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NECESSARY CONDITIONS OF RIESZ PROPERTY OF ROOT

VECTOR-FUNCTIONS OF DIRAC DISCONTINUOUS

OPERATOR WITH SUMMABLE COEFFICIENT

LEYLA Z. BUKSAYEVA

Abstract. In the paper we consider Dirac discontinuous operator on a
finite interval G = (a, b). It is assumed that its coefficient is a complex-
valued matrix-function summable on G. Necessary conditions of the
Riesz property of the systems of vector-functions of the given discontin-
uous operator are established.

1. Introduction and formulation of results

The problem of validity of the Riesz inequality for the system of functions not
possessing the completeness and orthonormalization properties was stated in the
paper [2] and this inequality was proved for root-functions of the Laplace operator.
In [3] necessary and sufficient conditions of the Bessel property and unconditional
basicity in L2 of the system of root functions of second order ordinary differential
equations was established. Later on, these and other issues for ordinary operators
of second and higher orders were studied in the papers [1,4,6-9,13-15]. For the
Dirac operator these issues were studied in [10-12].

In the present paper we study the validity of the Riesz inequality for the
systems of root vector-functions of Dirac’s discontinuous operator and establish
necessary conditions for it to be fulfilled.

Let the points {ξi}mi=0, a = ξ0 < ξ1 < ... < ξm = b realize the partition of
the interval G = (a, b). Denote Gl = (ξl−1, ξl), l = 1,m. Denote by Al a class
of absolutely continuous two-component vector-functions on Gl. Define the class
A (a, b) in the following way: if f (x) ∈ A (a, b), then for every l = 1,m there
exists a vector function fl (x) ∈ Al such that f (x) = fl (x) for ξl−1 < x < ξl.

Consider the Dirac operator

Dy = B
dy

dx
+ Ω (x) y, x ∈

m⋃
l=1

Gl,

where B = (bij)
2
ij=1, bi,3−i = (−1)i−1, bii = 0, y (x) = (y1 (x) , y2 (x))T ,

Ω (x) = diag (p (x) , q (x)), moreover p (x) and q (x) are complex-valued functions
summable on G.
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Following [3] we understand that the root vector-functions of the operator D
regardless to the form of boundary conditions and “sewing conditions”, more ex-
actly, under the eigen vector-function of the operator D, responding to the eigen
value λ we understand any identically nonzero complex-valued vector-function
0
y (x) ∈ A (a, b) satisfying almost everywhere in G the equation D

0
y = λ

0
y. Sim-

ilarly, under the associated vector-function of order r, r ≥ 1, responding to the

same λ and the eigen vector-function
0
y (x) we understand any complex-valued

vector-function
r
y (x) ∈ A (a, b) satisfying almost everywhere in G the equation

D
r
y = λ

r
y +

r−1
y .

Let {uk (x)}∞k=1 be an arbitrary system composed of the root (eigen and asso-
ciated) vector-functions of the operator D, {λk}∞k=∞ be the appropriate system
of eigen-values. Furthermore, every vector-function uk (x) enters into the system
{uk (x)}∞k=1 together with its appropriate associated functions of less order. This
means that each element uk (x) of the system {uk (x)}∞k=1 almost everywhere in
G satisfies either the equation

Duk = λkuk, (1.1)

in this case uk (x) is an eigen vector-function, or the equation

Duk = λkuk + uν(k), (1.2)

where the number ν (k) is uniquely determined by the number k and
ν (k1) 6= ν (k2) for k1 6= k2 (in this case λk = λν(k), uk (x) is an associated
vector-function of order r ≥ 1, uν(k) (x) is an associated vector-function of order
r−1) (see [5]). In the case when the lengths of the chains of associated functions is
uniformly bounded, in equality (1.2) we should take ν (k) = k−1, uν(k) = θkuk−1.
Therewith θk equals either 0 (in this case uk (x) is an eigen vector-function) or 1
(in this case uk (x) is an associated function, λk−1 = λk).

