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A NEW CONSTRUCTIVE METHOD FOR SOLVING OF

BISINGULAR INTEGRAL EQUATIONS WITH CAUCHY

KERNEL

CHINARA A. GADJIEVA

Abstract. In the present paper, the bisingular integral operator with
Cauchy kernel S is approximated by a sequence of operators of the spe-
cial form, it is proved that, the approximating operators Sn strongly
converges to the operator S, for a trigonometric polynomial of degree
not higher than n, the operators Sn and S coincide, and is given a new
method for the approximate solution of bisingular integral equations of
the first kind with Cauchy kernel.

1. Introduction

The constructive methods of solution of the bisingular integral equations the
theory of which very well described in the works [3, 5, 6, 13, 17-19, 24, 26] have
found wide application in aerodynamics, in theory of elasticity, electrodynamics
and in other applied fields (see [3, 13, 18-21]), and many works (see [4, 7-12, 16-18,
22-25, 27]) were devoted to their construction. In the work [1] R.A. Aliev worked
out a new constructive method for solution of the singular integral equations
with Cauchy kernel. In this work, singular integral operator is approximated
with operators preserving main properties of the singular integral operator, and
that enables to obtain more exact results. In the work [2] this method was
worked out and is justified for singular integral equations with Hilbert kernel. In
the present paper the constructive method worked out in the work [1] is applied
to the bisingular integral equations with Cauchy kernel.

Let L2 = L2(Γ2) be the space of quadratically-summable functions on the set
Γ2, where Γ = {t ∈ C : |t| = 1}. Let us consider bisingular integral operator
with Cauchy kernel in L2

(Rϕ)(t1, t2) = a0(t1, t2)ϕ(t1, t2) + b1(t1, t2)(S(1)ϕ)(t1, t2)+

+b2(t1, t2)(S(2)ϕ)(t1, t2) + b0(t1, t2)(Sϕ)(t1, t2),

where

(S(1)ϕ)(t1, t2) =
1

πi

∫
Γ

ϕ(τ1, t2)

τ1 − t1
dτ1, (S

(2)ϕ)(t1, t2) =
1

πi

∫
Γ

ϕ(t1, τ2)

τ2 − t2
dτ2,
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(Sϕ)(t1, t2) =
1

(πi)2

∫
Γ2

ϕ(τ1, τ2)

(τ1 − t1)(τ2 − t2)
dτ1dτ2,

a0(t1, t2), bi(t1, t2), i = 0, 1, 2 are the known continuous functions , moreover

∆(t1, t2) =
∏

ν1,ν2=±1

aν1,ν2(t1, t2) 6= 0 for any (t1, t2) ∈ Γ2, (1.1)

indt1
a 1, 1 (t1, t2)

a−1, 1 (t1, t2)
= indt1

a 1,−1 (t1, t2)

a−1,−1 (t1, t2)
=

= indt2
a 1, 1 (t1, t2)

a 1,−1 (t1, t2)
= indt2

a−1, 1 (t1, t2)

a−1,−1 (t1, t2)
= 0, (1.2)

indR = indt1
a 1, 1 (t1, t2)

a−1,−1 (t1, t2)
· indt2

a 1, 1 (t1, t2)

a−1,−1 (t1, t2)
= 0, (1.3)

aν1,ν2(t1, t2) = a0(t1, t2) + ν1b1(t1, t2) + ν2b2(t1, t2) + ν1ν2b0(t1, t2), ν1, ν2 = ±1.

Let us note that the conditions (1.1), (1.2) are necessary and sufficient for
Noetherity, and conditions (1.1), (1.3) for Fredholm property of the operator R
(see [5]).

In the present paper the operator R is approximated by a sequence of operators
of the form

(Rnϕ) (t1, t2) =

2n−1∑
k1,k2=0

α
(n)
k1,k2

(t1, t2) ϕ(τ
(t1)
k1

, τ
(t2)
k2

),

where τ
(t)
k = ekθi · t, k = 0 , 2n, θ = π

n , n ∈ N , and the functions α
(n)
k1,k2

(t1, t2) ∈
C
(
Γ2
)
, k1, k2 = 0 , 2n− 1, n ∈ N are expressed in terms of the given functions,

and it is proved that, under the conditions indicated above, the sequence of
operators {Rn} strongly converges to the operator R in L2, the operators Rn are
invertible for sufficiently large n, and the sequence of operators

{
R−1
n

}
strongly

converges to the operator R−1 as n → ∞. It should be noted that, in this
method, the determination of the inverse operator is equivalent to the study of
the equation

2n−1∑
k1,k2=0

α
(n)
k1,k2

(t1, t2) ϕ
(
τ

(t1)
k1

, τ
(t2)
k2

)
= f (t1, t2) , (t1, t2) ∈ Γ2,

at the points
(
τ

(t1)
m1 , τ

(t2)
m2

)
, m1,m2 = 0 , 2n− 1 because solving the resulting

system of linear algebraic equations

2n−1∑
k1,k2=0

α
(n)
k1,k2

(
τ (t1)
m1

, τ (t2)
m2

)
ϕ
(
τ

(t1)
k1+m1

, τ
(t2)
k2+m2

)
=

= f(τ (t1)
m1

, τ (t2)
m2

), m1,m2 = 0 , 2n− 1

with respect to
(
ϕ
(
τ

(t1)
0 , τ

(t2)
0

)
, ϕ
(
τ

(t1)
0 , τ

(t2)
1

)
, ... , ϕ

(
τ

(t1)
2n−1, τ

(t2)
2n−1

))
, we obtain

the function ϕ (t1, t2) = ϕ
(
τ

(t1)
0 , τ

(t2)
0

)
.
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2. Approximation of a bisingular integrals with Cauchy kernel

Consider the following bisingular integral operators acting in L2:

(S(1)ϕ)(t1, t2) =
1

πi

∫
Γ

ϕ(τ1, t2)

τ1 − t1
dτ1, (S(2)ϕ)(t1, t2) =

1

πi

∫
Γ

ϕ(t1, τ2)

τ2 − t2
dτ2,

(Sϕ) (t1, t2) =
1

(πi)2

∫
Γ2

ϕ (τ1, τ2)

(τ1 − t1) (τ2 − t2)
dτ1dτ2, (t1, t2) ∈ Γ2.

