
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 42, Number 1, 2016, Pages 73–80

ON ASYMPTOTIC BEHAVIOR OF LOCAL PROBABILITIES

OF NONLINEAR BOUNDARY CROSSING BY A RANDOM

WALK

FADA G. RAHIMOV, TARANA E. HASHIMOVA, AND VUGAR S. KHALILOV

Abstract. In the paper a theorem on asymptotic behavior of the den-
sity of joint distribution of the first passage time and overshoot for a
nonlinear boundary in the random walk, is proved. Limit behavior of
the marginal and conditional density of the overshoot and also of the
law of distribution of the first passage time are studied by means of this
theorem.

1. Introduction

Let ξn, n ≥ 1 be the sequence of independent identically distributed random
variables determined on some probability space (Ω,F , P ).

Let

Sn =

n∑
k=1

ξk, n ≥ 1,

and consider the first passage time

τa = inf {n ≥ 1 : Sn ≥ fa (n)} (1.1)

of the random walk Sn, n ≥ 1 for the nonlinear boundary fa (t) , t > 0 depen-
dent on some growing parameter a > 0. As always, we assume inf {∅} =∞.

The family of the first passage times τa; a ≥ 0 was the object of study of a
lot of papers ([1], [3-9]).

For the case fa (t) = f (t) the asymptotic behavior of the probability P (τ ≥ n)
and the issue of finiteness of Eτ were studied in the paper [4] at different assump-
tions for the boundary.

In the papers [5], [6], integral and local limit theorems and also asymptotic
behavior of the joint distribution τa and overshoot χa = Sτa − fa (τa) as a→∞
were studied for a rather wide class of family of boundaries fa (t).

In the present paper we prove a theorem on asymptotic behavior of the density
of joint distribution τa and χa as a → ∞. By means of this theorem we study
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the limit behavior of the marginal and conditional density of the overshoot χa,
and also of the probability P (τa = n) as a→∞.

Note that the proof of the mentioned theorem is based on the result of the
paper [1] in which the limit behavior of the conditional probability of nonlinear
boundary crossing P (τa ≥ n|Sn = x) as x = x (a)→∞ and a→∞ was studied.

2. Conditions and formulation of the main result

We’ll assume that µ = Eξ1 > 0, σ2 = Dξ1 < ∞ and the boundary fa (t)
satisfies the following regularity conditions:

1) For any a the function fa (t) monotonically increases, is continuously differ-
entiable for t > 0, moreover fa (1) ↑ ∞ as a→∞;

2) For rather large a the function fa(t)
t monotonically decreases to zero as

t→∞;
3) For each function n = n (a) from a such that n = n (a) → ∞ and

1
nfa (n)→ µ as a→∞, it is fulfilled f

′
a (n)→ θ ∈ [0, µ ) , a→∞;

4) The functionf
′
a (t) weakly oscillates at infinity, i.e. for any functions

n = n (a) → ∞ and m = m (a) → ∞ as a → ∞ such that n
m → 1, it is

fulfilled fa(n)
fa(m) → 1 as a→∞.

Note that from conditions 1) and 2) it follows that the equation fa (n) = nµ
with respect to n has a unique solution Na = Na (µ). We also note that the
family of functions fa (t) = atβ, 0 ≤ β < 1 satisfies conditions 1)-4). The other
examples are given in the papers [4] and [5].

In what follows, we assume that for some m ≥ 1∫ ∞
−∞
|u (t)|m dt <∞, (2.1)

where u (t) = Meitξ1 , t ∈ R = (−∞,∞) , i2 = −1.
It follows from (2.1) that the sum Sn, n ≥ m has the continuous and bounded

density Pn (x) ([3]).
Assume that

wa (n, r) =
d

dr
P (τa = n, χa ≤ r)

is the density of the joint distribution τa and χa:

h (r) =
P
(
S

′
τ+ > r

)
ES′

τ+

is the density of limit distribution of the overshoot of the random walk

S
′
n = Sn−nθ, n ≥ 1 for an infinitely distant barrier, where τ+ = inf

{
n ≥ 1 : S

′
n > 0

}
[8].

It is appropriate to note that in the paper [7] (see also [9]) it is proved a theorem
on the existence of limit distribution of the overshoot of the perturbed random
walk according to which for twice continuously differentiable functions satisfying
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conditions 1)-4) and the condition sup
t:|t−Na|≤M

√
Na

∣∣∣Naf
′′
a (t)

∣∣∣ <∞ for any M > 0,

it is fulfilled P (χa ≤ r)→
∫ r
0 h (u) du as a→∞.

Theorem 2.1. Let all the listed above conditions be fulfilled with regard to the
boundary fa (t) and distribution of the random variable ξ1, and let

n = n (a) = Na + υa
√
Na, (2.2)

where υa → υ ∈ R as a→∞.
Then

wa (n, r) ∼ λ

σ
√
n
ϕ

(
υλ

σ

)
h (r) as a→∞ (2.3)

uniformly with respect to υ from the bounded set in R, where λ = µ− θ, and

ϕ (x) =
1√
2π
e−

x2

2 , x ∈ R.

