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GLOBAL BIFURCATION OF A SECOND ORDER NONLINEAR

ELLIPTIC PROBLEM WITH AN INDEFINITE WEIGHT

FUNCTION

ZIYATKHAN S. ALIYEV AND SHANAY M. HASANOVA

Abstract. In this paper we consider bifurcation of solutions of nonlin-
ear eigenvalue problems for second order elliptic operator with indefinite
weight function and Dirichlet boundary condition. We show the exis-
tence of an unbounded continua of positive or negative solutions bifur-
cating from trivial solutions corresponding to the principal eigenvalues.

1. Introduction

Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω, and let L be
the differential operator in Ω defined by

Lu = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xi

)
+ c(x)u.

We assume that the aij(x) ∈ C1(Ω̄), aij(x) = aji(x) for x ∈ Ω, c(x) ∈ C(Ω̄),

c(x) ≥ 0 for x ∈ Ω, and L is uniformly elliptic in Ω, i.e., there exists positive
constant β such that

n∑
i,j=1

aij(x)ξiξj ≥ β|ξ|2

for all x ∈ Ω and ξ ∈ Rn. Moreover, let a(x) be a continuous function on Ω
such that |Ωσ

a | > 0 for σ ∈ {+ , −}, where Ωσ
a = {x ∈ Ω : σa(x) > 0} and

|Ωσ
a | = meas{Ωσ

a}.
We consider the following nonlinear eigenvalue problem

Lu = λ( a(x)u+ h(x, u,Du, λ)) in Ω,
u = 0 on ∂Ω.

(1.1)

Here Du = ( ∂u∂x1 ,
∂u
∂x2

, ... , ∂u∂xn ), λ is a real parameter, and the nonlinear term h is

a continuous function on Ω̄× R× Rn × R such that

h(x, u, v, λ) = o(|u|+ |s|) as |u|+ |v| → 0, (1.2)

uniformly in x ∈ Ω and λ ∈ Λ, for every bounded interval Λ ⊂ R.
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The global bifurcation for nonlinear eigenvalue problem were studied by Ra-
binowitz in well known paper [19] for the case a(x) > 0, x ∈ Ω, and all the
coefficients and the nonlinear terms are of class C1(Ω). Note that in the case
a(x) > 0, x ∈ Ω, the linear problem obtained from (1.1) by setting h ≡ 0 pos-
sesses unique simple principal eigenvalue µ1, where by a principal eigenvalue we
mean a value of λ ∈ R for which problem (1.1) for h ≡ 0 admits a positive solu-
tion u. In [19] Rabinowitz showed that if L : E → E ( E be a real Banach space)
linear compact operator and µ be a characteristic value of L of odd multiplicity,
then the closure of the set of nontrivial solutions of (1.1) possesses a continuum
Lµ such that (µ, 0) ∈ Lµ and Lµ either (i) meets infinity in R× E, or (ii) meets
(µ̃, 0), where µ̃ 6= µ is a characteristic value of L. Using a positivity argument in
the partial differential equation Rabinowitz [19] prove that the continuum Lµ1 of
positive or negative solutions of problem (1.1) for a > 0 bifurcating from (µ1, 0)
is unbounded. In the our case the corresponding linear problem has two sim-
ple positive and negative principal eigenvalues λ1 and λ−1 respectively. At first
glance, it seems that a continuum Lλ1 bifurcating from the point (λ1, 0) of may
also contain a bifurcation point (λ1, 0), and is therefore bounded. But we using
maximum principle, Berestycki [2] type approximation and regularization, and
Dancer [6] theorem shown that each of continuum Lλ−1 and Lλ1 decompose into
two subcontinua which contain the points (λ−1, 0) and (λ1, 0) respectively, and
are both unbounded.

In the papers [2, 3, 14, 15, 16, 18, 21] were studied global bifurcation for some
nonlinearizable second and fourth order elliptic ordinary and partial differential
equations with definite weight functions.