It is well known (see [28]) that the operators S(1), S(2) and S acts in L2,∥∥S(1)
∥∥
L2→L2

=
∥∥S(2)

∥∥
L2→L2

= ‖S‖L2→L2
= 1 and

(
S(1)

)2
=
(
S(2)

)2
= S2 = I in

L2.
Consider the sequence of operators

(S(1)
n ϕ)(t1, t2) =

1

πi

n−1∑
k=0

ϕ(τ
(t1)
2k+1, t2)

τ
(t1)
2k+1 − t1

·∆τ (t1)
2k+1,

(S(2)
n ϕ)(t1, t2) =

1

πi

n−1∑
k=0

ϕ(t1, τ
(t2)
2k+1)

τ
(t2)
2k+1 − t2

·∆τ (t2)
2k+1,

(Snϕ)(t1, t2) =
1

(πi)2

n−1∑
k1,k2=0

ϕ(τ
(t1)
2k1+1, τ

(t2)
2k2+1)

(τ
(t1)
2k1+1 − t1)(τ

(t2)
2k2+1 − t2)

·∆τ (t1)
2k1+1∆τ

(t2)
2k2+1,

where τ
(t)
k = ekθi · t, ∆τ

(t)
k =

(
τ

(t)
k+1 − τ

(t)
k−1

)
· θ

sin θ = 2iekθi · t · θ, k = 0 , 2n, θ = π
n ,

n ∈ N .
Let us calculate S

(1)
n (tm1 · t

p
2), S

(2)
n (tm1 · t

p
2), Sn (tm1 · t

p
2) for any m, p ∈ Z (Z is the

set of integer real numbers):

S(1)
n (tm1 · t

p
2) =

1

πi

n−1∑
k=0

(
τ

(t1)
2k+1

)m
tp2

τ
(t1)
2k+1 − t1

·∆τ (t1)
2k+1 =

=
1

πi

n−1∑
k=0

em(2k+1)θi · tm1
τ

(t1)
2k+1 − t1

·∆τ (t1)
2k+1 · t

p
2 = λ(n)

m · tm1 · t
p
2, (2.1)

S(2)
n (tm1 · t

p
2) =

1

πi

n−1∑
k=0

tm1

(
τ

(t2)
2k+1

)p
τ

(t2)
2k+1 − t2

·∆τ (t2)
2k+1 =

=
1

πi

n−1∑
k=0

ep(2k+1)θi · tp2
τ

(t2)
2k+1 − t2

·∆τ (t2)
2k+1 · t

m
1 = λ(n)

p · tm1 · t
p
2, (2.2)

Sn (tm1 · t
p
2) =

1

(πi)2

n−1∑
k1,k2=0

(
τ

(t1)
2k1+1

)m (
τ

(t2)
2k2+1

)p(
τ

(t1)
2k1+1 − t1

)(
τ

(t2)
2k2+1 − t2

) ·∆τ (t1)
2k1+1∆τ

(t2)
2k2+1 =

=
1

πi

n−1∑
k1=0

em(2k+1)θi · tm1(
τ

(t1)
2k1+1 − t1

) ·∆τ (t1)
2k1+1·

1

πi

n−1∑
k2=0

ep(2k+1)θi · tp2(
τ

(t2)
2k2+1 − t2

) ·∆τ (t2)
2k2+1 = λ(n)

m ·tm1 ·λ(n)
p ·t

p
2,

(2.3)
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where

λ(n)
m =

1

πi

n−1∑
k=0

em(2k+1)θi(
τ

(t)
2k+1 − t

) ·∆τ (t)
2k+1 =

1

πi

n−1∑
k=0

em(2k+1)θi(
τ

(1)
2k+1 − 1

) ·∆τ (1)
2k+1.

Calculating λ
(n)
m , we find that λ

(n)
m = 1 for m = 0, n− 1, λ

(n)
m = −1 for m =

n, 2n− 1, and λ
(n)
m±2n = λ

(n)
m for all m ∈ Z.

Suppose that

ϕ (t1, t2) =
+∞∑

m,p=−∞
ck,pt

m
1 t

p
2.

Then, taking (2.1)-(2.3) into account, we obtain(
S(1)
n ϕ

)
(t1, t2) =

+∞∑
m,p=−∞

ck,pλ
(n)
m tm1 t

p
2,

(
S(2)
n ϕ

)
(t1, t2) =

+∞∑
m,p=−∞

ck,pλ
(n)
p tm1 t

p
2,

(Snϕ) (t1, t2) =

+∞∑
m,p=−∞

ck,pλ
(n)
m λ(n)

p tm1 t
p
2.

This implies the following properties of the operators S
(1)
n , S

(2)
n and Sn.

Properties 2.1. The following relations hold:(
S(1)
n

)2
=
(
S(2)
n

)2
= (Sn)2 = I in L2,∥∥∥S(1)

n

∥∥∥
L2→L2

=
∥∥∥S(2)

n

∥∥∥
L2→L2

= ‖Sn‖L2→L2
= 1,

and for any algebraic polynomials Pn−1 (t1, t2) =
∑n−1

k1,k2=−n+1 αk1,k2t
k1
1 t

k2
2 of de-

gree not higher than n− 1 the equalities

(S(1)
n P )(t1, t2) = (S(1)P )(t1, t2), (S(2)

n P )(t1, t2) = (S(2)P )(t1, t2),

(SnP )(t1, t2) = (SP )(t1, t2)

holds.
Suppose that

E(2)
n (ϕ) = inf

Pn∈Tn
‖ϕ− Pn‖L2

is the best approximation of the function ϕ ∈ L2 by polynomials from Tn, where
the Tn is the set of polynomials of the form

∑n
k1,k2=−n αk1,k2t

k1
1 t

k2
2 , αk1,k2 ∈ C.