Let L2
p (G), p ≥ 1 be a space of two-component vector-functions

f (x) = (f1 (x) , f2 (x))ς with the norm

‖f‖p,2 ≡ ‖f‖p,2,G =

∫
G

|f (x)|p dx

1/p

(in the case p =∞ ‖f‖∞,2,G ≡ ‖f‖∞,2 = sup
x∈G

vrai |f (x)| ).

For f (x) ∈ L2
p (G), g (x) ∈ Lqp (G), p−1 + q−1 = 1, p ≥ 1 the ”scalar product”

(f, g) =
b∫
a

2∑
j=1

fj (x) gj (x)dx was determined.

We say that for the given system {ϕk (x)}∞k=1, ϕk (x) ∈ L2
q (a, b) the Riesz

inequality is fulfilled if there exists a constant M (p) such that for an arbitrary
f (x) ∈ L2

p (G), 1 < p ≤ 2 the following inequality is fulfilled:

∞∑
k=1

|(f, ϕk)|q ≤M ‖f‖2p,2 , (1.3)

where p−1 + q−1 = 1.
In the paper the following theorems are proved:
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Theorem 1.1. Let the functions p (x) and q (x) belong to the class
Lp (G), 1 < p ≤ 2 , the lengths of the chains of the root vector-functions be uni-

formly bounded. Then for the system {ϕk (x)}∞k=1, where ϕk (x) = uk (x) ‖uk‖−1q,2,
to satisfy the Riesz inequality it is necessary∑

|Reλk−ν|≤1

|uk (x)|q

‖uk‖qq,G
≤ K1

(
1 + sup

|Reλk−ν|≤1
|Imλk|

)
, x ∈ G, (1.4)

where ν is an arbitrary real number; K1 is a constant independent of ν;
uk (a) = uk (a+ 0), uk (b) = uk (b− 0); uk (ξi) equals any of the values uk (ξi − 0),
uk (ξ + 0), i = 1,m− 1; the summation is taken only over eigen vector-functions.

Corollary 1.1. Subject to conditions of Theorem 1.1 for the Riesz property of
the system {ϕk (x)}∞k=1, where ϕk (x) = uk (x) ‖uk‖−1q,2, it is necessary∑

|Reλk−ν|≤1

≤ K2

(
1 + sup

|Reλk−ν|≤1
|Imλk|

)
, (1.5)

where K2 is a constant independent of ν and summation is taken with regard to
multiplicity of the number λk.

Theorem 1.2. Let the functions p (x) and q (x) belong to the class Lp (G),
1 < p ≤ 2 and let the anti-a priori estimation∥∥uν(k)∥∥q,2,Gl ≤ C0 (1 + |λk|)1/p ‖uk‖q,2,Gl (1.6)

be fulfilled, where C0 is independent on order of the associated functions, l = 1,m,
p−1 + q−1 = 1. Then for the Riesz property of the system {ϕk (x)}∞k=1 , where

ϕk (x) = uk (x) ‖uk‖−1q,2, inequality (1.4) should be fulfilled, where summation is
taken over all root vector-functions.

Corollary 1.2. Let a priori estimation (1.6) be fulfilled. Then for the Riesz

property of the system {ϕk (x)}∞k=1 where ϕk (x) = uk (x) ‖uk‖−1q,2, the inequality

(1.5) should be fulfilled, where summation is taken with regard to multiplicity of
the number λk.

Remark 1.1. Theorems 1.1 and 1.2 remain valid also in the case when Ω (x) is
arbitrary, but not necessarily a diagonal matrix-function.

2. Auxiliary statements

Cite some necessary statements that will be used in the proofs of Theorems
1.1 and 1.2.

