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A VARIATION OF THE LP UNCERTAINTY PRINCIPLES FOR
THE FOURIER TRANSFORM

FETHI SOLTANI AND JABER GHAZWANI

Abstract. We obtain several analogs of Heisenberg-Pauli-Weyl-type in-
equality, Donoho-Stark-type inequality and Matolcsi-Sziics-type inequal-
ity for LP-functions.

1. Introduction

In this paper, we consider R? with the Euclidean inner product (.,.) and norm
ly| :== \/{y,y). We denote by p the measure on R? given by du(y) := (2r)~%2dy;
and by LP(u), 1 < p < oo, the space of measurable functions f on R%, such that

1/
Il = ([ 1f@Panm) " <00, 1p <

[ fll ooy := ess sup | f(y)| < oo.
y€R4

For f € L'(u) the Fourier transform is defined by
F(Pa) = [ e man). @R

Many uncertainty principles have already been proved for the Fourier transform:
Heisenberg-Pauli-Weyl inequality [2, 8], Cowling-Price’s inequality [2], local un-
certainty inequality [4, 13, 14], Donoho-Stark’s inequality [3] and Matolcsi-Sziics
inequality [1, 10]. Laeng and Morpurgo [9], and Morpurgo [11] obtained Heisen-
berg inequality involving a combination of L'-norms and L?-norms. Folland and
Sitaram [5], next Nemri and Soltani [12, 16, 17] proved general forms of the
Heisenberg-Pauli-Weyl inequality and the Donoho-Stark’s inequality.

In this paper, we shall use Ghobber’s techniques [6], Nash-type inequalities
and Clarkson-type inequalities in the Fourier analysis to establish uncertainty
inequalities of Heisenberg-type on L' N LP(u) for 1 < p < 2, on L% N LP(p)
for 1 < p < 2, and on LP* N LP?(u) for 1 < p; < p2 < 2. Next, building on
the techniques of Donoho and Stark [3] and Soltani [15], we show uncertainty
principles and bandlimited principles of concentration-type on L' N LP(u) for
1<p<2 and on LP* N LP?2(pu) for 1 < p; < p2 < 2. Finally, based on the ideas
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of Ghobber and Jaming [7] we establish uncertainty principles of Matolcsi-Sziics-
type on L' N LP(u) for 1 < p <2, and on LP' N LP?(p) for 1 < p; < pa < 2.

This paper is organized as follows. In Section 2 we give uncertainty inequal-
ity of Heisenberg-type on L' N LP(u) for 1 < p < 2. In Section 3 we present
uncertainty inequality of Heisenberg-type on L? N LP(u) for 1 < p < 2. In Sec-
tion 4 we establish uncertainty inequality of Heisenberg-type on LP* N LP2 (1) for
1 < p1 < p2 < 2. In Section 5 we show uncertainty inequality of Donoho-Stark-
type on L' N LP(u) for 1 < p <2, and on LP* N LP2(p) for 1 < p; < pa < 2. In
Section 6 we state an LPL N LP2(u) bandlimited inequality of concentration-type.
The last section is devoted to follow uncertainty principles of Matolcsi-Sziics-type
on LY N LP(u) for 1 < p <2, and on LPL N LP2(u) for 1 < p; < py < 2.

2. Heisenberg principle on L” N L'(p)

The Fourier transform of a function f in L!(yu), is defined by

F(Pa) = [ e @), @R

Some of the properties of Fourier transform F are collected bellow (see [18, 19]).
(a) L' — L*-boundedness. For all f € L*(u), F(f) € L*(u) and

IF )z < N2 (- (2.1)
(b) Inversion theorem. Let f € L'(u), such that F(f) € L'(u1). Then
f(x) = F(F(f)(~z), ae xR (2.2)

(c) Plancherel theorem. The Fourier transform F extends uniquely to an iso-
metric isomorphism of L?(y) onto itself. In particular,