Theorem 2.1. The sequences of operators
{
S

(1)
n

}
,
{
S

(2)
n

}
, {Sn} strongly con-

verges to the operators S(1), S(2) and S respectively, and, for any ϕ ∈ L2, the
following estimates holds:∥∥∥S(1)ϕ− S(1)

n ϕ
∥∥∥
L2

≤ 2E
(2)
n−1 (ϕ) ,

∥∥∥S(2)ϕ− S(2)
n ϕ

∥∥∥
L2

≤ 2E
(2)
n−1 (ϕ) ,

‖Sϕ− Snϕ‖L2
≤ 2E

(2)
n−1 (ϕ) . (2.4)
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Proof. Suppose that Pn−1 (t1, t2) is the best approximation polynomial for the
function ϕ ∈ L2 from Tn−1. In properties 2.1 we have(

S(1)ϕ− S(1)
n ϕ

)
(t1, t2) = S(1) (ϕ− Pn−1) (t1, t2)− S(1)

n (ϕ− Pn−1) (t1, t2) .

Then∥∥∥S(1)ϕ− S(1)
n ϕ

∥∥∥
L2

≤
(∥∥∥S(1)

∥∥∥
L2→L2

+
∥∥∥S(1)

n

∥∥∥
L2→L2

)
· ‖ϕ− Pn−1‖L2

= 2E
(2)
n−1 (ϕ) .

Thus, we have shown that the sequence of operators
{
S

(1)
n

}
strongly converges

to the operator S(1) in L2. The remaining inequalities are proved similarly. This
completes the proof of the theorem 2.1. �

Consider the regular integral

(Kϕ) (t1, t2) =

∫
Γ2

K (t1, t2, τ1, τ2)ϕ(τ1, τ2) dτ1dτ2, (t1, t2) ∈ Γ2,

where K (t1, t2, τ1, τ2) is a continuous function, and the sequence of operators

(Knϕ) (t1, t2) =
2n−1∑
k1,k2=0

K
(
t1, t2, τ

(t1)
k1

, τ
(t2)
k2

)
×

×ϕ
(
τ

(t1)
k1

, τ
(t2)
k2

) (1

2
∆τ

(t1)
k1

) (
1

2
∆τ

(t2)
k2

)
, (t1, t2) ∈ Γ2, n ∈ N.

Suppose that

‖K‖∞ = max { |K (t1, t2, τ1, τ2)| : t1, t2, τ1, τ2 ∈ Γ} ,

En (K) = inf


∥∥∥∥∥K (t1, t2, τ1, τ2)−

n∑
p1,p2=−n

hp1,p2 (t1, t2) τp11 τp22

∥∥∥∥∥
∞

:

hp1,p2 ∈ Tn, p1, p2 = −n, n } .

Theorem 2.2. The sequence of the operators {Kn} strongly converges to the
operator K in L2 and, for any ϕ ∈ L2, the following estimate holds:

‖Kϕ−Knϕ‖L2
≤ 8π2 ‖K‖∞ · E

(2)
n−1(ϕ) + 8π2 · En−1(K)

{
E

(2)
n−1(ϕ) + ‖ϕ‖L2

}
.

(2.5)

Proof. Let us calculate
∑2n−1

k=0

(
τ

(t)
k

)m (
1
2∆τ

(t)
k

)
for any m ∈ Z:

2n−1∑
k=0

(
τ

(t)
k

)m(1

2
∆τ

(t)
k

)
= iθ · tm+1

2n−1∑
k=0

e(m+1)kθi =

=

{
2πi · tm+1, m = −1 (mod 2n),
0, m 6= −1 (mod 2n).

(2.6)

Since ∫
Γ
τmdτ =

{
2πi, m = −1,
0, m 6= −1,
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it follows from (2.6) that, for any polynomial q2n−2(t) =
∑2n−2

k=−2n+2 αkt
k the

following relation holds:∫
Γ
q2n−2(τ)dτ =

2n−1∑
k=0

q2n−2(τ
(t)
k )

(
1

2
∆τ

(t)
k

)
. (2.7)

Suppose that

E
(2)
n−1(ϕ) = ‖ϕ− Pn−1‖L2

,

En (K) =

∥∥∥∥∥K (t1, t2, τ1, τ2)−
n∑

p1,p2=−n
hp1,p2 (t1, t2) τp11 τp22

∥∥∥∥∥
∞

.

Then from relation (2.7), we obtain

(Kϕ) (t1, t2)− (Knϕ) (t1, t2) = (K−Kn) (ϕ− Pn−1) (t1, t2) +

+

∫
Γ2

[
K(t1, t2, τ1, τ2)−

n∑
p1,p2=−n

hp1,p2 (t1, t2) τp11 τp22

]
· Pn−1(τ1, τ2)dτ1dτ2+

+
2n−1∑
k1,k2=0

[
K(t1 , t2, τ

(t1)
k1

, τ
(t2)
k2

)−
n∑

p1,p2=−n
hp1,p2 (t1, t2)

(
τ

(t1)
k1

)p1 (
τ

(t2)
k2

)p2]
×

×Pn−1

(
τ

(t1)
k1

, τ
(t2)
k2

)(1

2
∆τ

(t1)
k1

) (
1

2
∆τ

(t2)
k2

)
.

Hence

‖Kϕ−Knϕ‖L2
≤
{
‖K‖L2→L2

+ ‖Kn‖L2→L2

}
‖ϕ− Pn−1‖L2

+

+

∥∥∥∥∥
∫

Γ2

[
K(t1, t2, τ1, τ2)−

n∑
p1,p2=−n

hp1,p2 (t1, t2) τp11 τp22

]
· Pn−1(τ1, τ2)dτ1dτ2

∥∥∥∥∥
L2

+

+

∥∥∥∥∥∥
2n−1∑
k1,k2=0

[
K(t1 , t2, τ

(t1)
k1

, τ
(t2)
k2

)−
n∑

p1,p2=−n
hp1,p2 (t1, t2)

(
τ

(t1)
k1

)p1 (
τ

(t2)
k2

)p2]
×

×Pn−1

(
τ

(t1)
k1

, τ
(t2)
k2

)(1

2
∆τ

(t1)
k1

) (
1

2
∆τ

(t2)
k2

)∥∥∥∥
L2

.

