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ON DETERMINATION OF STURM-LIOUVILLE OPERATOR
WITH DISCONTINUITY CONDITIONS WITH RESPECT TO
SPECTRAL DATA

HIDAYAT M. HUSEYNOV AND FAMIL Z. DOSTUYEV

Abstract. In the paper, the uniqueness of the inverse problem with
respect to eigenvalues and normalizing numbers was proved for Sturm-
Liouville operator with a discontinuity condition on a finite segment and
an algorithm for constructing a potential was given.

1. Introduction
Let us consider the equation
" +q@)y=Xy, 0<x<m, (1.1)
with discontinuity conditions at a point a € (0, )
y(a+0)=ay(a-0), ¢y (a+0)=a"'y (a-0), (1.2)
and boundary conditions
y(0) =y (m) =0, (13)
Here ) is a complex parameter, ¢(z), « are real; ¢ (x) € Lo (0,7) ,a # 1,0 > 0.
Let S(x, \) be the solution of equation (1.1) with discontinuity conditions (1.2)
and initial conditions S (0,A) = 0,8 (0,\) = 1.

Denote by A, the eigenvalues and by «,, the normalized numbers of problem
(1.1) - (1.2):

oy = /52 (x, A\p)dx. (1.4)
0

The numbers { \,,an} are said to be spectral data of problem (1.1) - (1.3).
In the case ¢ (x) = 0 denote the spectral data by {)\2, 042}. We are interested
in the following inverse problem: determine the function ¢ (z) in equation (1.1)
with respect to spectral data {\,, a,} of problem (1.1) - (1.3).

Another variants of inverse problems for the Sturm-Liouville operator with
discontinuity conditions (the inverse problem with respect to Weyl’s function,
with respect to scattering data, etc.) were considered in the papers [1] - [4] (see
also the references therein).
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The inverse problem with respect to spectral data, and also various variants
of inverse problems for the Sturm-Liouville operator without discontinuity con-
ditions were given in detail in monographs and review papers (see e.g. [2] - [8]).

2. Completeness of eigen functions

Let Sy (z, A) be the solution of equation (1.1) with discontinuity conditions
(1.2), Sy (m, A) =0, S;r (m, A) = 1. Then there exists a sequence [3,, such that
a) Sx(x, A\p) = B,5(x, ), By, #0;
b)Bnan = —A (), where

A(N) =S (mA) (2.1)

\/)\T)y {671} € lo, (866 [10])
d)an—a +\/)\>O,{5 n} € la.
The Green function of problem (1.1) - (1.3) is of the form

1 S(z,\) Sy (t,\), =<t
A()\){ S (t,\) Sy (z,)\), x>t

Theorem 2.1. 1) The system of eigen functions {S(x,\,)} of problem (1.1) -
(1.3) is complete in Lo (0,7);
2) Let f (z) € AC'[0,a] N AC [a, 7] and f (a4 0) =af(a—0),f(0)= f(r)=0.

Then -
= Z anS (z, \n),
n=0

G(x,t,\) =—

where

1 ™
an=—[f (t) S (t, )‘n)dt
On
0
and the series converges uniformly on [0, 7).

Proof. Consider the function
Y (z,\) = /G (x,t,\) f (t)dt.

It is easy to show that the function Y (z, \) is the solution of the equation
Y +q@)Y =AY + f(z) =0, (2.2)

satisfies discontinuity conditions (1.2) and boundary conditions (1.3). Further-
more, taking into account (1.4), we have

)Ee)iY(x,)\) —S (x, \n) /f (2.3)

Let the function f (z) € La (0,7) be such that

™

/f@S@A@ﬁ:Q n=123,... (2.4)

0
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Then from (2.3) we get /\];E(?\S Y (xz,\) = 0, and consequently for every

x € [0, 7] the function Y (x, \) is entire with respect to A. On the other hand, for
p € Gs = {p:|lp—prol >0,k==%1,£2,43,...} and [p| > p*, where

. sinp(2a—
(P) _ a+sm//;7r +a smp(pa 7r)’

A= p?, pr,0 are the zeros of the function Ag
0 is a fixed positive number, p* is rather large, the inequality

/

AN > ff;je“mp'“,

and consequently the inequality

C//
Y (z,0) < 2
Y (z,0)] < 0
are fulfilled.

Using the Liouville theorem, we conclude that Y (z, \) = 0.