11 ez = IF ()l 22(u)- (2.3)

Using relations (2.1) and (2.3) with Marcinkiewicz’s interpolation theorem [18,
19], we deduce that for every 1 < p < 2, and for every f € LP(u, the function
F(f) belongs to the space L4(u), g = p/(p — 1), and

IF (W zage) < Nfllzr - (2.4)

Theorem 2.1 (Nash-type inequality). Let s > 0. If 1 <p <2, q=p/(p—1)
and f € L' N LP(u), then

IF (N aquy < Kils, p)HfHd*‘“ Hyl*F(f )H‘““

_d a5 /q
qs d+gs i d+gs
)™+ (@)
[2%r( +1)] e
Proof. Let f € L'NLP(u), 1 <p<2,qg=p/(p—1)and r > 0. Then
IF sy = 8, F Oy + 10 = XE)F Dy (25)

where

Kl(svp) =
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where B, = {x € R?: |z| < r} and xp, is the characteristic function of the set
B,.
Firstly,

(1= X3 F DNy < 7 o F ) g 26)
By (2.1), we get
8, gy < HBINFDN ey < BB

On other hand we have

u(B) = [ a)duo) = el (2.7)
Rd
where
od) = — (2.8)
25T(4 4 1)
Therefore,
I8 F DNy < @r U1 (2.9

Combining the relations (2.5), (2.6) and (2 9), we obtain
IF gy < @112 + T N F -

sl |y| ‘]'-(f)HLq(W

de(@)If 71,
Remark 2.2. In the particular case when p = 2, the inequality of Theorem 2.1
is given by

1
d+qs
By choosing r = < ) ! , we get the desired inequality. O

11122y < K (s, )Ilflld“é Iyl F(f )HZ?;)

Theorem 2.3 (Clarkson-type inequality). Let s > 0. If 1 <p <2, qg=p/(p—1)
and f € L' N LP(u), then

1Al ) < Da(s, p)HfHd”S)IH x| fll‘”‘”

5 d dqs
gs \ d+as d +gs
D1 (S,p) = P 7 5 .
[251“(% + 1)} e
Proof. Let f € L'NLP(u), 1 <p<2,qg=p/(p—1)and r > 0. Then

where

£l = Ixs fller + 10— xB,) fllLr - (2.10)
Firstly,
(X =xB)fllerg <2zl fllo - (2.11)
By (2.7) and Holder’s inequality, we get
X8, fllz < (B U F e < (@D £l Lo (2.12)

where ¢(d) is the constant given by (2.8).
Combining the relations (2.10), (2.11) and (2.12), we obtain

12y < (D)D) Y gy + 1l Lo )
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P
. . as|l lzI* fll g1, dtas . . .

By setting r = <d(c( DV e , we get the desired inequality. O

By combining the Nash-type inequality (Theorem 2.1) and the Clarkson-type
inequality (Theorem 2.3) we obtain the following uncertainty inequality of Heisenberg-
type.
Theorem 2.4. Let a,b>0. If1 <p<2,qg=p/(p—1) and f € L' N LP(p),
then

(i) ||f||ZTfZ HfHLd“allf( NiLag < Cilll2|® f\ld”“ IylPF(f )HZ?Z),
where Cy = D1(a,p)K1(b,p).

d+gb

() WL I DI < Colllale ST [y PFIE .

d+qb
where Cy = Dy(a,p)(K;(b,p)) a .
Remark 2.5. The uncertainty principles given by Theorem 2.4, generalize the
results obtained by Laeng-Morpurgo [9] and Morpurgo [11]. In the particular
case when p = 2, we obtain the following Heisenberg’s inequalities for the Fourier

transform F.
(i) Let a,b > 0 and f € L' N L?(u). From Theorem 2.4 (i) we have

d+2 d+2b d+2b b d+2
IANEEG AN Gy < Sull el FITTn Iyl FCONEE

(d+2a)(d+2b)
d

where S} = <D1(a, 2) K (b, 2)> .IMfa=b=1landd=1,

9
Iz gy 1122 <ill|~’v\fHL1 w Y1 F (D 22y (2.13)

Let A be all f € L' N L?(p) such that

2| fll Y1 F (P L2 ()