Taking into account the inequalities ‖K‖L2→L2
≤ 4π2 ‖K‖∞, ‖Kn‖L2→L2

≤
4π2 ‖K‖∞, it follows estimation (2.5). This completes the proof of the theorem
2.2. �
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3. Construction and justification of a new constructive method
of solving bisingular integral equations

Suppose that A is a linearly continuous operator in a Banach space X and
{An}∞n=1 is the sequence of linear continuous operators in X.

Definition 3.1. We say that the approximation method involving the system
of operators {An}∞n=1 can be applied to the invertible operator A if there exists
an n0 ∈ N such that the operators An are invertible for n ≥ n0 and, for any
y ∈ X, the solutions xn ∈ X of the equation Anxn = y , n ≥ n0, converge in the
norm of the space X to the solution of the equation Ax = y.

Let us present the following assertions from the theory of projective methods
[14].

Proposition 3.1. Suppose that the sequence of operators {An}∞n=1 strongly
converges to an invertible operator A. The approximation method involving the
system of operators {An}∞n=1 can be applied to the operator A if and only if
there exists an n0 ∈ N such that the sequence {An}n≥n0

is uniformly invertible,
moreover, if x∗ and x∗n are the solutions of the equations Ax = y and Anx =
y , respectively, then

‖x∗ − x∗n‖X ≤ const ‖(An −A)x‖X . (3.1)

Proposition 3.2. Let the approximation method involving the system of
operators {An}∞n=1 be applicable to the invertible operator A. Then, for any
system {Bn}∞n=1 of linear continuous operators in the space X satisfying the
condition lim

n→∞
‖Bn‖ = 0, the approximation method involving the system of

operators {An +Bn}∞n=1 can be applied to the operator A.
Consider the following sequences of linear operators acting in L2:

(
K(1)
n ϕ

)
(t1, t2) =

2n−1∑
k1,k2=0

K(t1, t2, τ
(1)
k1
, τ

(1)
k2

)τ
(1)
k1
τ

(1)
k2

∫
τ
(1)
k1
τ
(1)
k1+1

∫
τ
(1)
k2
τ
(1)
k2+1

ϕ(τ1, τ2)

τ1 · τ2
dτ1dτ2,

(
K(2)
n ϕ

)
(t1, t2) =

=

2n−1∑
k1,k2=0

θ∫
0

θ∫
0

K
(
eiσ1τ (1)

m1
, eiσ2τ (1)

m2
, τ

(1)
k1+m1

, τ
(1)
k2+m2

)
dσ1dσ2 ϕ(τ

(t1)
k1

, τ
(t2)
k2

),

where τ
(1)
k = ekθi, θ = π

n , and m1, m2 are numbers such that ti ∈ τ (1)
mi τ

(1)
mi+1 , i =

1 , 2.

The uniform convergence of the operators
{

K
(1)
n

}
to the operator K follows

from the inequality∥∥∥K−K(1)
n

∥∥∥
L2→L2

≤ 4π2 max
t1∈Γ
t2∈Γ

max
|τ1−τ ′1|≤θ
|τ2−τ ′2|≤θ

∣∣K(t1, t2, τ1, τ2)τ1τ2 −K(t1, t2, τ
′
1, τ
′
2)τ ′1τ

′
2

∣∣ ,
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and the strong convergence of the operators
{

K
(2)
n

}
to the operator K follows

from the theorem 2.2 and from the inequality∥∥∥Kn −K(2)
n

∥∥∥
L2→L2

≤ 4π2 max
|t1−t′1|≤θ
|t2−t′2|≤θ

max
|τ1−τ ′1|≤θ
|τ2−τ ′2|≤θ

∣∣K(t1, t2, τ1, τ2)τ1τ2 −K(t′1, t
′
2, τ
′
1, τ
′
2)τ ′1τ

′
2

∣∣ .
(3.2)

Lemma 3.1. If the inverse operator (I + K)−1 exists, then, the for large values
of n , the operators (I + Kn) are also invertible and the sequence of the operators{

(I + Kn)−1
}

strongly converges to the operator (I + K)−1 in L2.

Proof. Suppose that the inverse operator (I + K)−1 exist. Since the sequence of

operators
{

K
(1)
n

}
uniformly convergences to the operator K, it follows that, for

large values of n (≥ n0), the operators I + K
(1)
n are uniformly invertible.

For any f ∈ L2 consider the equation(
I + K(2)

n

)
ϕn(t1, t2) = f(t1, t2), (t1, t2) ∈ Γ2. (3.3)

Considering equation (3.3) at the points
(
τ

(t1)
−m1+k1

, τ
(t2)
−m2+k2

)
∈ Γ2, k1, k2 =

0 , 2n− 1 , where m1 and m2 are the indexes satisfying ti ∈ τ (1)
mi τ

(1)
mi+1 , i = 1 , 2,

we can write this equation in the following equivalent form:

ΦnGn = Fn, (3.4)

where Φn = (ϕn(τ
(t1)
−m1

, τ
(t2)
−m2

), . . . , ϕn(τ
(t1)
−m1

, τ
(t2)
−m2+2n−1), ϕn(τ

(t1)
−m1+1, τ

(t2)
−m2

) , . . . ,

ϕn(τ
(t1)
−m1+2n−1, τ

(t2)
−m2+2n−1)),

Gn =


1 + g0,0 g0,1 . . . g0, 4n2−1

g1,0 1 + g1,1 . . . g1, 4n2−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
g4n2−1,0 g4n2−1,1 . . . g4n2−1, 4n2−1

 ,

g(2n)i1+i2, (2n)j1+j2 =

= −
∫ θ

0

∫ θ

0
K(eiσ1τ

(1)
j1
, eiσ2τ

(1)
j2
, τ

(1)
i1
, τ

(1)
i2

) τ
(1)
i1
τ

(1)
i2
dσ1dσ2 , i1, i2, j1, j2 = 0, 2n− 1,

Fn =
(
f
(
τ

(t1)
−m1

, τ
(t2)
−m2

)
, . . . , f

(
τ

(t1)
−m1

, τ
(t2)
−m2+2n−1

)
,

f
(
τ

(t1)
−m1+1, τ

(t2)
−m2

)
, . . . , f

(
τ

(t1)
−m1+2n−1, τ

(t2)
−m2+2n−1

))
.