2. On the negative and positive principal eigenvalues of
corresponding linear problem

In this section we are interested in the basic properties of principal eigenvalues
of linear problem obtained from (1.1) by setting h ≡ 0, i.e. of eigenvalue problem

Lu = λ a(x)u in Ω,
u = 0 on ∂Ω.

(2.1)

The existence of a principal eigenvalue of (2.1) was first shown by Manes and
Micheletti [17], Hess and Kato [8] and Lopez-Gomez [13] extended the theorem
of Manes and Micheletti to cover the case when L is not necessarily selfadjoint.
Independently, Brown and Lin [4] obtained the theorem when L = −∆. Basically,
the following is known: if a does not change sign, then (2.1) admits one principal
eigenvalue; if a changes sign, then problem (2.1) admits two principal eigenvalues;
one positive and the other negative. The proofs of Manes and Micheletti, Brown
and Lin and Lopez-Gomez are based on the variational characterization of the
principal eigenvalue; the proof of Hess and Kato (see also [7]) uses well known
Krein-Rutman’s theorem (see [12]).

Here we show the existence and present the basic properties of the principal
eigenvalues of the problem (2.1) using the method Brown and Lin [4].

For any integer k ∈ N, let Ck(Ω) denote the usual Banach space of real-valued,
continuously differentiable (to order k) functions on Ω and, for α ∈ (0, 1), let
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Ck, α(Ω) denote the set of functions in Ck((Ω) whose k-th order derivatives are
Hölder continuous with exponent α. We let | · |k and | · |k, α denote the standard

sup-norms on these spaces. For p > 1, let W k,p(Ω) denote the standard Sobolev
space of functions whose distributional derivatives, up to order k, belong to Lp(Ω).
We let || · ||p and || · ||k,p denote the norm on Lp(Ω) and W k,p(Ω), respectively.

It is well known that the differential operator L (which determined in § 1) for
all u ∈ D(L) = {u ∈ W 2,2(Ω) : u(x) = 0 for x ∈ ∂Ω} is a densely defined
self-adjoint operator on L2(Ω) whose spectrum contains only the eigenvalues [10]

0 < µ1 < µ2 ≤ ... ≤ µk 7→ +∞.
For all u ∈ D(L) let

Vλ(v) = (Lv, v)− λ
∫
Ω

av2dx

Lemma 2.1. If there exists a nonnegative eigenfunction corresponding to an
eigenvalue λ of problem (2.1), then Vλ(v) ≥ 0 for all v ∈ D(L).
Proof. Let u is nonnegative eigenfunction associated to the eigenvalue λ. Then
u is an eigenfunction corresponding to the eigenvalue of the spectral problem

Lu− λ a(x)u = µu in Ω,
u = 0 on ∂Ω.

(2.2)

Consider the differential operator A : D(L)→ L2(Ω) defined by

Au = Lu− λau.
It is well known [5, 10] that A is a self-adjoint operator whose spectrum contains
only eigenvalues η1 < η2 < ... < ηk 7→ +∞ and that the smallest eigenvalue η1

is simple and the corresponding eigenfunction v1 does not change sign in Ω. Note
that u is not orthogonal to v1. Since eigenfunctions corresponding to distinct
eigenvalues of self-adjoint operators are orthogonal, it follows that u must be an
eigenfunction corresponding η1, i.e. η1 = 0. It follows by the spectral theorem
(see [10]) that (Av, v) > η1(v, v) = 0 for all v ∈ D(A), which is equivalent to the
inequality Vλ(v) ≥ 0 for all v ∈ D(L). The proof of lemma is complete.

Now consider the Rayleigh quotient

R(v) =

∫
Ω

aij
∂v
∂xi

∂v
∂xj

dx+
∫
Ω

cv2dx∫
Ω

av2dx
. (2.3)

Lemma 2.2. Suppose that

λ1 = inf {R(v) : v ∈ D(L),

∫
Ω

au2dx > 0}. (2.4)

Then λ1 > 0.
Proof. By (2.4) it follows from (2.3) that

Vλ1(v) =

∫
Ω

aij
∂v

∂xi

∂v

∂xj
dx+

∫
Ω

cv2dx− λ1

∫
Ω

av2dx ≥ 0 for all v ∈ D(L).