A — A =
= w22 = T iew

We obtain a characterization of the region of Heisenberg’s inequality (see Figure
1),

{@un. 2001 €4} & {@)y > 0.0y > ).
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FIGURE 1. Region of the concentrated Heisenberg’s inequality (2.13).

(ii) Let a,b > 0 and f € L' N L?(x). From Theorem 2.4 (ii) we have

IFIEEEST2 < Sall Ll FIIZa o NP F CONTER

2b(d+2a) (d+2a)(d+2b)

where So = (D1(a,2)) (K1(b,2)) @ . Ifa=b=1andd=1,
V3
1122 < WH [l F 1% o 1Y F P Z 20 (2.14)
Let A be all f € L' N L?(p) such that
T L4 PPN [0 P20
£l 22 £l 22

We obtain a characterization of the region of Heisenberg’s inequality (see Figure
2),

{1,820, f €A} < {(@y),2,y > 0,27 >
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FIGURE 2. Region of the concentrated Heisenberg’s inequality (2.14).

(iii) Let a,b > 0 and f € L' N L?(u). From Remark 2.2 and Theorem 2.3 we
have

LFIE2520 < Syl el P28 Tyl FCF) 2 -

(d+2a)(d+2b) 2a(d+2b)

where S3 = (D1(a,2)) d (K1(b,2))" @ .Ifa=b=1landd=1,

12

3
100 < gl K s goll WF ) g, (2.15)

Let A be all f € L' N L?(p) such that

N2l Nz )

VI 2
Ai(f) = _ NP )y
)= il

A =
- Al ="

We obtain a characterization of the region of Heisenberg’s inequality (see Figure
3),

11 T 3
{ain, 2000, 7 € A} < {@y) ey > 0,72 > (ﬂ)gm}
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FIGURE 3. Region of the concentrated Heisenberg’s inequality (2.15).

3. Heisenberg principle on L N L?(u)

Theorem 3.1 (Nash-type inequality). Let s > 0. If 1 <p<2,q=p/(p—

and f € L?> N LP(u), then

a( 2Qq)j-z a( d(qz)i)z
120 < K2(s D) LF Loy HylPFO L2 "
where
__d(g=2) ___2g9s 1/2
2qs d(q—2)+2gs d(q—2) \ d(a—2)+2gs
(i) ()
KQ(Sap) = (g—2)s

|:2gr(% +1)i|m
Proof. Let f € L>NLP(u),1 <p<2,q=p/(p—1)and r > 0. Then

IFNZ20 = IxeF D720 + 1= x8)F ()72
Firstly,
10 = xB)F D200 < 2 IyPF () 200)-
By (2.4), (2.7) and Hoélder’s inequality, we get

X8, F(220 < (0BT NF DB < @r)T 11200

where ¢(d) is the constant given by (2.8). Combining the relations (3.1),

and (3.3), we obtain

=2 —2s s
1112 < (e@r®) s 1 10+ I Y PF 20

1)

(3.3)
(3.2)
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2q5H ‘y|5]:(f)HL2< )

da-2)(c@) T 1f12p,,

d(q—2)+2gs
By choosing r = , we get the desired inequality.
)

Theorem 3.2 (Clarkson-type inequality). Let s > 0. If 1 < p < 2 and f €
L2 N LP(uy), then