Let us prove that def Gn 6= 0 for any n ≥ n0. To do this, we must show that
the equation

(x0, x1, . . . , x4n2−1) ·Gn = (d0, d1, . . . , d4n2−1) (3.5)

is solvable for any right-hand side. For any vector (d0, d1, . . . , d4n2−1), we take
the function

f (0)(t1, t2) =
1

θ2
d2ni1+i2 for t1 ∈ τ (1)

i1
τ

(1)
i1+1, t2 ∈ τ

(1)
i2
τ

(1)
i2+1 , i1, i2 = 0, 2n− 1,
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Since f (0) ∈ L2, it follows that the equation(
I + K(1)

n

)
ϕ(0)
n (t1, t2) = f (0)(t1, t2) , (t1, t2) ∈ Γ2 (3.6)

is uniquely solvable with respect to ϕ
(0)
n in L2 for n ≥ n0. Writing t1 = eis1 , t2 =

eis2 and integrating (3.6) on the quadrate [p1θ, (p1 + 1) θ] × [p2θ, (p2 + 1) θ],
p1, p2 = 0, 2n− 1 we have(∫ θ

0

∫ θ

0
ϕ(0)
n (eiσ1τ

(1)
0 , eiσ2τ

(1)
0 ) dσ1dσ2, . . . ,∫ θ

0

∫ θ

0
ϕ(0)
n (eiσ1τ

(1)
2n−1, e

iσ2τ
(1)
2n−1) dσ1dσ2

)
·Gn =

=

(∫ θ

0

∫ θ

0
f (0)(eiσ1 , eiσ2) dσ1dσ2, . . . ,∫ 2nθ

(2n−1)θ

∫ 2nθ

(2n−1)θ
f (0)(eiσ1 , eiσ2) dσ1dσ2

)
= (d0, . . . , d4n2−1) , (3.7)

that is the equation (3.5) is solvable for any right-hand side; therefore,
def Gn 6= 0. Then equation (3.4) and, therefore, equation (3.3) is solvable for
any f ∈ L2 for almost all (t1, t2) ∈ Γ2. Next we prove the uniform invertibility

of the operators
(
I + K

(2)
n

)
. Suppose that ϕn (t1, t2) is a solution of equation

(3.3). Then, from (3.4), we obtain

Φn = Fn ·G−1
n =

(
f(τ

(t1)
−m1

, τ
(t2)
−m2

), . . . , f(τ
(t1)
−m1+2n−1, τ

(t2)
−m2+2n−1 )

)
·G−1

n .

Let G−1
n =

(
(G−1

n )(0), (G−1
n )(1), . . . , (G−1

n )(4n2−1)
)

, where
(
G−1
n

)(k)
is the (k+1)-

th column of the matrix G−1
n , k = 0, 4n2 − 1. Then for almost all (t1, t2) ∈ Γ2,

we can write

ϕn(t1, t2) =
(
f(τ

(t1)
−k1 , τ

(t2)
−k2 ), . . . , f(τ

(t1)
−k1+2n−1, τ

(t2)
−k2+2n−1

) (
G−1
n

)(k2+2nk1)

for (t1, t2) ∈
(
τ

(1)
k1
, τ

(1)
k1+1

)
×
(
τ

(1)
k2
, τ

(1)
k2+1

)
, k1, k2 = 0, 2n− 1. Then

‖ϕn‖2L2
=

1

4π2

2n−1∑
k1,k2=0

∫
τ
(1)
k1
τ
(1)
k1+1

∫
τ
(1)
k2
τ
(1)
k2+1

∣∣∣(G−1
n

)(k2+2nk1)
∣∣∣2×

×
∣∣∣(f(τ

(t1)
−k1 , τ

(t2)
−k2), . . . , f(τ

(t1)
−k1+2n−1, τ

(t2)
−k2+2n−1)

) ∣∣∣2 |dt1| |dt2| =
=

1

4π2

∫
τ
(1)
0 τ

(1)
1

∫
τ
(1)
0 τ

(1)
1

2n−1∑
k1,k2=0

∣∣∣(G−1
n

)(k2+2nk1)
∣∣∣2×

×
∣∣∣(f(τ

(t1)
0 , τ

(t2)
0 ), . . . , f(τ

(t1)
2n−1, τ

(t2)
2n−1)

)∣∣∣2 |dt1| |dt2| . (3.8)

From (3.7) we find that, for any vector (d0, d1, . . . , d4n2−1),∫ θ

0

∫ θ

0
ϕ(0)
n (eiσ1τ

(1)
k1
, eiσ2τ

(1)
k2

)dσ1dσ2 =

= (d0, d1, . . . , d4n2−1)
(
G−1
n

)k2+2nk1 , k1, k2 = 0, 2n− 1, (3.9)
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where ϕ
(0)
n (t1, t2) = (I + K

(1)
n )−1f (0)(t1, t2).

Since the family of operators
{

(I + K
(1)
n )−1

}
is uniformly bounded, i.e., there is

an M0 < +∞ such that, for any n ≥ n0 the inequality
∥∥∥(I + K

(1)
n )−1

∥∥∥
L2→L2

≤M0

holds, it follows that

∥∥∥ϕ(0)
n

∥∥∥
L2

=
∥∥∥(I + K(1)

n )−1f (0)
∥∥∥
L2

≤M0 ·
∥∥∥f (0)

∥∥∥
L2

= M0 ·

 1

4π2θ2

4n2−1∑
k=0

|dk|2
 1

2

.