Statement 2.1 (see [10). If p (x) and q (x) belong to the class Lloc1 (Gl) and
the points x − t, x, x + t are in the domain Gl, then the following formulas are
valid

uk (x± t) = (cosλkt · I ∓ sinλkt ·B)uk (x) +

+

x±t∫
x

(sinλk (t− |ξ − x|) I ± cosλk (t− |ξ − x|)B)×

×
[
Ω (ξ)uk (ξ)− uν(k) (ξ)

]
dξ; (2.1)
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uk (x− t) + uk (x+ t) = 2uk (x) cosλkt+

+

x+t∫
x−t

(sinλk (t− |ξ − x|) I + sin (ξ − x) cosλk (t− |x− ξ|))×

×
[
Ω (ξ)uk (ξ)− uv(k) (ξ)

]
dξ, (2.2)

where I is a unit operator in E2.
Statement 2.2 (see [10]). Let the functions p (x) and q (x) belong to the class

L1 (G1). Then there exists the constants Ci (nk, Gl), i = 1, 2 independent of λk,
such that the following estimations are valid∥∥uν(k)∥∥∞,2,Gl ≤ C1 (nk, Gl) (1 + |Imλk|) ‖uk‖∞,2,Gl (2.3)

‖uk‖∞,2,Gl ≤ C2 (nk, Gl) (1 + |Imλk|)1/r ‖uk‖r,2,Gl (2.4)

where nk is the order of the associated vector-function uk (x) , r ≥ 1, l = 1,m.
Statement 2.3. Let the functions p (x) and q (x) belong to the class L1 (G).

Then for the root functions uk (x) the following estimation is valid:

‖uk‖∞,2,Gl ≤ C3 (1 + |Imλk|)1/r ×

×
{
‖uk‖r,2,Gl + (1 + |Imλk|)−1

∥∥uν(k)∥∥r,2,Gl} , r ≥ 1, (2.5)

where the constant C3 is independent of λk, order nk of the root vector-function
uk (x) and on l, l = 1,m.

Proof. Denote by R the number (K (1 + |Imλk|))−1, where the number

K ≥ max

{
1, 2

(
min
l
|Gl|

)−1}
is chosen so that R ≤ min

l

|Gl|/4, and for any

set E ⊂ G,mesE ≤ 2R, it is fulfilled ω (R) = sup
E⊂G

{
‖Ω‖1,E

}
≤ 1

8 , where

‖Ω‖1,E =
∫
E

(|p (x)|+ |q (x)|) dx.

Let x ∈
[
ξl−1,

(ξl−1+ξl) /2
]
. Having written formula (2.2) for the points x, x+ t,

x+ 2t, where t ∈ [0, R] and used the inequality (for |Imz| ≤ 1)

|sin z| , |cos z| ≤ 2, |sin z| ≤ 2 |z| (2.6)

and the Holder inequality, we get

|uk (x)| ≤ 4 |uk (x+ t)|+ |uk (x+ 2t)|+ 4ω (R) ‖uk‖∞,2,Gl +

+4 (2t)
1/r′

∥∥uν(k)∥∥r,2,Gl , r−1 + r
′−1 = 1.

Having applied the operation R−1
R∫
0

dt, to each side of the last inequality, we

have

|uk (x)| ≤ 5R
−1/r ‖uk‖r,2,Gl + 4ω (R) ‖uk‖∞,2,Gl + 4R

1/r′
∥∥uν(k)∥∥r,2,Gl .

This inequality is fulfilled in the case x ∈
[
(ξl−1+ξl)

2 , ξl

]
. Consequently, with

regard to the inequality ω (R) ≤ 1/8, we get

‖uk‖∞,2,Gl ≤ 10R
−1/r ‖uk‖r,2,Gl + 8R

1/r′
∥∥uν(k)∥∥r,2,Gl .
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Hence, by virtue of definition of the number R it follows