It is known by the spectral theorem that

(Lv, v) ≥ τ1(v, v) for all v ∈ D(L),
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where τ1 is a smallest eigenvalue of operator L. Because, if v ∈ D(L) and∫
Ω

av2dx > 0, then we have

R(v) =
(Lv, v)∫

Ω

au2dx
≥ τ1

(v, v)∫
Ω

au2dx
≥ τ1

max
x∈Ω
|a(x)|

from which it follows that

λ1 ≥
τ1

max
x∈Ω
|a(x)|

> 0.

The proof of Lemma 2.2 is complete.
Lemma 2.3. Let λ ∈ (0, λ1). Then there exists positive number κ0 (a depends
on λ) such that Vλ(v) > κ0||v||22 for all v ∈ D(L).
Proof. Suppose that λ = (1− s)λ1 where s ∈ (0, 1). Then we have

Vλ(v) = (Lv, v)− λ
∫
Ω

au2dx = λ
λ1
Vλ1(v)+(

1− λ
λ1

)
(Lv, v) ≥ s (Lv, v) ≥ sµ1(v, v) = sµ1||v||22.

Here we have taken into account the fact that by the spectral theorem the in-
equality (Lv, v) ≥ µ(v, v) holds for all v ∈ D(L). Then, assuming κ0 = sµ1 we
get

Vλ(v) > κ0(v, v) for all v ∈ D(L),

which completes proof of Lemma 2.3.
Lemma 2.4. If λ > 0 and λ 6= λ1, then λ is not an eigenvalue of problem (2.1)
having a non-negative eigenfunction.
Proof. If λ > λ1 then it follows from the definition of λ1 (see (2.4)) that there
exists v ∈ D(L) such that∫

Ω

av2dx > 0 and λ > R(v) =
(Lv, v)∫

Ω

av2dx
.

Then by (2.3) we obtain

Vλ(v) = (Lv, v)− λ
∫
Ω

av2dx < 0

which contrary to Lemma 2.1.
In the case 0 < λ < λ1 by Lemma 2.3 we have

Vλ(v) = (Lv, v)− λ
∫
Ω

av2dx ≥ κ0||v||22 > 0 for all v ∈ D(L). (2.5)

But on the other hand if λ is an eigenvalue of problem (2.1) and uλ is a corre-
sponding eigenfunction then by multiplying (2.1) by uλ and then integrating over
Ω we obtain ∫

Ω

aij
∂uλ
∂xi

∂uλ
∂xj

dx+

∫
Ω

cu2
λdx = λ

∫
Ω

au2
λdx
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from which it follows that

Vλ(uλ) = (Luλ, uλ)− λ
∫
Ω

auλ
2dx =

=

∫
Ω

aij
∂uλ
∂xi

∂uλ
∂xj

dx+

∫
Ω

cu2
λdx− λ

∫
Ω

au2
λdx = 0

which contradicts inequality (2.5). The proof lemma is complete.
Theorem 2.1. λ1 is an eigenvalue of spectral problem (2.1). Moreover λ1 is
simple and the corresponding eigenfunction u+

1 can be chosen so that u+
1 (x) > 0

for all x ∈ Ω and
∂u+1 (x)
∂ω < 0 for all x ∈ ∂Ω, where

∂u+1 (x)
∂ω is the outward normal

derivative to ∂Ω.
Proof. We consider the following eigenvalue problem

Lu− λ a(x)u = µu in Ω,
u = 0 on ∂Ω.

(2.6)

Let operator A1 : D(L)→ L2(Ω) id determined by

(A1u)(x) = (Lu)(x)− λ1a(x)u(x).

It is obvious that λ1 is an eigenvalue of problem (2.1) with corresponding eigen-
function u+

1 if and only if 0 is an eigenvalue of operator A1 and by virtue of (2.6)
with corresponding eigenfunction u+

1 . The smallest eigenvalue τ1 of operator A1

is given by

τ1 = inf

{∫
Ω

aij
∂v
∂xi

∂v
∂xj

dx+
∫
Ω

cv2dx− λ1

∫
Ω

au2dx : v ∈ D(L)

}
=

= inf {Vλ1(v) : v ∈ D(L)} .