On the other hand, from (3.9) we obtain

2n−1∑
k1,k2=0

∣∣∣(d0, d1, . . . , d4n2−1)
(
G−1
n

)(k2+2nk1)
∣∣∣2 =

=
2n−1∑
k1,k2=0

∣∣∣∣∫ θ

0

∫ θ

0
ϕ(0)
n (eiσ1τ

(1)
k1
, eiσ2τ

(1)
k2

)dσ1dσ2

∣∣∣∣2 ≤
≤ 4π2θ2

∥∥∥ϕ(0)
n

∥∥∥2

L2(Γ2)
≤M2

0

4n2−1∑
k=0

|dk|2 . (3.10)

In view of (3.10), from (3.8) we find that, for any n ≥ n0 the inequality∥∥∥(I + K(2)
n )−1

∥∥∥
L2→L2

≤M0

holds. We have found that the operators I + K
(2)
n are uniformly invertible; then,

by proposition 3.1, we have that, the approximation method involving the system

of operators
{
I + K

(2)
n

}
can be applied to the operator I+K. By proposition 3.2

from the inequality (3.2), we find that if the inverse operator (I + K)−1 exists,
then the approximation method involving the system of operators I + Kn can be

applied to the operator I + K, because I + Kn = I + K
(2)
n +

(
Kn −K

(2)
n

)
. This

completes the proof of the lemma 3.1. �

By Π and Π1 we denote the sets of sequences of bounded linear operators {Bn},
{B′n} in L2 of the forms

(Bnϕ) (t1, t2) =

2n−1∑
k1,k2=0

α
(n)
k1,k2

(t1, t2)ϕ(τ
(t1)
k1

, τ
(t2)
k2

) ,

(
B′nϕ

)
(t1, t2) =

n−1∑
k1,k2=0

β
(n)
k1,k2

(t1, t2)ϕ(τ
(t1)
2k1

, τ
(t2)
2k2

) ,

respectively, where the α
(n)
k1,k2

(t1, t2), k1, k2 = 0, 2n− 1, β
(n)
k1,k2

(t1, t2), k1, k2 =

0, n− 1 are continuous functions such that the sequence of operators {Bn}, {B′n}
strongly converges in L2 to some linear bounded operator, while by Π∗, Π∗1 the
sets of the sequences {Mn} ∈ Π satisfying the following condition:

(*) if the inverse operator (I+BM)−1 exists, then, for any sequence {Bn} ∈ Π,

Bn
s−→ B (respectively, for any {B′n} ∈ Π1, B′n

s−→ B) the approximation
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method involving the system of operators {I +BnMn} (respectively {I +B′nMn}),
where Mn

s−→M , can be applied to the operator I +BM .

Lemma 3.2. The sequence of operators {Kn} belongs to Π∗.

Proof. Let the sequence of operators {Bn} belongs to Π and Bn
s−→ B. It is

well known (see, for example, [15]) that the strong convergence of a sequence
of linear bounded operators implies its uniform convergence on any compact
set. Then the operators BnK uniformly converge to the operator BK. As the

sequence of operators K
(1)
n uniformly converge to K and the sequence of operators{

‖Bn‖L2→L2

}
is bounded, then we obtain that the sequence of operators BnK

(1)
n

also uniformly converge to the operator BK. Next, proceeding just as in Lemma

3.1, we have uniform invertibility of the operators I +BnK
(2)
n . Since∥∥∥Bn (K(2)

n −Kn

)∥∥∥
L2→L2

→ 0 as n→∞,

In view of proposition 3.1 and 3.2, we find that the approximate method involv-
ing the system of operators {I +BnKn} can be applied to the operator (I +BK).
This completes the proof of the lemma 3.2. �

Similar to the proof of the Lemma 3.2 it is proved that the sequences of oper-

ators
{

K
(3)
n

}
,
{

K
(4)
n

}
,
{

K
(5)
n

}
,
{

K
(6)
n

}
strongly converge to the operator K and

the inclusions
{

K
(3)
n

}
∈ Π∗1,

{
K

(4)
n

}
∈ Π∗1,

{
K

(5)
n

}
∈ Π∗1,

{
K

(6)
n

}
∈ Π∗1 exist ,

where(
K(3)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

K(t1, t2, τ
(t1)
2k1

, τ
(t2)
2k2

)ϕ(τ
(t1)
2k1

, τ
(t2)
2k2

) ·∆τ (t1)
2k1

∆τ
(t2)
2k2

,

(
K(4)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

K(t1, t2, τ
(t1)
2k1

, τ
(t2)
2k2+1)ϕ(τ

(t1)
2k1

, τ
(t2)
2k2+1) ·∆τ (t1)

2k1
∆τ

(t2)
2k2+1 ,

(
K(5)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

K(t1, t2, τ
(t1)
2k1+1, τ

(t2)
2k2

)ϕ(τ
(t1)
2k1+1, τ

(t2)
2k2

) ·∆τ (t1)
2k1+1∆τ

(t2)
2k2

,

(
K(6)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

K(t1, t2, τ
(t1)
2k1+1, τ

(t2)
2k2+1)ϕ(τ

(t1)
2k1+1, τ

(t2)
2k2+1)·∆τ (t1)

2k1+1∆τ
(t2)
2k2+1 .

By Π2 we denote the sets of sequences {Bn} ∈ Π,

(Bnϕ) (t1, t2) =
2n−1∑
k1,k2=0

α
(n)
k1,k2

(t1, t2)ϕ(τ
(t1)
k1

, τ
(t2)
k2

),

where α
(n)
k1,k2

(t1, t2), k1, k2 = 0, 2n− 1 are continuous functions such that the

sequence of operators(
B(1)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1,2k2

(t1, t2)ϕ(τ
(t1)
2k1

, τ
(t2)
2k2

),
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(
B(2)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1,2k2+1(t1, t2)ϕ(τ

(t1)
2k1

, τ
(t2)
2k2+1),

(
B(3)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1+1,2k2

(t1, t2)ϕ(τ
(t1)
2k1+1, τ

(t2)
2k2

)

strongly converges in L2 to any linear bounded operator; and by Π∗2 a set of
sequences {Mn} ∈ Π, satisfying the following condition:

(**) if the inverse operator (I + BM)−1 exist, then, for any sequence

{Bn} ∈ Π2, Bn
s−→ B the approximation method involving the system of opera-

tors {I +BnMn}, where Mn
s−→M , can be applied to the operator I +BM .

