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ON SOLVABILITY OF AN EXTERNAL PROBLEM WITH
IMPEDANCE BOUNDARY CONDITION FOR HELMHOLTZ
EQUATION BY INTEGRAL EQUATIONS METHOD

RAHIB J. HEYDAROV

Abstract. In the paper we study the solvability of an external problem
with an impedance boundary condition for the Helmholtz equation by
the method of weakly singular integral equations.

1. Introduction

It is known that in theory of acoustic waves, external boundary value prob-
lems for the Helmholtz equation is of great importance. Existence of the solutions
of Dirichlet and Neumann external boundary value problems for the Helmholtz
equation by the method of weakly singular integral equations was considered in
the papers [1,3-7]. In the monograph [2] the solvability of an external problem
with an impedance boundary condition for the Helmholtz equation by the method
of singular integral equations is given. It should be noted that the solution of a
singular integral equation is much complicated than the solution of a weakly sin-
gular integral equation (since a singular integral operator is not compact, while a
weakly singular integral operator is). Therefore, it is suitable to reduce an exter-
nal problem with an impedance boundary condition for the Helmholtz equation
to a weakly singular integral equation, and this paper is devoted to this matter.

Let D C R? be a bounded domain with boundary S € A, where A, is a
class of Lyapunov surfaces with an index 0 < a < 1. Recall that an external
problem with an impedance boundary condition for the Helmholtz equation is to
find the function u twice continuously-differentiable on R3\ D and continuous on
S, prossessing a normal derivative in the sense of uniform convergence and satis-
fying the Helmholtz equation Au + k?u = 0 in R3\D, the Sommerfeld radiation
condition

(x d (m)) —iku(x) =o0 (1) |z| — oo

af 7 ~ O\l |

uniformly along all directions z/ |z|, and the boundary condition
ou (x)
on (z)

+f@)u(@)=g(x) on S, (L1)
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where k is a wave number, moreover Imk > 0, 7i (x) is a unit external normal at
the point z € S, while f and g are the given continuous functions on S, and

Im (kf) >0 on S. (1.2)

It should be pointed that, in particular, for f = 0 we get Neumann’s external
boundary value problem for the Helmholtz equation, while for f = const # 0 a
mixed boundary value problem for the Helmholtz equation.

2. Main result

Let v (x,¢) be a simple layer acoustic potential, while w (z, ¢) a double layer
acoustic potential, i.e.

v@p) = [Bule) ¢ 0)ds, wlay) =
S
where &y, (2,y) = ¢/ (47 |z — y|), 2,y € RS, z # y.
We will look for the solution of an external problem with an impedance bound-
ary condition for the Helmholtz equation in the form

b7 (v) @ (y) dSy,

u(z) =v(z,p)+inw(z,1p),x € Rg\ﬁ,

where 7 is a real number, and if Imk > 0, then n = 0, if Imk = 0, then n # 0,
and vy (z,¢) is a simple layer potential for the Laplace equation, i.e.

Vo (.T,(,O) = V(x790)’k:0 = /(I)O (:c,y) go(y) dSy
S

It is known that (see [2]) the function u (z) satisfies the Helmholtz equation
and the Sommerfeld radiation condition at infinity, the functions &g (z,y) and
vy (x,y) satisfy the Laplace equation. Applying Green’s second formula, we get

[0 S as, — [o0 (o) 222 as, o erA\D,
S

where the normal derivative on S is understood in the sense

S

Mo (4:9) _ 0 W =Pily).9) g
ori(y)  ho0 o1 (y) ’

Then, taking into account the limit value of the normal derivative of a simple
layer potential, we have:

wiaw) = [LEEYZ20(@:0)

o (ya 90) dSy+

on (y)
aq)() (yat)
S S
1 .
+s / Do (2,y) ¢ (y) dS,, = € RA\D,

S
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and it means

w (@) = v (2, 0) + i {/8(% (z,y) — D¢ (z,y)) (/@0 (y,1) () dSt) dS,+
S S

on (y)

8(I)O (yat)
—i—{@o (x,y) (S ng (t) dSt) dSy+

1 _
+3 / Do (,) ¢ () dsy] o € RA\D. (2.1)
S

It is easy to calculate

0 (Pr (2,y) — Do (z,y)) (U7 (y) (1 — ik | — y|) eFl==v! — 1)

d1i (y) 47|z — y]?’ ’
1 (y) o1 (y) Az |z —yl>
where
K (z,y) = (g, 7 (z)) X
X (&, (9)) [ (3 - 3k |o — gl — K | — y[?) o0l — 3] +
+ (7 ()7 (@) [(1 = ik | = yl) e = 1] o = yP?.
Since
‘(1 — ik |z — y]) eFlPl 1‘ < Mlz—y*, Vz,yes,
e (s (.3) — B0 (2.0))
0 (pk z,y —(I)O z,y @
— S M T — 9
T ooy
9 (3(<I>k (2, y) — Po (fv,y))> M
o (x) o (y) ~ o=yl
Here and in what follows, M denotes positive constants different at different
inequalities.
Therefore,
o t)p(t)d d =
o7 (2) (/ 7 (v) 0(y,t) ¢ (t)dS; | dSy
S S

[0 (0@ - B () )
_ g — ( e > ( g o (y,1) @ (1) dSt) ds,, z € 5.