‖uk‖∞,2,Gl ≤ 10K
1/r (1 + |Imλk|)1/r ‖uk‖r,2,Gl +

+
8

K1/r′ (1 + |Imλk|)1/r
′

∥∥uν(k)∥∥r,2,Gl .
Taking into account r ≥ 1, K ≥ 1, hence we get estimation (2.5) with the

constant C3 = 10K. Statement 2.3 is proved. �

3. Proof of results

Proof of theorem 1.1.
Introduce the indices set Iµ,ν = {k : |Reλk − ν| ≤ 1, |Imλk| ≤ µ}, where

µ = sup
|Reλk−v|≤1

|Imλk|, where v is an arbitrary real number. In the case µ = ∞

the statements of the theorem are obvious. Therefore, it suffices to consider the
case µ <∞.

Choose the numberK ≥ max

{
1, 2

(
min
l
|Gl|

)−1}
so thatR = (K (1 + µ))−1 ≤

≤ min
l

|Gl|
4 and for any E ⊂ G, |E| ≤ 2R, ωp (R) ≤ L−1 be fulfilled, where

L is a positive number, whose choice of the value will be determined later,

ωp (R) = sup
E⊂G

{
‖Ω‖P,E

}
‖Ω‖P,E =

(∫
E

(|p (x)|p + |q (x)|p) dx
)1/p

.

Let x ∈
[
ξl−1,

(ξl−1+ξl)
2

]
. Write the mean value formula (2.2) for the points

x, x+ t, x+ 2t, where t ∈ [0, R] .

uk (x) = 2uk (x+ t) cosλkt− uk (x+ 2t) +

+

x+2t∫
x

{sinλk (t− |x+ t− ξ|) I + sgn (ξ − x− t) cosλk (t− |x+ t− ξ|)B}×

× [Ω (ξ)uk (ξ)− θkuk−1 (ξ)] dξ.

Adding and subtracting 2uk (x+ t) cos νt, |Reλk − ν| ≤ 1, in the right hand side
of this equality, we represent this formula in the form

uk (x) = 2uk (x+ t) cos νt− uk (x+ 2t) + 4uk (x+ t) sin
λk + ν

2
t sin

ν − λk
2

t+

+

x+2t∫
x

{sinλk (t− |x+ t− ξ|) I + sgn (ξ − x− t) cosλk (t− |x+ t− ξ|)B}×

× [Ω (ξ)uk (ξ)− θkuk−1 (ξ)] dξ.

At first in the third addend we apply formula (2.1) for uk (x+ t), and the apply

the operation R−1
R∫
0

dt:

uk (x) = R−1
∫
G

uk (t)V (t) dt+
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+R−1
R∫
0

(cosλktI − sinλktB) sin
ν + λk

2
t sin

ν − λk
2

tdtuk (x) +

+R−1
R∫
0

x+t∫
x

(sinλk (t− |ξ − x|) I + cosλk (t− |ξ − x|)B)×

× [Ω (ξ)uk (ξ)− θkuk−1 (ξ)] dξ sin
ν + λk

2
t sin

ν − λk
2

tdt+

+R−1
R∫
0

x+2t∫
x

(sinλk (t− |x+ t− ξ|) I + sgn (ξ − x− t) cosλk (t− |x+ t− ξ|)B)×

× [Ω (ξ)uk (ξ)− θkuk−1 (ξ)] dξdt = R−1
∫
Gl

uk (t)V (t) dt+ J1 + J2 + J3, (3.1)

where V (t) = 2 cos ν (x− t) − 1
2 for x ≤ t ≤ x + R, V (t) = −1

2 for
x+R < t ≤ x+ 2R and V (t) = 0 for t /∈ [x, x+ 2R].