__2ps __d(2-p)

11l Leuy < Da(s, p)||f||d(2 P)+2Ps||| E fllﬁf(f)”ps

where
(

T T /P

[( 2ps ) d(2—p)+2ps 4 (d(2_p)> d(27p)+2psi|

d(2—p) 2ps

D2(87p) = (2—p)s :
[2%F(% + 1)] d@=r)+2pe

Proof. Let f € L2NLP(u),1 <p<2,q=p/(p—1)and r > 0. Then

110 = 1B, 1oy + 1= XB) F 1D (3:4)
Firstly,
1= XB) F oy < 772l £l - (3.5)
y (2.7) and Holder’s inequality, we get
2— 2—
B, 15y < (W(B) 2 (1o < (e(@rh) 20 f 1Days (36)

where ¢(d) is the constant given by (2.8). Combining the relations (3.4), (3.5)
and (3.6), we obtain

2—p —_
10 0 < (@rD) 2 F1 s, + 7 Pl 2 £

2p5H ‘mlsf“ip(u)
2—
A-p)(e(d) 7 1115,

By setting r = <

O

By combining the Nash-type inequality (Theorem 3.1) and the Clarkson-type
inequality (Theorem 3.2) we obtain the following uncertainty inequality of Heisenberg-

type.
Theorem 3.3. Let a,b>0. If1<p<2,qg=p/(p—1) and f € L> N LP(u),

d(2—p)+2ps
, we get the desired inequality.

then
d(d(%)i)Q b d(2d(2)f% % b d(d<q2)i)2 b
O A g WAl g2y < Malll2l* fll oy HyPF O 2y
where My = Dsy(a,p)Ka(b,p).
H T ooy | 1. 1b G
() [y ™ < Mafl =" fll oy HyPF O g2y
d(g—2)+2gb
where My = Dg(a,p)(Kg(b,p)) 25
@ d(qz)i)z T s om o b e
a a
i) | fll ™ ™ < Ml Fll oty 1yPF O
d(2—p)+2pa

where M3 = (DZ(avp)) Zpa KZ(b7p)
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4. Heisenberg principle on LP* N LP2(p)

Theorem 4.1. (Nash-type inequality). Let s > 0. If 1 < p1 < p2 < 2,
a1 =p1/(p1 —1), g2 = p2/(p2 — 1) and f € LP* N LP*(p), then

914928 d(q1—q2)

H.F(f)”[/qz( < Kg(s p17p2)"f”;;qll(“Q2)+Q1QQeH ‘y"@f( )Hz(qq; (12).t,-ql(12g7

where
d(q1—92) W95y,
a1d9s d(q17q2)+q1qzs+ d(q1—qp) | Y1 —42)Fa142s
K . d(q1—q2) 9149238
3(5,]71,])2) - (a1—g2)s :
[2%1“(%-#1)} d(a1—q2)+a1425

Proof. Let f € LPPNLP?(p), 1 <py <p2 <2,q1 =p1/(p1—1), @2 = p2/(p2—1)
and r > 0. Then

IF N Ty = 11X F N Tz ) + 11 = xB,)F () Tz - (4.1)

Firstly,
10 = x8)F D Eagy < F D (4.2
By (2.4), (2.7) and Holder’s inequahty, we get

I8, F DBy < (0B T IF DBy < (eldyr®) 5 [ £%, e (43)

where ¢(d) is the constant given by (2.8). Combining the relations (4.1), (4.2)
and (4.3), we obtain

[ < (eld)r®)

%o TN F ) B

a1
s d(q1—q2)+q14925s
gl 7S )Hmw)

d(q1—q2)(c(d)) ql ”f‘ LP1 (1)
Corollary 4.2. Let s >0. If 1<p<2,q=p/(p—1) and f € L*> N LP(u), then

gs _d(g—2)

1122y < Ks(s,p, )Ilfll%g)“qu I F I

Theorem 4.3 (Clarkson-type inequality). Let s > 0. If 1 < p; < p2 < 2 and
feLPrnLP2(u), then