Corollary 2.1. Let the conditions of the theorem be fulfilled. Then∫ ∞
0
|ha (r)− h (r)| dr → 0

as a→∞, where ha (r) is the marginal density of the overshoot χa, a > 0.

Corollary 2.2. Let the conditions of the theorem be fulfilled. Then

P (τa = n) ∼ λ

σ
√
n
ϕ

(
υλ

σ

)
asa→∞.

Corollary 2.3. If the assumptions of theorem are satisfied, then

ha (r/n)→ h (r) , r > 0,

where ha (r/n) is the conditional density of the overshoot χa provided that τa = n.
Note that the statement of corollary 2.2 is called a local limit theorem for the

first exit time τa([4]).

3. Auxiliary facts

For proving the theorem and corollaries we need the following statements for-
mulated as lemmas.

Lemma 3.1. Let condition (2.1) be fulfilled. Then

Pn (x) =
1

σ
√
n
ϕ

(
x− nµ
σ
√
n

)
+ o

(
1/
√
n
)
, n→∞.

This statement follows from the local limit theorem for the sum Sn([3]).

Lemma 3.2. Let conditions 1)-3) be fulfilled with respect to the boundary fa (t)and
σ2 = Dξ1 <∞, µ = Eξ1 > 0. Then

lim
a→∞

P

(
τa −Na√

Na
≤ x

)
= Φ

(
λ

σ
x

)
,
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where λ = µ− θ, and Φ (x) is a distribution function of normal law with param-
eters (0,1)

The statement of this lemma follows from the paper [5].

Lemma 3.3. Let for gn (x) , n ≥ 1 and g (x) , x ∈ R non-negative measurable
functions it hold the convergence gn (x)→ g (x) as n→∞ almost everywhere with
respect to the Lebesgue measure. If

∫∞
−∞ gn (x) dx→

∫∞
−∞ g (x) dx as n→∞, then∫∞

−∞ |gn (x)− g (x)| dx→ 0 as n→∞.

The statement of lemma 3.3 follows from the Scheffe [2] theorem, (see also [8]).

Remark 3.1. If the functions gn (x) and g (x) in lemma 3.3 are the densities
of the probability distribution Fn and F , respectively, lemma 3.3 affirms that
from the convergence of densities gn (x) → g (x) as n → ∞ almost everywhere
with respect to the Lebesgue measure follows that the sequence of distributions
Fn, n ≥ 1 strongly converges to the distribution F , i.e. Fn (B)→ F (x) as n→∞
uniformly for all B ∈ β (R), where β (R) is σ algebra of Borel sets in R [2].

4. Proof of the theorem.

Denote

Ra (n, r) = P (τa = n, χa ≥ r) = P (τa = n, Sn ≥ fa (n) + r) , r > 0.

Taking into account {τa > n} ⊂ {Sn < fa (n)}, we can write

Ra (n, r) = P (τa ≥ n, Sn ≥ fa (n) + r) .

By the total probability formula for n ≥ m, we have

Ra (n, r) =

∫ ∞
r+fa(n)

n

P
(
τa ≥ n|S̄n = x

)
nPn (nx) dx.

Hence, by using the differentiation formula with respect to r, we find

wa (n, r) = P

(
τa ≥ n|S̄n =

r + fa (n)

n

)
Pn (r + fa (n)) . (4.1)

From lemma 3.1

Pm (r + fa (n)) =
1

σ
√
n
ϕ

(
r + fa (n)− nµ

σ
√
n

)
+ o

(
1√
n

)
. (4.2)

We have

fa (n)− nµ = fa (Na)− nµ+ (fa (na)− fa (Na)) =

= µ (Na − n) + f ′ (γa) (n−Na) = (n−Na)
(
f

′
a (γa)− µ

)
,

whereγa is an intermediate point between n and Na.
From (2.2) we find

fa (n)− nµ = υa
√
Na

(
f

′
a (γa)− µ

)
.



ON ASYMPTOTIC BEHAVIOR OF LOCAL PROBABILITIES . . . 77

Show that f
′
a (γa) → θas a → ∞. For definiteness we assume n ≤ γa ≤ Na. By

condition (2.2) for the boundary fa (t) we have

fa (n)

n
≥ fa (γa)

γa
≥ fa (Na)

Na
= µ.

Therefore, by (2.2) and condition 4) we obtain fa(γa)
γa
→ µ as a→∞.

Hence, from condition (2.3) we get f
′
a (γa)→ θ < µ as a→∞.