Lemma 3.3. The sequence of operators
{

K
(3)
n

}
belongs to Π∗2.

Proof. Let the sequence of operators (Bnϕ) (t1, t2) =
2n−1∑
k1,k2=0

α
(n)
k1,k2

(t1, t2)ϕ(τ
(t1)
k1

, τ
(t2)
k2

)

belongs to Π0, and let the sequence of operators(
B(1)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1,2k2

(t1, t2)ϕ(τ
(t1)
2k1

, τ
(t2)
2k2

),

(
B(2)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1,2k2+1(t1, t2)ϕ(τ

(t1)
2k1

, τ
(t2)
2k2+1),

(
B(3)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1+1,2k2

(t1, t2)ϕ(τ
(t1)
2k1+1, τ

(t2)
2k2

),

(
B(4)
n ϕ

)
(t1, t2) =

n−1∑
k1,k2=0

α
(n)
2k1+1,2k2+1(t1, t2)ϕ(τ

(t1)
2k1+1, τ

(t2)
2k2+1)

strongly converge to the operators B(1), B(2), B(3) and B(4) in L2, respectively.
Then we have(

BnK(3)
n ϕ

)
(t1, t2) =

(
B(1)
n K(3)

n ϕ
)

(t1, t2) +
(
B(2)
n K(3)

n ϕ
)

(t1, t2) +

+
(
B(3)
n K(3)

n ϕ
)

(t1, t2) +
(
B(4)
n K(3)

n ϕ
)

(t1, t2) =

=
(
B(1)
n K(3)

n ϕ
)

(t1, t2)+
(
B̃(2)
n K(4)

n ϕ
)

(t1, t2)+
(
B̃(3)
n K(5)

n ϕ
)

(t1, t2)+
(
B̃(4)
n K(6)

n ϕ
)

(t1, t2) ,

where(
B̃(2)
n ϕ

)
(t1, t2) =

(
B(2)
n ϕ

)(
t1, τ

(t2)
−1

)
=

n−1∑
k1,k2=0

α
(n)
2k1,2k2+1(t1, t2)ϕ(τ

(t1)
2k1

, τ
(t2)
2k2

),

(
B̃(3)
n ϕ

)
(t1, t2) =

(
B(3)
n ϕ

)(
τ

(t1)
−1 , t2

)
=

n−1∑
k1,k2=0

α
(n)
2k1+1,2k2

(t1, t2)ϕ(τ
(t1)
2k1

, τ
(t2)
2k2

),

(
B̃(4)
n ϕ

)
(t1, t2) =

(
B(4)
n ϕ

)(
τ

(t1)
−1 , τ

(t2)
−1

)
=

n−1∑
k1,k2=0

α
(n)
2k1+1,2k2+1(t1, t2)ϕ(τ

(t1)
2k1

, τ
(t2)
2k2

).
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Similar to the proof of Lemma 3.2, we can prove that if the inverse operator

(I +BK)−1 exists, then, the for large values of n , the operators I + BnK
(3)
n

are also invertible and the sequence of the operators
(
I +BnK

(3)
n

)−1
strongly

converges to the operator (I +BK)−1 in L2, that is the approximation method

involving the system of operators
{
I +BnK

(3)
n

}
, can be applied to the operator

I +BK. This completes the proof of the lemma 3.3. �

Lemma 3.4. If, for any m ∈ N , the sequence of operators
{
M

(m)
n

}
belongs to

Π∗, {Mn} ∈ Π, and

lim
m→∞

sup
n∈N

∥∥∥M (m)
n −Mn

∥∥∥
L2→L2

= 0, (3.11)

then {Mn} ∈ Π∗.

Proof. Suppose that conditions (3.11) are satisfied. Since any sequence of oper-
ators {Bn} ∈ Π is uniformly bounded, it follows that, in view of relation (3.11),
there exists a number m0 ∈ N such that

sup
n∈N

∥∥∥BnM (m0)
n −BnMn

∥∥∥
L2(Γ2)→L2(Γ2)

< 1.

Hence the family of operators
{
I +BnMn −BnM (m0)

n

}
is uniformly invertible.

Using the relation

I +BnMn = I +BnMn −BnM (m0)
n +BnM

(m0)
n =

= (I +BnMn −BnM (m0)
n )

[
I +

(
I +BnMn −BnM (m0)

n

)−1
BnM

(m0)
n

]
,

we obtain that the family of operators {I +BnMn} is also uniformly invertible

(beginning with some n ≥ n2), because

[(
I +BnMn −BnM (m0)

n

)−1
Bn

]
∈ Π

and
{
M

(m)
n

}
∈ Π∗. This completes the proof of the lemma 3.4. �

We denote by L a set of linearly bounded operators in L2, of the form

W =

p1∑
i=1

(
hiI + D(i) + B(i)Q(i)

) [(
ciS

(1) − S(1)ci

)
+
(

H(i)S(1) − S(1)H(i)
)]

+

+

p2∑
i=p1+1

(
hiI + Q(i) + B(i)D(i)

) [(
diS

(2) − S2di

)
+
(

N(i)S(2) − S(2)N(i)
)]

+

+

p3∑
i=p2+1

B(i)
[(
ciS

(1) − S(1)ci

)
+
(

H(i)S(1) − S(1)H(i)
)] [(

diS
(2) − S2di

)
+

+
(

N(i)S(2) − S(2)N(i)
)]

+

p4∑
i=p3+1

B(i)U(i),
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where hi(t1, t2), i = 1 , p2, ci(t1, t2), i = 1 , p1 and i = p2 + 1 , p3 , di(t1, t2),

i = p1 + 1 , p3 are continuous functions, B(i) ∈ L2, i = 1 , p4 are linearly bounded
operators in L2,