, we get the result. [

By choosing r =

% d(d(z’zi)fl)
1 leeruy < D3(s, prp2) LF | oy 2 Fll ey
where
d(p2—p1) P1p2s 1/p1
[( (p1p23 )) d(p2—p1)+P1P2s (d(p2—p1)> d(p2—p1)+P1P25
d(pg—p P1pP2S
Ds(s,p1,p2) = = Gy
{2%“%_‘_1)} d(pa—p1)+P1P2s
Proof. Let f € LP* N LP2(u), 1 < p1 < p2 <2 and r > 0. Then
L2y = 10 £ o+ 1L = X3 IS - (4.4)
Firstly,

I = xB )T ) < 77782l £ 0 (4.5)
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y (2.7) and Holder’s inequality, we get

X8, 701 () < (W(B ) Tra(uy < (c(d)r ORCH ||f|Lp2(M (4.6)

where ¢(d) is the constant given by (2.8). Combining the relations (4.4), (4.5)
and (4.6). We obtain

1A gy < (e(d)r %)%

TP e I .

d(;vzfm)ﬂupzs
pipas] [z f||m w

P2—PL
d(p2—p1)(c(d)) s HfHLpz ()

By combining the Nash-type inequality (Theorem 4.1) and the Clarkson-type
inequality (Theorem 4.3) we obtain the following uncertainty inequality of Heisenberg-
type.

Theorem 4.4. Leta,b>0. If1 <p1 <p2 <2, q1 =p1/(p1—1), @2 = p2/(p2—1)
and f € LP* N LP2(u), then

By setting r = , we get the result. [

= d(q1)q2) . - plp)za
+ +
) ety ™™ HfHL (o N F () o2 ()

d(pa—p1) d(q1—aq2)

< Nl S, T I F () 15,
where N1 = D3(a,p1,p2) K3(b, p1,p2).
o Plpail d(q1— tu)ttnqzb = d(m)fl) d(q1— qbz>
(ii) HfHL P | F ()| e g < Nal 2l fll o 3 Ny P F () ey

d(q1—4q2)+4q192b

where Ny = D3(a7p1,p2)(K3(b,p1,p2)) a1a2b

Corollary 4.5. Let a,b> 0. If 1 <p<2,q=p/(p—1) and f € L?> N LP(p),
then

d( d(%)i)Q b d(2d(2)<f; d(2d(2)f)2 b d( d(qQ)i)Q b
) I 1T < N ol 5 |yl () 5
where N1 = D3(a,p,2)K3(b, p,2).
e+ 455 e e ) 5
(1) If1l ;2 < Nof 2| fll» HyPF N 2y »
d(g— 2)+2qb
where No = Ds(a,p,2)(K3(b,p,2)) 2
d(j (g)iéqﬁd(gpap) <N G F(f oS é)—i)qu
(iti) [If1 2 sl 2l fll oy NP F O

d(2—p)+2pa

where N3 = (Ds(a,p,2)) 2« K3(b,p,2).

5. Donoho-Stark principle on LP' N LP2 ()

Let T be a measurable subset of R?. We say that a function f € LP(u),
1 < p <2, is e-concentrated to T in LP(u)-norm, if

1f = x1fllzewy < el fllieeus

where x7 is the characteristic function of the set T.
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Let E be a measurable subset of R?, and f € LP(u), 1 < p < 2. We say that
F(f) is eg-concentrated to E in L4(u)-norm, ¢ = p/(p — 1), if

1F.(f) = xeF (e < el F()lLaw-

In following we state an L' N LP(u) uncertainty principle of concentration-
type.
Theorem 5.1 (Donoho-Stark-type inequality). Let T' and E be a measurable
subsets of R and f € L' N LP(u), 1 < p < 2. If f is ep-concentrated to T in
LY(p)-norm and F(f) is eg-concentrated to E in LI(u)-norm, ¢ = p/(p — 1),

then
(u(T) Y (u(E))V4
IF Dl < S lung

Proof. Assume that p(7T) < oo and u(E) < oo. Let f € LN LP(u), 1 <p < 2.
Since F(f) is eg-concentrated to F in L(u)-norm, ¢ = p/(p — 1), then