Hence and from (2.2) it follows that f (z) =0 a.e. on [0, 7]. Thus, subject to
equalities (2.4), we get that f(x) = 0 a.e. on [0,7]. Consequently, the system
of eigen functions {S (z, A\n)}—; of problem (1.1) - (1.3) is complete in Ls (0, 7).
Prove statement 2) of the theorem. Let f(x) € AC[0,a] N AC [a, 7], f(0) =
f(m)=0and f(a+0)=af (a—0). We transform the function Y (z, \) to the
form

Y (2, )) = f(;”) - % (21 (2, ) + 22 (2, 1)), (2.5)
() = A;)(sﬂ(s,x)) / S'(E N (#)dt + S, A) / St N F (B)dt,
0 x
2 (1, )) = A;) (Sx (2, V) 0/ a(O)S (£, X)  (£)dt+S (2, ) / a(t)Sx (1, ) £ (D)t

Using the lower bound for A (\), by the standard method we establish that
(see [10])

‘pllgnooorgnggﬂ 2j (2, ) =0, j=1,2. (2.6)

pEGs
Consider the contour integral

1
I'n

where T, = {\ : [\ = 4| + g} (counter anti-clockwise), A& = 'O?VD’
B = igﬁ A2 — A% > 0. From (2.5)-(2.6) it follows
Iy (@) = f (@) +en(z), lim max |ey(z)] =0 (2.7)
On the other hand,
N

N
In (z) = Z}\Iie)\s Y (2,0) =) anS (z,\n),
n=1 "

n=1
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where
™
1
an = — [ f(t)S(t, A\n)dt.
Qp
0
Comparing these expression with (2.7) we arrive to statement 2) of the theorem.

O

Corollary 2.1. The system of eigen functions {S (x,\,)} is complete and or-
thogonal in Ly (0,7), therefore it forms an orthogonal basis in Lo (0,7) and the
Parseval equality is valid:

/ FORdr=3 anlanl
0 n=1

Corollary 2.2. The system of functions {So (x, )\%)}Oo where (A = p?)

n=1’

sinpz

S () { PR 0<z<a,
0\, = 4+ sinpx — sinp(2a—=x )
at — = + « -, a<z<m,
1 1
0 2 +
Ap = Ppo 0T = §(a:t&)

is complete in the space Lo (0,7) .

3. Uniqueness of inverse problem and an algorithm for
constructing the potential

Denote by e(x, A) the solution of problem (1.1) - (1.2) with initial conditions
e(0,A\) =1, € (0,)) = ix. (3.1)

Obviously, e (z, \) satisfies the integral equation

T

e (2, )) = e (3, )) + / g0 (1, ) ¢ (£) € (1, \)dt, (3.2)
0

where ()\ = ,02)

3 = eipx’ 0<z<a,
€0 (2,0) = ¢ +girr 4 o eP2e=) g <<,
spe=t) - (t<zp<a)V (a<t<az),

go (wyta )\) = { a+ sinpl()Z,t) ’ - Sjnp(Zapfwft ) ,

and vice versa, the solution of integral equation (3.2) is the solution of problem
(1.1), (1.2), (3.1). The solution e(x,\) is representable in the form

t<a<ux,

e(z,\) = e (z,\) —|—/K(a:,t) M. (3.3)
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Substituting (2.2) in integral equation (3.2), for the kernel K (z,t) we get the

equation
x t+xr—u

1
Kot =Kot +3 [aw [ K.gdsdu
0 t—xr+u
if0<x<a,and
a t+x—u
Oz+
Ko =Ko+ 5 [a@ [ a@K@eadgur
0 t—zr+u
1 T t+x—u _a t+2a—x—u
3 [aw [ K@oaas S [aw [ e ded
a t—x+u 0 t—2a+x+u
ifa<ax<m.
Here

for £ < a and

0
t <

0, —x< —(2a — z),
t+2a—=z
2
a— [ qu)du, —(2a—2z)<t<2a-—ux,
t - (3.4)
T+ 2(17 a
[ qwdu— [ qu)du, 2a—z<t<uz,
a t+2a—x
2

fora <z <.
Furthermore, the following conditions are fulfilled:

T

1
K(:L‘,a:):2/q(s)ds, 0<z<a,
0
x
at
K (z,z) = 5 q(s)ds, a<z<m
0
K (z,—x) =0.

Obviously, that solutions S (z,A) and e (z,\) are connected with the equality
S(z,\) = 55 [e (x,\) —e(x,N) ] Therefore, taking into account (3.3), for the

solution S (z,\) we get the following representation

sinpt

) dt, (A=p?) (3.5)

S(x,\) =S50 (z,\) + /A(x, t)
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where A(x,t) =K (z,t) — K (z,—t) and

(3.6)

Show that we can write representation (3.5) in the form of a transformation
operator.
Indeed, from the formula for solution Sy (z, A) (see. Corollary 2.1), we have

sinpr So (z, \), 0<z<a,
p L S0, A) =550 (2a—x,0), a<z<T.