(2.7)

From the definition of λ1 it follows that Vλ1(v) ≥ 0 for all v ∈ D(L). Hence we
have τ1 ≥ 0. Moreover, there exists a sequence {vm}∞m=1 ⊆ D(L) such that∫

Ω

av2
mdx = 1,

and

lim
m→∞

R(vm) = lim
m→∞


∫
Ω

aij
∂vm
∂xi

∂vm
∂xj

dx+

∫
Ω

cv2
mdx

 = λ1.

Thus lim
m→∞

V (vm) = 0 and by (2.7) τ1 ≤ 0 which implies that τ1 = 0 is the first

eigenvalue of problem (2.7) and consequently τ1 is simple and the corresponding
eigenfunction u+

1 can be chosen to be positive on Ω.

Now we choose a function a1 ∈ C(Ω) so to satisfy the relation

a(x) + a1(x) > 0 for all x ∈ Ω.

Note that λ1 is an eigenvalue of linear problem

Lu+ a1(x)u = λ ã(x)u in Ω,
u = 0 on ∂Ω.

(2.8)
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with corresponding positive eigenfunction u+
1 , where ã(x) = a(x) + a1(x) and by

above ã(x) > 0 for all x ∈ Ω. Hence λ1 is the smallest eigenvalue of the spectral

problem (2.8). Then by a theorem of Krein-Rutman [5] it follows that
∂u+1 (x)
∂ω < 0

for all x ∈ ∂Ω. This completes the proof.
Theorem 2.2. The problem (2.1) has first negative eigenvalue λ−1 which is
simple and the corresponding eigenfunction u+

−1 can be chosen so that u+
−1(x) > 0

for all x ∈ Ω and
∂u+−1(x)

∂ω < 0 for all x ∈ ∂Ω.

Proof. It is clear that Ω−a = −Ω+
−a . Then we have |Ω+

−a| = |Ω−a | > 0. The
problem (2.1) can be rewritten in the following equivalent form

Lu = λ̂ â(x)u in Ω,
u = 0 on ∂Ω ,

(2.9)

where λ̂ = −λ and â(x) = − a(x), x ∈ Ω. By Theorem 2.1 the problem (2.9)

possesses a smallest positive eigenvalue λ̂1, which is simple, and corresponding

eigenfunction can be chosen so that û+
1 (x) > 0 for all x ∈ Ω and

∂û+1 (x)
∂ω < 0 for

all x ∈ ∂Ω. If we put λ−1 = −λ̂1 and u+
−1 = û+

1 (x) then we get the need result.
The proof of theorem is complete.
Corollary. The negative eigenvalue λ−1 is defined from the following relation

λ−1 = sup {R(v) : v ∈ D(L),

∫
Ω

au2dx < 0} .

Remark 2.1. λ1 (λ−1) is a unique positive (negative) principal eigenvalue of
problem (2.1).
Remark 2.2. In what follows we shall assume that |u+

k |1, α = 1 for k ∈ {− , + }.
Hence it will make u+

k , k ∈ {− , + } , unique.

3. Global bifurcation of solutions of problem (1.1) from principal
eigenvalues

It is well known that, when p > N , there exists a constant γ such that

|u|1,1−n/p ≤ γ ||u||2, p for all u ∈W 2, p.

In the following, α ∈ (0, 1) is given and p will denote a real number such that
p > n and α < 1− n/p. Thus W 2, p is compactly embedded in C1, α (see [1, 9]).