IFD e < eslF g + IxeF ()l
< el F(H)llzaqe + ENYUF ) oo )

A

Thus by (2.1),

(u(E)Y
1—€E

IF ) paguy < [RAIVAYPRE (5.1)

On the other hand, since f is ep-concentrated to T in L!(u)-norm,

1Al < erllfllorg + Ixrfllo

< erllflzag + @)Y Fll Lo g-
Thus
7 T 1/q
12 < S g, 5:2)
Combining (5.1) and (5.2), we obtain the result of this theorem. O

The uncertainty principle given by Theorem 5.1, generalizes the result obtained
by Donoho-Stark [3]. In the particular case when p = 2, we obtain the following
corollary.

Corollary 5.2. Let T and E be a measurable subsets of R? and f € L' N L?(p).
If f is ep-concentrated to T in L (p)-norm and F(f) is e g-concentrated to E in
L?(u)-norm, then

(1 —er)(1 —ep) < (D)) (u(E))"/2.

Next, we state an LP! N LP2(u) uncertainty principle of concentration-type.
Theorem 5.3 (Donoho-Stark-type inequality). Let T' and E be a measurable
subsets of R and f € LP* N LP2(u), 1 < p1 < po < 2. If f is ep-concentrated
to T in LP1(p)-norm and F(f) is eg-concentrated to E in L% (u)-norm, qa =
pg/(pg — 1), then

P2—P] 91 —92

(u(T)) P52 (u(E)) s’

[F(F)pez ) < 01 —cs) | fllzr2(ny, @1 =p1/(p1 —1).
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Proof. Assume that pu(7) < oo and pu(F) < oo. Let f € LPrNLP2(u), 1 < pp <
p2 < 2. Since F(f) is eg-concentrated to E in L% (u)-norm, then by Holder’s
inequality we obtain

IF(D) g < el FO) g + IxeF ) le
el F(F)lza2 ) + ((E)) 522 [ F(F) s -

A

IN

Thus by (2.4),

B
IF Ol < L g, 5:3)

On the other hand, since f is ep-concentrated to 7' in LP'(u)-norm, then by
Holder’s inequality we deduce that

Ifllze gy < erllfllze gy + Ixr flle o
p2—P1

< erllfllzer gy + (W(T)) P22 (| FllLea -

Thus
(u(T)) 2
o
£l (u) < ﬁ“fﬂm(u)- (5.4)
Combining (5.3) and (5.4), we obtain the result of this theorem. O

Corollary 5.4. Let T and E be a measurable subsets of R and f € L? N
LP(p), 1 < p < 2. If f is ep-concentrated to T in LP(u)-norm and F(f) is
ep-concentrated to E in L?(p)-norm, then

2—p q—2

(1—er)(1—ep) < (W) > (WE)) >, q=p/lp—1).

6. Bandlimited principle on L' N LP2(u)

Let E be a measurable subset of R?, and BP(E), 1 < p < 2, be the set of
functions g € LP(u) such that xgF(g9) = F(g).

We say that f is e-bandlimited to E in LP(u)-norm if there is a g € BP(FE)
with [|f = gllre(u) < ellfllLr()-

In the following, we state an LP* N LP?(u) bandlimited uncertainty principle of
concentration-type.
Theorem 6.1. Let T and E be a measurable subsets of R? and f € LP* N LP2(p),
1 <py <py <2 If fisep-concentrated to T in LP*(u)-norm and €g-bandlimited
to E in LP2(u)-norm, then

pP2—P1

1y < P2 (0 ) ) P B + 2] e

Proof. Assume that u(7T) < oo and p(E) < co. Let f € LPr N LP2(u), 1 <
p1 < po < 2. Since f is ep-concentrated to T in LP!(u)-norm, then by Holder’s
inequality we deduce that