Therefore, taking into account this formula in the integral member in represen-
tation (3.5), for a < x < m we get:

y%»:%@m+/A@o%mmﬁ+

) )
+/A@JW?¥%QA%{;&NM—LAﬂﬁ,a<x<m

a

or finally
S(x,\) =S50 (z,\) + / (x,t) So (t, N dt, 0<z<m, (3.7)
0
where
Az, t), 0<t<z, 0<z<a
~ Alx,t), 0<t<2a—z, a<zxz<m
Alwt) = A(x,t) - 25 A (2,20 —t), 20—-2z<t<a, a<z<T (38)
1

FA(x,t), a<t<z, a<z<T

_ Transformation operator (3.8) admits to obtain a link between the kernel
A(x,t) and spectral data of problem (1.1) - (1.3). Solving relation (3.8) with
respect to Sp (z,A), we find

&@»:5@m+/ﬁ@@5@»%, (3.9)
0

Using (3.8) and (3.9) we get
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NS (@, M) So (£, An)
n=1 Qn N
N t N
)\n ~ S (x ;A
n=1 0 n:l

Equating the right hand sides of these equalities and assuming

N 30 .
Dy =Y <S(:U,)\n)5(t,)\n) S (x,\) S(t,An)>7

n=1 On Olg
we have .
N
. A
@N(;c,t)+/H(t,€)ZS( 31 (6:2n) g =
0 n=1 n
- i (50 (@:2n) % (tAn) _ So (w»A%i;o (t A3>)+
x N 0 0
+/A($7 5 (So (&An(lSo (£, An) _ So (ﬁaAnifo (t’)‘”)>d§+
0 n=1 " "
z N 0 0
+/A(x,£)z % (“”if" (t A”)alé (3.10)
0 n=1 "

Let f (z) € AC[0,a]NAC[a,n], f(0)=f(m)=0and f(a+0)=af(a—0).
According to Theorem 2.1 and Corollary 2.2

lim max
N—o0 0<z<m

/ J () (2, 1) dt

0

N
= i 0 <
i, e |2 anS 2.0 Za S o) =
< I -
< Jim, gmax |/ @) Zanswv .
. 0 0 _
+A}gnooor§rl:?§xﬂ Za So (z,An)| =0 (3.11)
Similarly, we can show that unlformly Wlth respect to  x € [0, 7]
) So { 0 -
W)Y [ sty = [ o s 012
—>oo

0

N—oo Qo oy

. /f (so 2, M) S0 (t An)  So (2,79) So (t,A%)) e
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:/f(t)F(a:,t)dt (3.13)
0
T z N 0 0
I IR (S‘” (& 20) So o) _ S0 (6i2) o A”)>df] dt =
—>ooo J 1 (679 an
:/f(t) /A(g;,g)F(g,t) d¢ | dt, (3.14)
0 0
. f / o il S (x, n) S (& An) _
ngnooo/f(t) O/Hox&)n; s e | dt =
:/f(t)ﬁ(t,x) dt, (3.15)

where

0
(6 «
n=1 n n

Flat) = i (50 (€, An) So (8, M) So (,29) So (t, )\2)). (3.16)

Now multiply the both sides of relation (3.10) by f (¢) and integrate with respect
to t € [0,7]. Then passing to limit as N — oo and taking into account (3.11) -
(3.15) , we arrive at the equality

/fl(t,x)f(t)dt:

xT

Z/f(t)F(:v,t) dt+/f(t) (/A(:E,S)F(ﬁ,t) d£> dt+/f(t)f‘1(fﬁ,t)dt-
0 0 0 0

Define A (x,t) = H (x,t) = 0 for z < t.

By arbitrariness of f (x) we arrive at the relation

T

()= F o0+ [ A@OF €0 de+ Ao,
0
Hence, for ¢ < x we have

T

Fa,t) + /A (0, O)F (€,0)dE + A (x,1) = 0. (3.17)
0
So we proved the following theorem:

Theorem 3.1. For every fized x € (0,7) the kernel A (x,t) from representation
(3.8) satisfies linear integral equation (3.17), and the the function F (z,t) is
completely determined by the spectral data {\n,an} according to formula (3.16).
Equation (3.17) is called the basic equation of the inverse problem.
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We now study solvability of the basic equation (3.17). At first we prove the
auxiliary lemma.

Lemma 3.1. The system of functions {So (z,\n)},~; is complete in the space
Ly (0,7). -

Proof. Let
/f(t) So(t,A\p)dt =0, n=0,1,2,... (3.18)
Consider the functions
AN = (mat + (2a — ) —pno,
o0 . 2 _
Ay () = (7ra + (2a — 7r H /\ =at sipm +a” sinp(2a W),
p p

n=1

A)\/f ) So (£, An) dt, X # Ap

From (3.18) it follows that F' ()\) is a function entire with respect to A . Further,

Ao (N T Ay — AV
A0 ‘,H(”A—An)'

Hence, by virtue of the estimation

Cell™ X, = X0
Ag (M) > U
Ao (A)] = o

in the sector arg\ € [d, 2w — §] , where ¢ - is some fixed positive number, we have

< 5,7 =argp, A = p
pn,O

A (N)] > geh'”, A = p? arg\ € [0, 21 — 4].
p

Consequently, for argA € [0, 21 — §] we get

/f SotAdt<£

PO < n

Hence, by means of Fragmen — Llndelof and Liouville theorem we conclude that
F ()\) =0, in particular

/f () So (£,A0) dt =0, n=1,2,3,.