Let k ∈ Iµ,ν . Using inequality (2.6), we find

|J1| ≤ 16R |ν − λk| |uk (x)| ≤ 16R (1 + |Imλk|) |uk (x)| ≤ 16

K
|uk (x)| . (3.2)

Having applied inequality (2.6) and the Holder inequality, we find

|J2| ≤ 64R−1
(
ωp (R)R ‖uk‖q,2,Gl + ‖θkuk−1‖∞,2,Gl

R2

2

)
≤

≤ 64

(
ωp (R) ‖uk‖q,2,Gl +

R

2
‖θkuk−1‖∞,2,Gl

)
(3.3)

|J3| ≤ 4
(
ωp (R) ‖uk‖q,2,Gl +R ‖θkuk−1‖∞,2,Gl

)
. (3.4)

Allowing for estimations (3.2)-(3.4), from (3.1) we get

|uk (x)| ≤ R−1

∣∣∣∣∣∣∣
∫
Gl

uk (t)V (t) dt

∣∣∣∣∣∣∣+
+

16

K
|uk (x)|+ 68ωp (R) ‖uk‖q,2,Gl + 36R ‖θkuk−1‖∞,2,Gl .

This inequality is proved for x ∈
[
(ξl−1+ξl)

2 , ξl

]
in the same way. In this case

V (t) = −1
2 for x− 2R ≤ t < x−R,

V (t) = 2 cos ν (x− t)− 1

2
for x−R ≤ t ≤ x, V (t) = 0 for t /∈ [x− 2R, x] .

Chosing K ≥ 32, we hence get that for any x ∈ Gl the following inequalities
are valid:

|uk (x)| ≤ 2

R

∣∣∣∣∣∣∣
∫
Gl

uk (t)V (t) dt

∣∣∣∣∣∣∣+ 136ωp (R) ‖uk‖q,2,Gl + 72R ‖θkuk−1‖∞,2,Gl .
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By virtue of the inequality

∣∣∣∣ m∑
i=1
ai

∣∣∣∣q ≤ mq−1
m∑
i=1
|ai|q we get that for any x ∈ Gl

it holds the inequality

|uk (x)|
‖uk‖qq,2

≤ 2q

Rq
4q−1


∣∣∣∣∣∣∣
∫
Gl

u1k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2 +

∣∣∣∣∣∣∣
∫
Gl

u2k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2

+

+4q−1
{

(136ωp (R))q + (72R)q ‖θkuk−1‖q∞,2,Gl ‖uk‖
−q
q,2

}
, (3.5)

where uk (t) =
(
u1k (t) , u2k (t)

)T
.

Consider only eigen vector-functions. In this case θk = 0. Then for any x ∈ Gl
by the Riesz inequality from (3.5) we have∑

k∈J
|uk (x)|q ‖uk‖−qq,2 ≤

2q+1

R
4q−1 ‖V ‖qp + 4q−1 (136ωp (R))q

∑
k∈J

1,

where J ⊂ Iµ,ν is an arbitrary finite set of indices. From the expression of the

function V (t) it is seen that ‖V ‖p ≤ 3R1/p. Consequently, it holds the inequality∑
k∈J
|uk (x)|q ‖uk‖−qq,2 ≤ 3q · 23q−1R

q
p
−q

+ 4q−1 (136ωp (R))q
∑
k∈J

1, x ∈ Gl. (3.6)

As the number R is realized independent of specific Gl, then inequality (3.6)
will be valid for arbitrary x ∈ G. Integrating this inequality with respect to x ∈ G
and chosing R so small (the number K so large) that
4q−1 (136ωp (R))q ≤ 4q−1

(
136L−1

)q
< 1

2mesG . As a result we arrive at the in-
equality ∑

k∈J
1 ≤ 3q23q (mesG)R−1. (3.7)

By virtue of arbitrariness of the finite set J ⊂ Iµ,ν and definition of the number
R, we get ∑

k∈Iµ,ν

1 ≤ const

(
1 + sup

k∈Iµ,ν
|Imλk|

)
, (3.8)

where the summation is taken only over eigen vector-functions.
As the lengths of the chains of the root vector-functions are uniformly bounded,

then estimation (1.5) follows from (3.8). Allowing for (3.7), from inequality (3.6)
we find that for x ∈ G∑

k∈J
|uk (x)|q ‖uk‖−qq,2 ≤

(
3q23q−1 + 3q23q−1

)
R−1 = 3q23qR−1,

where the summation is taken only over eigen vector-functions. Hence by virtue of
arbitrariness of the finite set J ⊂ Iµ,ν and definition of the number R, estimation