Let E = {u ∈ C1, α
(
Ω
)

: u = 0 on ∂Ω} be the Banach space with the

usual norm | · |1, α . (λ, u) is called a solution of problem (1.1) if u ∈ W 2, p(Ω)
and (λ, u) satisfies (1.1) (see Remark 3.1 below). Let P+ = {u ∈ E : u >
0 in Ω and ∂u

∂ω < 0 on ∂Ω} and P− = −P+, P = P− ∪ P+. The sets P−, P+

and P are open subsets of E. Moreover, if (λ, u) ∈ ∂P then the function u has
either an interior zero in Ω or ∂u

∂ω = 0 at some point on ∂Ω.
The closure of the set of nontrivial solutions of (1.1) will be denoted by L and

let E = R× E, Pν = R× P ν , ν ∈ {+ , −} and P = R× P .
The main result of this paper is the following theorem.
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Theorem 3.1. For each k ∈ {−1, 1 } and each ν ∈ {− , +} there exists a
continuum Lνk of solutions of problem (1.1) in Pν∪{(λk, 0)} which contain (λk, 0)
and is unbounded in E.
Proof. Step 1. We assume that aij ∈ C2(Ω), c, a ∈ C1(Ω) and h ∈ C1(Ω × R ×
Rn × R).

We define nonlinear solution operator of E → E as follows: for each (λ, u) ∈ E ,
let v = G(λ, u) be the solution of the following non-homogenous linear problem

Lv = λ(a(x)u+ h(x, u,Du, λ)) in Ω,
v = 0 on ∂Ω.

(3.1)

It follows by linear existence theory of the linear uniformly elliptic partial differ-
ential equation that there is a unique solution of (3.1) (see [9, 11]). The Schauder
theory (see, eg., [9]) implies that the operator H is completely continuous. Then
each solution (λ, u) of problem (1.1) is a solution of equation

u = G(λ, u), (3.2)

and conversely.
For (λ, u) ∈ E , let w ≡ K(λ, u) denote the solution operator of

Lw = λau in Ω, w = 0 in ∂Ω. (3.3)

It obvious that K(λ, u) = λLu, where, as above L is linear compact operator of
E → E (see [13]).
Remark 3.1. The operator L is injective, since L is closable in E. In fact,
L admits a closed extension in Lp(Ω), 1 < p < ∞, having domain W 1,p

0 (Ω) ∩
W 2,p(Ω).

Moreover, by the condition (1.2) it follows that

H(λ, u) ≡ G(λ, u)− λLu = o(|u|1,α) as |u|1,α → 0 (3.4)

uniformly for λ ∈ Λ. Thus the problem (1.1) can be rewritten in the equivalent
form

u = λLu+H(λ, u). (3.5)

By [11; Ch. 4, § 2, Lemma 2.1] and condition (3.4) problem (3.5) is linearizable
in the neighborhood of zero, and the linearization of (3.5) at u = 0 is the spectral
problem

u = λLu. (3.6)

Obviously, the problem (3.6) is equivalent to the spectral problem (2.1). Hence
the principal eigenvalues λ−1 and λ1 of problem (2.1) are the characteristic values
of L and are simple. Then by [11; Ch. 4, § 2, Theoerm 2.1] (λ−1, 0) and (λ1, 0) are
bifurcation points of (3.5), and these points correspond to continuous branches
of non-trivial solutions. Moreover, by [19; Theorem 1.3] for each k ∈ {−1 , 1 }
there exists a continuum Lk of L such that (λk, 0) ∈ Lk and Lk either (i) is
unbounded in E , or (ii) contain (λs, 0), where λk 6= λs ∈ X(L), X(L) denote the
set of characteristic values of L. By [19; Lemma 1.24] it follows that if (λ, u) ∈ Lk
and near (λk, 0), then u = βu+

k + w with β = o(|β|) as β → 0. Since P ν open

subset in E and u+
k ∈ P by Theorems 2.1 and 2.2 and Remarks 2.1 and 2.2, then

we have

(λ, u) ∈ P and ((Lk\{(λk, 0)}) ∩By, k) ⊂ P.
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for all small y > 0, where By, k is an open ball in E of radius y centered at (λk, 0).
Note that if (λ, u) ∈ Lk, then λ 6= 0. Indeed, in this case λ = 0 is an eigenvalue
of linear eigenvalue problem (2.1) which is impossible by maximum principle (see
[5, 9, 13]). Moreover, if (λ, u) ∈ E is a solution of problem (2.1), then (λ, u) is
also a solution of the following nonlinear problem