Consequently, by (4.2) we get

Pn (r + fa (n)) =
1

σ
√
n
ϕ

(
υ (µ− θ)

σ

)
(1 + o (1)) as a→∞ (4.3)

By result of the paper [1] we have

P

(
τa ≥ n|S̄n =

r + fa (n)

n

)
→ (µ− θ)h (r) as →∞ (4.4)

for all r > 0.
Then the statement of the proved theorem follows from (4.1), (4.3) and (4.4).
Now prove the corollaries of the theorem.
Proof of Corollary 2.1. For each c > 0 we have

ha (r) =
∑
n

wa (n, r) =
∑

n:|n−Na|≤c
√
Na

wa (n, r) +
∑

n:|n−Na|>c
√
Na

wa (n, r) . (4.5)

Denote

ha,1 (r) =
∑

n:|n−Na|≤c
√
Na

wa (n, r) ,

ha,2 (r) =
∑

n:|n−Na|>c
√
Na

wa (n, r) .

According to the theorem and lemma 3.2, for any c > 0

ha,1 (r)→ h (r)

(
Φ

(
λc

σ

)
− Φ

(
−λc
σ

))
as a→∞.

From the last relation, for c = c (a)→∞ we get

ha,1 (r)→ h (r) as a→∞ (4.6)

In what follows, from lemma 3.2 for c = c (a)→∞ we have∫ ∞
0

ha,2 (r) dr = P

(∣∣∣∣τa −Na√
Na

∣∣∣∣ > c

)
→ 0 (4.7)

as a→∞.
From (4.5), (4.6) and (4.7) it follows that∫ ∞

0
ha,1 (r) dr → 1 =

∫ ∞
0

h (r) dr.
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Therefore, from lemma 3.3∫ ∞
0
|ha,1 (r)− h (r)| dr → 0 as a→∞.

Then, taking into account the estimation∫ ∞
0
|ha (r)− h (r)| dr ≤

∫ ∞
0
|ha,1 (r)− h (r)| dr +

∫ ∞
0

ha,2 (r) dr,

we get the affirmation of corollary 2.1.
Proof of Corollary 2.2. For c > 0 we have

√
nP (τa = n) =

√
n

∫ ∞
0

wa (n, r) dr =

=
√
n

∫ c

0
wa (n, r) dr +

√
n

∫ ∞
c

wa (n, r) dr. (4.8)

By the theorem on majorized convergence and asymptotics (2.3) we find that
for each c > 0

√
n

∫ c

0
wa (n, r) dr → H (c)

λ

µ
ϕ

(
λv

σ

)
(4.9)

as a→∞.
Prove that the second term in (4.8) converges to zero as a→∞ and c→∞.
Indeed, we have

√
n

∫ ∞
0

wa (n, r) dr =
√
nP (τa = n, χa > c) =

√
nP (τa ≥ n, χa > c) .

Hence, taking into account {τa ≥ n} ⊂ {Sn−1 ≤ fa (n− 1)}, we get

√
n

∫ ∞
c

wa (n, r) dr ≤
√
nP (Sn−1 ≤ fa (n− 1) , Sn−1 + ξn > c+ fa (n)) ≤

≤
√
nP (c+ fa (n)− ξn < Sn−1 ≤ fa (n− 1) , ξn > c) =

=
√
n

∫ ∞
c

P (c+ fa (n)− x < Sn−1 ≤ fa (n− 1)) dF (x) , (4.10)

where F (x) = P (ξ1 ≤ x). In the last equality it is taken into account that the
random value ξn is independent of Sn−1.

On the other hand, for rather large a from the local limit theorem (lemma 3.1)
and from fa (n)− fa (n− 1)→ θ as a→∞ we have

√
nP (c+ fa (n)− x < Sn−1 ≤ fa (n− 1)) ≤

≤ K (x− c− θ) ≤ K (x− c) ,
where R is some constant.

Then from (4.9) it follows that
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√
n

∫ ∞
c

wa (n, r) dr ≤
√
nP (Sn−1 ≤ fa (n− 1) , Sn−1 + ξn > c+ fa (n)) ≤ .

The last integral tends to zero as c→∞ since M |ξ1| <∞.
Therefore,

√
n

∫ ∞
c

wa (n, r) dr → 0 as a→∞ and c→∞.

Then by (4.8) and (4.9) as c→∞ the statement of corollary 2.2 follows, since
H (c)→ 1 as c→∞.

The statement of corollary 3.3 by virtue of asymptotics (2.3) and corollary 2.2
follows from the equality

ha (r, n) =
wa (n, r)

P (τa = n)
.

Remark 4.1. Note that corollary 2.3 shows that the conditional distribution of
the overshoot χa, given τa = n strongly converges to the unconditional limit
distribution H (r). This means that the well known property of asymptotic in-
dependence of the overshoot χa and the first passage time τa as a→∞ ([7], [8],
[9]) holds in the sense of strong convergence of probability distributions ([2]).
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