(1.4) follows for x ∈ G. As this estimation is valid at every Gl, l = 1,m, then it

is fulfilled on G, if we consider that u
(a)
k = uk (a+ 0), uk (b) = uk (b− 0), uk (ξi),

i = 1,m− 1, equals any of the values uk (ξi − 0), uk (ξi + 0). Theorem 1.1 is
proved.
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Proof of theorem 1.2. At first we notice that in formula (3.1) the expression
θkuk−1 (ξ) should be replaced by uν(k) (ξ). Then for J2 and J3 the following
estimations are valid

|J2| ≤ 64
(
ωp (R) ‖uk‖q,2,Gl +R1/p

∥∥uν(k)∥∥q,2,Gl) ,
|J3| ≤ 4

(
ωp (R) ‖uk‖q,2,Gl +R

1
p
∥∥uν(k)∥∥q,2,Gl) .

And instead of (3.5) the following inequality will hold

|uk (x)|q

‖uk‖qq,2
≤ 23q−2

Rq


∣∣∣∣∣∣∣
∫
Gl

u1k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2 +

∣∣∣∣∣∣∣
∫
Gl

u2k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2

+

+22q−2
{

(136ωp (R))q +
(

136R
1
p

)q ∥∥uν(k)∥∥qq,2,Gl ‖uk‖−qq,2} (3.5′)

Here we use anti a-priori estimation (1.6). As a result we have

|uk (x)|q

‖uk‖qq,2
≤ 23q−2

Rq


∣∣∣∣∣∣∣
∫
Gl

u1k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2 +

∣∣∣∣∣∣∣
∫
Gl

u2k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2

+

+22q−2
{

(136ωp (R))q +
(

136R
1
p

)q
Cq0 (1 + |Imλk|)

q
p

}
≤

≤ 23q−2

Rq


∣∣∣∣∣∣∣
∫
Gl

u1k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2 +

∣∣∣∣∣∣∣
∫
Gl

u2k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2

+

+22q−2
{

(136ωp (R))q + (136C0)
q (R (1 + µ))

q
p

}
≤

≤ 23q−2

Rq


∣∣∣∣∣∣∣
∫
Gl

u1k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2 +

∣∣∣∣∣∣∣
∫
Gl

U2
k (t)V (t) dt

∣∣∣∣∣∣∣
q

‖uk‖−qq,2

+

+22q−2
{

(136ωp (R))q + (136C0)
qK

q
p

}
,

where x ∈ Gl, k ∈ Iµ,ν .
By virtue of the Riesz inequality, from this inequality if follows∑

k∈J
|uk (x)|q ‖uk‖−qq,2 ≤

23q−1

Rq
‖V ‖qp +

+22q−2
{

(136ωp (R))q + (136C0)
qK
− q
p

}∑
k∈J

1

where J ⊂ Iµ,ν is an arbitrary finite set of indices.

Here taking ‖V ‖p ≤ 3R
1
p into account, we find∑

k∈J
|uk (x)|q ‖uk‖−qq,2 ≤

≤ 3q23q−1R−1 + 22q−2
{

(136ωp (R))q + (136C0)
qK
− q
p

}∑
k∈J

1, x ∈ Gl (3.6′)
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This inequality will be valid on G as the choice of the number K is independent
on specific Gl.