[fllerv ) < erllflloe ) + IXTfllze )
pP2—P1

er|| fllzer uy + ((T)) 2172 [Ix1 o2 ()-

IN
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Thus,
1 P2—P1

(u(T)) 122 [[xT fll Lr2 ()- (6.1)

Since f is ep-bandlimited in LP2(u)-norm, by definition there is a g in BP2(F)
with [|f — gl|r2 () < el fllLr2()- For this g, we have

1 llze ) < 5 -

IXTfllre(y < IxT9llLee ) + X (f = 9l Le2 ()
< xrgllzre u) + €6l fllLra (u)-
But for g € BP(E), from (2.2), g(z) = F Y(xgF(9))(r), and by (2.4) and
Holder’s inequality, we deduce that
9@ < (WE)P | F(9)l Loy < (WE)P2l|gllLrays g2 = p2/(p2 = 1).

Hence,

Ixrglzrago = ( /T o))" < ()P (E) P gl o

Then by (6.1) and the fact that |[g|| zra2 () < (1 + )| f]lLr2(n), We get

e fllirago < |+ R) @D ((ENY + ep] 1102 o

Corollary 6.2. Let T and E be a measurable subsets of R and f € LP(u),
1 <p<2. If fisep-concentrated to T' and e g-bandlimited to E in LP(u)-norm,

then
1 — &1 —E€EF

T (WD) (u(E)) P,

7. Matolcsi-Sziics principle on LP' N LP2(u)

In this section we establish uncertainty principles of Matolcsi-Sziics-type.
Theorem 7.1 (Matolcsi-Sziics-type inequality). Let f € L' N LP(u), 1 < p < 2.
If Ay = {x € RY: f(x) # 0} and Argpy =1z € Re: F(f)(z) # 0}, then

IF Aoy < AN WAz ) F ey, a=p/(p=1).
Proof. Let f € L' NLP(p), 1 <p <2and ¢=p/(p—1). We put E = Arp),
then by (2.1) and Hoélder’s inequality we obtain

IF Pl zacuy = IXEFPllpaey < (@ENYUNFF) Lo )
< (uENYY Fll

< (uENY AN oy,
which gives the desired result. O

The uncertainty principle given by Theorem 7.1 generalizes the result obtained
by Matolcsi-Sziics [10] and Benedicks [1]. In the particular case when p = 2, we
obtain the following corollary.

Corollary 7.2. Let f € L' N L*(u). If Ay = {x € R? : f(z) # 0} and
Arp ={z € R": F(f)(z) # 0}, then

u(Ap)u(Ar)) 2 1.
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Theorem 7.3 (Matolcsi-Sziics-type inequality). Let f € LPLrNLP2(p), 1 < pp <
pe<2. If Ay ={x e R%: f(z) #0} and Argp =1z € Re: F(f)(z) # 0}, then

p2—P1 41 —92

IF(Ppez gy < (u(Ay)) 7172 (u(Az(g)) @92 [| fllze
where ¢ = p1/(p1 — 1) and g2 = p2/(p2 — 1).
Proof. Let f € LM NLP2(p), 1 < p1 < p2 <2, ¢ = p1/(p1 — 1) and ¢ =
p2/(p2 —1). We put E = Ar(y), then by (2.4) and Hélder’s inequality we obtain

(u(E)) 5o [|F(F) s
< (UE)) 5 || f] o

91—92 p2—P1

(W(E)) me2 (p(Ay)) 7172 || fll L2 ()

IN

IF ez uy = IXxBF (F)llLo )

A

IA

g
Corollary 7.4. Let f € L>NLP(u), 1 <p < 2. If Ay = {x € R?: f(x) # 0} and
Arp =1{z € RY: F(f)(2) # 0}, then

2-p a=2
(1(Ag)) 2 (W(AFp)) 2 21, q=p/(p—1).
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