣ ≤ ∥∥ϕn − ϕ0
∥∥

∆2

Therefore∣∣∣(∆2ϕ
n, ϕn)1/2 −

(
∆2ϕ

0, ϕ0
)1/2

∣∣∣ ≤ (∆2

(
ϕn − ϕ0

)
, (ϕn − ϕ0

)
)→ 0

or (
∆2ϕ

n, ϕ0
)1/2 →

(
∆2ϕ

0, ϕ0
)1/2

lim
n→∞

(∆2ϕ
n, ϕn) =

(
∆2ϕ

0, ϕ0
)
⇒
(
∆2ϕ

0, ϕ0
)

= d2 (2.7)

This equality contradicts condition d2 >
(
∆2ϕ

0, ϕ0
)
.

In the same way we can prove that d1 >
(
∆1ϕ

0, ϕ0
)

is impossible
So, we get

d1 = lim
n→∞

(∆1ϕ
n, ϕn) =

(
∆1ϕ

0, ϕ0
)

d2 = lim
n→∞

(∆2ϕ
n, ϕn) =

(
∆2ϕ

0, ϕ0
)

From the relation

lim
n→∞

(∆0ϕ
n, ϕn)2

(∆1ϕn, ϕn) (∆2ϕn, ϕn)
= α

we write f
(
ϕ0
)

= α. This contradicts the proposition f
(
ϕ0
)
< α. So, the

equality

lim
n→∞

(∆0ϕ
n, ϕn)2

(∆1ϕn, ϕn) (∆2ϕn, ϕn)
=

(
∆0ϕ

0, ϕ0
)

(∆1ϕ0, ϕ0) (∆2ϕ0, ϕ0)

is valid.
Now prove that the elements ϕ0 is an eigenfunction of problem corresponding

to the eigenvalue

(λ1;λ2) =

((
∆1ϕ

0, ϕ0
)

(∆0ϕ0, ϕ0)
;

(
∆2ϕ

0, ϕ0
)

(∆0ϕ0, ϕ0)

)
(2.8)

Indeed, pair (2.8) may not belong to the set of regular points as for the above
considered sequence {ϕn} ⊂ H the relation((

∆1ϕ
0, ϕ0

))
(∆0ϕ0, ϕ0)

(∆0ϕ
n, ϕn)−

(
∆1ϕ

0, ϕ0
)
→ 0 i = 1, 2

is fulfilled, i.e. operators λ1∆0 −∆1 may not have bounded inverse.
It is known that the spectral set of problem (1.1) and of the problem{

λ1K
t
r1ϕ+ λ2K

t
r2ϕ = ϕ, ϕ ∈ H,

r = 1, 2

coincide, and they consist only of eigen elements (see[2]). Therefore, pair (2.8) be-
ing the element of the spectral set is an eigenvalues of this problem, consequently,
ϕ0 is an eigenfunction of problem (2.1). The theorem is proved.
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It is known that the points{
(λ1, λ2) /λ1 =

(∆1ϕ,ϕ)

(∆0ϕ,ϕ)
; λ2 =

(∆2ϕ,ϕ)

(∆0ϕ,ϕ)
; ∀ϕ ∈ H = H1 ⊗H2

}
set is called a numerical set. The value of the functional (2.3) for each ϕ ∈ H
is the product of coordinates of the point of numerical domain corresponding to
this ϕ. For each indicated c, the points of the numerical domain satisfying the
condition

f(ϕ) =
(∆1ϕ,ϕ)

(∆0ϕ,ϕ)
· (∆2ϕ,ϕ)

(∆0ϕ,ϕ)
= c = const

will be on the hyperbola λ1 · λ2 = c. Therefore functional (2.3) is said to be a
hyperbolic functional.

We can consider the above theorem as confirmation of the known (see [1],[3])
theorem on the largest eigenvalue and eigenfunction for two-parameter problem
(2.1).
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