Furthermore, taking into account in equality (2.1) the limit value of the normal
derivative of a simple layer potential, we get
ou™ (z 2 +in 0Py, (z,y
e) _ (z) 9% (o,3)
on (z) 4 on (z)
S

® (Z/) dsy"‘
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. 0 0 (P, (z,y) — Pg (7,y))
+in [Zaﬁ (z) ( on (y) > ({‘I)o (y,t) p (t) dSt> dS,+

8%(%.@)( 0% (y, 1) ) }
d D o () dSy | dS, | - (2.2)
: on (x) . oni (y)

Finally, considering the limit value of double layer potential, we find

u’ (z) = lim u(t)—/‘I’k (@,y) ¢ (y) dSy+

t—x

teR3\D S
0 T
i { ‘W ( / Do (1, ) ¢ (1) dst) as, +
S S
+;/@0 (z,y) ¢ () dSy] , TES. (2.3)
S

As a result, taking into account (2.2) and (2.3) in boundary condition (1.1),
we get a boundary integral equation (BIE)

_2+1n 0Py, (z,y)
i °@ o7 (x)
S

[0 (0(®k(xy) — B0 (x,y))
H”[ a7 (x) ( o7 (y) ) ( [ Do (y,1) ¢ (1) dst) S, +

. [0y (z,y) 0 (y,1)
+“7/ 97 (z) ({ 7 90<t>d5t) dSy + f (x) {/ i (2,7) @ (y) dSy+

S

¢ (y) dSy+

+in ‘%’;(x’y) </<D0 (y, 1) ¢ (1) dst) dsy + 27/% (z,y) ¢ () dSy] =
S S

S
=g (.’B) , T€eS,
that may be rewritten in the operator form
p+Ap =1, (2.4)
where
=—42+in) "y,
A=—-22+in)" ' 2K + 2in (T + G) + f (2L + 2inF + inLo)),

(Lg) (z) = / Do (2, ) ¢ (y) dSy, (Lop) (z) = / Do (z,1) ¢ (4) dS,,
S S

(Ko) (z) = Ws& (y) dSy,
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(Fo) (@) =[50 | [0 npwas, | as,
S
aq)O (.%', y) aq)o (y7 t)
(Gp) (z) = = 2o () dS, | dS,,
| o\ onw)
) (@) ‘gamx)( o) )X

y /@M%ﬂ¢ﬁm& ds,, =€ 5.
S

Theorem 2.1. Integral equation (2.4) for an external problem with an impedance
boundary condition has a unique solution for all wave numbers with Imk > 0 and
for any values of impedances f satisfying condition (1.2).

Proof. At first consider the case Imk > 0. Then n = 0, it means that equation
(2.4) takes the form
¢ —Kp— fLp=—2g. (2.5)

In this case, the wave member k is not an eigen value of the Dirichlet internal
problem, and therefore equation (2.5) has a unique solution (see [2]).

Now consider the case Imk = 0 (therewith n # 0 and the number k? is real).
Since the operator A is compact, then by virtue of Riesz-Fredholm theory it
suffices to show that the homogeneous equation

e+Ap=0 (2.6)

has only a trivial solution ¢ = 0. Let ¢ € C (S) be the solution of equation (2.6).
Since the function w is the solution of the homogeneous external problem with an
impedance boundary condition, then u = 0 in R*\ D (see [2]). By the theorem
for a step of simple and double layer potentials and by the theorem for a jump
of the normal derivative of simple and double layer potentials (see [2]), we get

L out (z)  Ou (x)
W) - @) = i (o) G - ) wes

and this means

u” (z) = —inv (z, ¢) it (x) =¢(z), z€S5, (2.7)
where
N ou™ (x) .. Ou(x— hii(x))
o) = Jimu (1), Hae s = im0y
teD h>0
Hence
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Applying the Green first formula and considering (2.7), we find:

in/w (@) o (z, ) dSe = /u‘ (z) mdsx =
S S
= / <|gradu (2))? — K |u (:C)\2> dz, (2.8)
D
—in/gp () vy (x,)dS, = /u_ (z) a;ﬁ(g) dsS, =
S S

Hence

2177/ (90 (z) (/% (z,9) @ (y) dsy) -
S

S

—¢(z) (/% (@, 9) ¢ (y) dSy)) dS; =0,
S
this means

[ [eowne@rias,ds. = [ [ow) @) ds,ds. -
S s S S

- ( / / By (2,9) ¢ () B (1) dsydsx) .
S S

The latter means that the expression

[ [#o@m e @) ds,as.
S S
is valid. Having taken the imaginary part of equation (2.8), we get

//@0 (z,y) ¢ ()P (y) dSydS; = 0.
S S

Hence we have ¢ = 0, and this completes the proof of the theorem. [l
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