Lu+ (−a−(x))u = λ( a+(x)u+ h(x, u,Du, λ)) in Ω,
u = 0 on ∂Ω,

where a+(x) = max {a(x), 0} and a−(x) = min {a(x), 0} respectively. Hence
using [20; Lemma VIII.10] and an argument similar to [19, Corollary 2.13] we
can show that (Lk\{(λk, 0)}) ∩ ∂P = ∅. Consequently, using the fact that the
eigenfunctions of the problem (2.1) corresponding to the eigenvalues which are
different from λ±1 have interior zeros in Ω, we have that Lk lies in P ∪ {(λk, 0)}
and for each k ∈ {−1 , 1 } alternative (ii) of Theorem 1.3 from [19] is not possible.

It remains to decompose Lk into two subcontinua which contain (λk, 0), lies in
Pν ∪ {(λk, 0)}, ν ∈ {− , + }, and unbounded in E . For k ∈ {−1 , 1 } let `k ∈ E∗
be such that `k = λkL∗`k and 〈 `k , u+

k 〉 = 1, where E∗ is the dual of E, L∗ is
the adjoint of L and 〈 · , · 〉 is the duality between of E and E∗. If 0 < y < 1,
define

Mk, y = {(λ, u) ∈ E : |〈 `k , u 〉| > y |u|1, α},
M+
k, y = {(λ, u) ∈Mk, y : 〈 `k , u 〉 > 0},

and M−k, y = Mk, y\M+
k, y. This defines two pair ”wedges” in E with vertices lying

along the line {(λ, 0) : λ ∈ R}. Each of these pair wedges are independent of λ
but it is obvious that different pair wedges are associated with each characteristic
value. In [19], corresponding wedges are defined for a range of λ centered at the
characteristic value λk.

By virtue of [19; Lemma 1.24] it follows that there exists an S > 0 such
that (L\(λk, 0)) ∩ BS(λk) ⊆ Mk, y, where BS, k denotes the closure of open ball
BS, k. The subcontinua Lνk, ν ∈ {− , +}, can now be defined (see [6]). For
0 < ε ≤ S, k ∈ {−1, 1 } and ν ∈ {− , +} define Dν

k, ε to be component of

(L∩Bε(λk)∩Mν
k, y)∪{(λk, 0)} containing (λk, 0), Lνk, ε to be component of Lk\D−νk, ε

containing (λk, 0), where−ν is interpreted in the natural way, and Lνk to be closure

of
⋃

0 <ε≤S
Lνk,ε. Then Lνk is connected, and by [19; Theorem 1.25], Lk = L+

k ∪ L−k .

Note that this definition is independent of the choice of y but the choice of S
is dependent on y; however, by [19; Lemma 1.24] given any 0 < y < 1, an any
S > 0 can always be chosen such that the above holds.

Again writing u = βu+
k + w for λ, u) ∈ (Lk\{(λk, 0)} near (λk, 0) we have

βu+
k ∈ P

ν if β ∈ Rν\{0} where Rν = {z ∈ R : 0 ≤ νz ≤ +∞} and, therefore,

((L+
k \{(λk, 0)}) ∩By, k) ⊂ P+,

((L−k \{(λk, 0)}) ∩By, k) ⊂ P−

for all y > 0 small. Since Lνk\{(λk, 0)} cannot leave P ν outside of a neighbor-

hood of (λk, 0) and P+ ∩ P− = ∅, then by [6; Theorem 2] L+
k and L−k are both

unbounded in E .
Step 2. To complete prove of this theorem, we approximate (1.1) by a family

of linearizable equations, as in [3; Section 4]. However, with a view to applying
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the result of Step 1, we need to approximate (1.1) by equations where all the
coefficients and the nonlinear terms are smooth and we pass to the limit using by
a positivity argument in the uniformly elliptic partial differential equation and
compactly embedding from above. This completes the proof.
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