By the completeness of the system of functions {Sy (z, A3) }n>1 in Lo (0,7) (see.
Corollary 2.2),hence f () =0 a.e. The lemma is proved. - O

Now we prove a theorem on solvability of the basic equation (3.17).

Theorem 3.2. For each fized x € (0,7) the basic equation (3.17) has a unique
solution A (x,-) € Ly (0, z).
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Proof. As (3.17) is the Fredholm equation of the second kind, then it suffices to
prove that the homogeneous equation

T

g(t)+ /F (s,t)g(s)ds =0 (3.19)

0

has only the zero solution g (t) = 0. Let g (¢) be a solution of equation (3.19).

Then,
/gQ(t)dt+//F 5,t) g(s)g(t)dsdt = 0,
0 0
or by (3.16)
X X 2
<1
t)dt t) So (t, \,) dt — t) So (£, AV) dt
/ +Z a /g 0 (t,An) dt 2210‘91 /g o (
0 n= 0

Using the Parseval equality

/gz(t)dt— ialo /g(t) So (¢, \D) dt

0 n=1 0
for the function ¢ (¢) (for t > = assume g (t) = 0), we get
T 2
= 1
S| [a@saand] o
n=1 " 0

As ay, > 0, then
/g(t)Sg(t,)\n)dt:O, n=20,1,2,....
0

According to the lemma, we obtain g () = 0. The theorem is proved. O

Corollary 3.1. The coefficient q(x) of equation (1.1) is uniquely determined
with respect to spectral data {\,, an} of problem (1.1) - (1.3).

The coefficient ¢ (x) is constructed according to the the following algorithm:

(1) by the given numbers {\,, o, } we construct the function F (z,t) by for-
mula (3.16);

(2) find the function A (z,t) from the equation (3.17);

(3) calculate g (z) by formula (see (3.6) and (3.8))

A(x,x)zl/q(s)ds.



ON DETERMINATION OF STURM-LIOUVILLE OPERATOR 153

References

[1] R.Kh. Amirov, On Sturm-Liouville operators with discontinuity conditions inside
an interval, J. Math. Anal. Appl. 317 (2006), 163-176.

[2] M.E.Gasymov, B.M. Levitan, Determination of a differential operator with respect
to two spectra, UMN, 19(2) (1964), 3-63

[3] I.M.Guseinov (H.M.Huseynov), A.G.Dzhamshidinov, Inverse scattering problem for
the Sturm-Liouville equation with spectral parameter in the discontinuity condition
Differential Equations, 50 (4) (2014), 554-558.

[4] I.M.Guseinov (H.M.Huseynov), L.I.Mammadova, Reconstruction of the Diffusion
Equation with Singular Coefficients for two spectra. Doklady Mathematics, 90 (1)
(2014), 401-404

[5] H.M.Huseynov, F.Z. Dostuyev, Asymptotics of eigen numbers of discontinuous con-
dition Sturm-Liouville operators, Transactions of NAS of Azerbaijan, XXXIV (1)
(2014), 57-66.

[6] HM.Huseynov, J.A.Osmanli, Inverse scattering problem for One- Dimensional
Schrédinger Equation with Discontinuity Conditions, Journal of Math. Physics,
Analysis, Geometry, 9 (3) (2013), 332-359.

[7] B.M. Levitan, Sturm - Liouville’s inverse problems Moscow: Nauka, 1984.

[8] V.A. Marchenko, Sturm - Liouville operators and their applications, Kiev: Naukova
Dumka, 1977.

[9] V.A. Sadovnichiy, Yu.T. Sultanaev, A.M. Akhtyamov, Sturm-Liouville’s inverse
problems with no separated boundary conditions, Moscow University publishers,
2009.

[10] V.A. Yurko, Introduction to the theory of inverse spectral problems, M.: FIZMATLIT
2007.

Hidayat M. Huseynov

Baku State University, AZ 1148, Baku, Azerbaijan

Institute of Mathematics and Mechanics, NAS of Azerbaijan, AZ 1141, Baku
Azerbaijan

E-mail address: hmhuseynov@gmail.com

Famil Z. Dostuyev

Institute of Mathematics and Mechanics, NAS of Azerbaijan, AZ 1141, Baku
Azerbaijan

E-mail address: famil.turksoygw@gmail.com

Received: April 27, 2016; Accepted: June 20, 2016