Integrating this inequality with respect to x ∈ Gl and chosing K so large (R
rather small) so that

22q−2
{

(136ωp (R))q + (136C0)
qK
− q
p

}
<

1

2mesG
,

we arrive at inequality (3.7). Hence in its turn estimation (3.8) follows. There-
with, summation is taken not only over eigen vector-functions, but also over all
root vector-functions. The proof of Theorem 1.2 is completed in the same way as
the proof of theorem 1.1, with regard to the last obtained inequalities (3.8) and
(3.6′). Theorem 1.2 is proved.

References

[1] V.D. Budaev, Criteria for the Bessel property and the Riesz basis property of system
of root functions of differential operators. I, Diff. Uravnenia., 27 (12) (1991), 2033-
2044.

[2] V.A. Il’in, Inequalities of Bessel and Hausdorff-Young-Riesz type in the system of
eigenfunctions of the Laplace operator for functions in the class of radial functions,
Dokl. Akad. Nauk, SSSR, 291 (2) (1986), 284-288.

[3] V.A. Il’in, Unconditional basis property on a closed interval of systems of eigen
and associated functions of a second-order differential operator, Dokl. Akad. Nauk,
SSSR, 273 (5) (1983), 1048-1053.

[4] N.B. Kerimov, Unconditional basis property of a system of eigen and associated
functions of a fourth-order differential operator. Dokl. Akad. Nauk, SSSR, 286 (4)
(1986), 803-808.

[5] N.B. Kerimov, On the Basis properlry and uniform minimality of system of root
functions of differential operators. I, Diff. Uravnenia, 32 (3) (1996), 317-322.

[6] V.M. Kurbanov, E.D. Ibadov, On the properties of systems of root fuirctions of a
second-order discontinuous operator, ISSN 1064-5624, Doklady Mathematics, 80 (1)
(2009), 516-529.

[7] V.M. Kurbanov, On the distribution of eigenvalues and a criterion for the Bessel
property of root functions of a differential operator. I, Diff. Uravnenia, 41 (4) (2005),
464-478.

[8] V.M. Kurbanov, On the distribution of eigenvalues and a criterion for the Bessel
property of root functions of a differential operator. II, Diff. Uravnenia, 41 (5)
(2005), 623-659.

[9] V.M. Kurbanov, On the Hausdorff-Young inequality for systems of root vector func-
tions for an nth order differential operator, Diff. Uravnenia, 33 (3) (1997), 358-367.

[10] V.M. Kurbanov, On the Bessel property and the unconditional basis property of
systems of root vector functions of the Dirac operator, Diff. Uravnenia, 32 (12)
(1996), 1608-1617.

[11] V.M. Kurbanov, A.I. Ismailova, Properties of root vector functions for the one-
dimensional Dirac operator, Dokl. Akad. Nauk, 433 (6) (2010), 736-740.

[12] V.M. Kurbanov, A.I. Ismailova, Componentwise uniform equiconvergence of expan-
sions in root vector functions of the Dirac operator with the trigonometric expansion,
ISSN 0012-2661, Differential Equations, 48 (5) (2012), 655-669.

[13] L.V. Kritskov, A uniform estimate for the order of associated functions, and the dis-
tribution of eigenvalues of a one-dimensional Schrddinger operator, Diff. Uravnenia,
25 (7) (1989), 1121-1129.



NECESSARY CONDITIONS OF RIESZ PROPERTY OF . . . 115

[14] I.S. Lomov, The Bessel inequality, the Riesz theorem, and the unconditional asis
property for root vectors of ordinary differential operatorc, Vestnik Moskov. Univ.
Ser. I Mat. Mekh., (5) (1992), 42-52.

[15] A.M. Sarsenbi, Criteria for the Riesz basis property of systems of eigen and asso-
ciated functions for higher-order differential operators on an interval, Dokl. Aknd.
Nauk, 419 (5) (2008), 601-603.

Leyla Z. Buksayeva
Azerbaijan State Pedagogical University, 34, Uzeyir Hajibeyov str., Baku, Azer-

baijan
E-mail address: buksayeva79@mail.ru

Received: February 22, 2016; Accepted: May 3, 2016