(D(i)ϕ)(t1, t2) =

∫
Γ
D(i)(t1, t2, τ1)ϕ(τ1, t2) dτ1 and D(i) ∈ L2

(
Γ3
)
, i = 1 , p2,

(H(i)ϕ)(t1, t2) =

∫
Γ
H(i)(t1, t2, τ1)ϕ(τ1, t2) dτ1 and H(i) ∈ L2

(
Γ3
)
,

i = 1 , p1 and i = p2 + 1 , p3,

(Q(i)ϕ)(t1, t2) =

∫
Γ
Q(i)(t1, t2, τ2)ϕ(t1, τ2) dτ2 and Q(i) ∈ L2

(
Γ3
)
, i = 1 , p2,

(N(i)ϕ)(t1, t2) =

∫
Γ
N (i)(t1, t2, τ2)ϕ(t1, τ2) dτ2 and N (i) ∈ L2

(
Γ3
)
, i = p1 + 1 , p3,

(U(i)ϕ)(t1, t2) =

∫
Γ2

U (i)(t1, t2, τ1, τ2)ϕ(τ1, τ2) dτ1dτ2 and U (i) ∈ L2

(
Γ4
)
,

i = p3 + 1 , p4.
Similar to the proof of Lemma 3.2 and Lemma 3.3, and using Lemma 3.4 the

following lemma is proved.

Lemma 3.5. If W ∈ L and the inverse operator (I +W )−1 exists, then, for

large values of n, the operators I + Wn are also invertible and (I +Wn)−1 s−→
(I +W )−1, where

Wn =

p1∑
i=1

(
hiI + D(i)

n + B(i)
n Q(i)

n

) [(
ciS

(1)
n − S(1)

n ci

)
+
(

H(i)
n S

(1)
n − S(1)

n H(i)
n

)]
+

+

p2∑
i=p1+1

(
hiI + Q(i)

n + B(i)
n D(i)

n

) [(
diS

(2)
n − S(2)

n di

)
+
(

N(i)
n S

(2)
n − S(2)

n N(i)
n

)]
+

+

p3∑
i=p2+1

B(i)
n

[(
ciS

(1)
n − S(1)

n ci

)
+
(

H(i)
n S

(1)
n − S(1)

n H(i)
n

)]
×

×
[(
diS

(2)
n − S(2)

n di

)
+
(

N(i)
n S

(2)
n − S(2)

n N(i)
n

)]
+

p4∑
i=p3+1

B(i)
n U(i)

n ,{
B(i)
n

}
∈ Π2, B

(i)
n

s−→ B, i = 1 , p4,(
D(i)
n ϕ
)

(t1, t2) =

2n−1∑
k1=0

D(i)
(
t1, t2, τ

(t1)
k1

)
ϕ
(
τ

(t1)
k1

, t2

) (1

2
∆τ

(t1)
k1

)
, i = 1 , p2,(

H
(i)
n ϕ
)

(t1, t2) =
∑2n−1

k1=0 H
(i)
(
t1, t2, τ

(t1)
k1

)
ϕ
(
τ

(t1)
k1

, t2

) (
1
2∆τ

(t1)
k1

)
, i = 1 , p1 and

i = p2 + 1 , p3,

(Q(i)
n ϕ)(t1, t2) =

2n−1∑
k2=0

Q(i)
(
t1, t2, τ

(t2)
k2

)
ϕ
(
t1, τ

(t2)
k2

) (1

2
∆τ

(t2)
k2

)
, i = 1 , p2,
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(N(i)
n ϕ)(t1, t2) =

2n−1∑
k2=0

N (i)
(
t1, t2, τ

(t2)
k2

)
ϕ
(
t1, τ

(t2)
k2

) (1

2
∆τ

(t2)
k2

)
, i = p1 + 1 , p3,

(
U(i)
n ϕ
)

(t1, t2) =

2n−1∑
k1,k2=0

U (i)
(
t1, t2, τ

(t1)
k1

, τ
(t2)
k2

)
ϕ
(
τ

(t1)
k1

, τ
(t2)
k2

) (1

2
∆τ

(t1)
k1

) (
1

2
∆τ

(t2)
k2

)
,

i = p3 + 1 , p4.

Next, let us justify the applicability of the approximation method for complete
bisingular integral equations with continuous coefficients.

Theorem 3.1. If the operators Rand R′R′′R′′′are invertible in the space L2,
where

R′ = a0I + b1S
(1) − b2S(2) − b0S, R′′ = a0I − b1S(1) + b2S

(2) − b0S,

R′′′ = a0I − b1S(1) − b2S(2) + b0S,

then the approximate method involving the system of operators

(Rnϕ)(t1, t2) = a0(t1, t2)ϕ(t1, t2) + b1(t1, t2)(S(1)
n ϕ)(t1, t2)+

+b2(t1, t2)(S(2)
n ϕ)(t1, t2) + b0(t1, t2)(Snϕ)(t1, t2),

can be applied to the bisingular integral operator R, that is the operators Rn
also invertible for large values of n, and R−1

n
s−→ R−1. Moreover the following

estimate holds: ∥∥R−1
n f −R−1f

∥∥
L2
≤ const · E(2)

n−1(ϕ), (3.12)

where ϕ = R−1f .

Proof. The operator 1
∆R
′R′′R′′′R is in the form of 1

∆R
′R′′R′′′R = I +W , where

W ∈ L. By lemma 3.5, the approximate method involving the system of operators
1
∆R
′
nR
′′
nR
′′′
n Rn = I +Wn can be applied to the operator I +W , where

R′n = a0I + b1S
(1)
n − b2S(2)

n − b0Sn, R′′n = a0I − b1S(1)
n + b2S

(2)
n − b0Sn, R′′′n =

a0I − b1S(1)
n − b2S(2)

n + b0Sn, that is the operators I +Wn also invertible for large

values of n, and (I +Wn)−1 s−→ (I +W )−1. Then it follows that the operators
Rn also invertible for large values n, and the following equality holds:

R−1
n = (I +Wn)−1 1

∆
R′nR

′′
nR
′′′
n .

Therefore the sequence of operators
{
R−1
n

}
strongly converges to R−1 in L2.

Estimation (3.12) follows from Remark 2.1 Chap. 2 [14] and from theorems 2.1
and 2.2. This completes the proof of the theorem 3.1. �
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