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THE “ALGEBRAIC ZERO” CONDITION FOR ORTHOGONAL

POLYNOMIALS OVER A CONTOUR IN THE WEIGHTED

LEBESGUE SPACES

FAHREDDIN G. ABDULLAYEV AND GULNARE A. ABDULLAYEVA

Abstract. In this work, we continue to investigate the order of the
height of the modulus of orthogonal polynomials over a contour and also
arbitrary algebraic polynomials with respect to the weighted Lebesgue
space, where the contour and the weight functions have some singulari-
ties. In this work we investigate the case of “algebraic zero” conditions
with respect to weight and contour.

1. Introduction

Let C be a complex plane, C := C∪{∞}; L ⊂ C be a closed rectifiable Jordan
curve, G := intL, with 0 ∈ G, Ω := extL. Let h(z) be nonnegative, summable on
L and nonzero except possible on a set of measure zero function. The systems of
polynomials {Kn(z)}, Kn(z) = anz

n + ..., degKn = n, n = 0, 1, 2, ..., satisfying
the condition ∫

L

h(z)Kn(z)Km(z) |dz| =
{

1, n = m,
0, n 6= m,

are called orthonormal polynomials for the pair (L, h). These polynomials are
determined uniquely if the coefficient an > 0.

These polynomials were first studied in [32], [33]. In [31], [19] and [16], these
polynomials were investigated under the various conditions on the weight function
h(z) and contour L. In [36], many properties of the polynomials Kn(z) were
investigated for smooth contour and weight function h(z) which is zero or infinite
at finite number points on contour L. In [20] and [15], some properties of the
polynomials Kn(z) were considered for piecewise analytic contour L with finite
number corners. In [37], some estimates for the rate of growth of the polynomials
Kn(z) were obtained on the contour L, depending of the singularity of the weight
function h(z) on L and of the contour L.

By w = Φ(z) denote the univalent conformal mapping of Ω onto

∆ := {w : |w| > 1} with normalization Φ(∞) = ∞, limz→∞
Φ(z)
z > 0 and
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Ψ := Φ−1. For t ≥ 1, we set

Lt := {z : |Φ(z)| = t} , L1 ≡ L, Gt := intLt, Ωt := extLt.

Let {zj}mj=1 be the fixed system of distinct points on curve L. For some fixed R0,

1 < R0 <∞, and z ∈ GR0\G, consider generalized Jacobi weight function h (z) ,
which is defined as follows:

h(z) := h0(z)
m∏
j=1

|z − zj |γj , (1.1)

where γj > −1, for all j = 1, 2, ...,m, and h0 is uniformly separated from zero in
L, i.e. there exists a constant c0(L) > 0 such that for all z ∈ GR0

h0(z) ≥ c0(L) > 0.

Let a rectifiable Jordan curve L, has a natural parametrization z = z(s),
0 ≤ s ≤ l := mesL. It is said to be L ∈ C(1, α), 0 < α < 1, if z(s) is continuously
differentiable and z′(s) ∈ Lipα. Let L belong to C(1, α) everywhere except for a
single point z1 ∈ L, i.e., the derivative z′(s) satisfies the Lipschitz condition on
the [0, l] and z(0) = z(l) = z1, but z′(0) 6= z′(l). Assume that L has a corner at
z1 with exterior angle ω1π, 0 < ω1 ≤ 2, and denote the set of such curves by
C(1, α, ω1).

P.K. Suetin [37] investigated this problem for Kn(z) with the weight function
h(z) defined as in (1.1) and for the curve L ∈ C(1, α, ω1). He showed that the
condition of “pay off” singularity curve and weight function at the points z1 can
be given as follows:

(1 + γ1)ω1 = 1, (1.2)

and, under this condition, for Kn(z) provided the following estimation:

|Kn(z)| ≤ c
√
n+ 1, z ∈ L, (1.3)

where c = c(L) > 0 is a constant independent on n.
In [37], the case, where (1 + γ1)ω1 6= 1, were also investigated. In particular, it

is shown, if the singularity of a curve and weight function at the points z1 satisfy
the condition:

(1 + γ1)ω1 > 1, (1.4)

then for |Kn(z)| , the following estimation is true

|z − z1|µ1 |Kn(z)| ≤ c1

√
n+ 1, z ∈ L, (1.5)

|Kn(z1)| ≤ c2 (n+ 1)s1 , (1.6)

where

s1 =
1

2
(1 + γ1)ω1, µ1 =

1

2

(
1 + γ1 −

1

ω1

)
,

and c1 = c1(L) > 0, c2 = c2(L) > 0 are the constants independent of n.
In this work we study the estimations of the (1.5) and (1.6)-type, under the

condition (1.4), for more general contours of the complex plane and we obtain the
analogue of the estimations (1.5) and (1.6) for more general case. In addition,
we study the growth of arbitrary algebraic polynomials with respect to their
seminorm in the weighted Lebesgue space, under the condition of (1.4)-type.
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2. Definitions and Main Results

Throughout this paper, c, c0,c1, c2, ... are positive and ε0, ε1, ε2, ... are suffi-
ciently small positive constants (generally, different in different relations), which
depends on G in general and, on parameters inessential for the argument; other-
wise, such dependence will be explicitly stated.

Let ℘n denote the class of arbitrary algebraic polynomials Pn(z) of degree at
most n ∈ N := {1, 2, ...} ∪ {0} .

Without loss of generality, the number R0 in the definition of the weight func-
tions, we can take R0 = 2. Otherwise the natural number n can be chosen

n ≥
[

ε0
R0−1

]
, where ε0, 0 < ε0 < 1, some fixed small constant.

Let 0 < p ≤ ∞. For a rectifiable Jordan curve L, we denote

‖Pn‖Lp : = ‖Pn‖Lp(h,L) :=

∫
L

h(z) |Pn(z)|p |dz|

1/p

, 0 < p <∞,

‖Pn‖L∞ : = ‖Pn‖L∞(1,L) := max
z∈L
|Pn(z)| , p =∞.

For any k ≥ 0 and m > k, notation i = k,m means i = k, k + 1, ...,m.
Let z = ψ(w) be the univalent conformal mapping of B := {w : |w| < 1} onto

the G = intL normalized by ψ(0) = 0, ψ′(0) > 0. In [27, pp.286-294], a bounded
Jordan region G is called κ -quasidisk, 0 ≤ κ < 1, if any conformal mapping ψ
can be extended to a K -quasiconformal, K = 1+κ

1−κ , the homeomorphism of the

plane C on plane C. In that case, the curve L := ∂G is called a κ -quasicircle.
The region G (curve L) is called a quasidisk (quasicircle), if it is κ-quasidisk (κ
-quasicircle) for some 0 ≤ κ < 1.

We denote the class of κ -quasicircle by Q(κ), 0 ≤ κ < 1, and write L ∈ Q, if
L ∈ Q(κ), for some 0 ≤ κ < 1. It is well-known that the quasicircle may not even
be locally rectifiable (see [21, p.104]).

We say that L ∈ Q̃(κ), 0 ≤ κ < 1, if L ∈ Q(κ) and L is rectifiable. Analogously,

L ∈ Q̃, if L ∈ Q̃(κ), for some 0 ≤ κ < 1.

Definition 2.1. We say that L ∈ Qα, 0 < α ≤ 1 , if L ∈ Q and Φ ∈ Lipα, z ∈ Ω.

We note that the class Qα is sufficiently wide. A detailed account on it and
the related topics are contained in [28], [22], [38] and the references cited therein.
We consider only some cases:

Remark 2.1. a) If L = ∂G is a Dini-smooth curve [28, p.48], then L ∈ Q1.
b)If L = ∂G is a piecewise Dini-smooth curve and largest exterior angle at L

has opening απ, 0 < α ≤ 1, [28, p.52], then L ∈ Qα.
c)If L = ∂G is a smooth curve having continuous tangent line, then L ∈ Qα for

all 0 < α < 1.
d) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair

z1, z2 ∈ L, if s(z1, z2) represents the smallest of the lengths of the arcs joining
z1 to z2 on L, there exists a constant c > 1 such that s(z1, z2) ≤ c |z1 − z2| , then
Φ ∈ Lip α for α = 1

2(1− 1
π arcsin 1

c )
−1 [38].
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e) If L is ”c-quasiconformal” (see, for example, [22]), then Φ ∈ Lip α for
α = π

2(π−arcsin 1
c
)
. Also, if L is an asymptotic conformal curve, then Φ ∈ Lip α for

all 0 < α < 1 [22].

Definition 2.2. It is said that L ∈ Q̃α, 0 < α ≤ 1, if L ∈ Qα and L is rectifiable.

In this case, we have the following:

Theorem A. [26] Let p > 0. Suppose that L ∈ Q̃α, for some 0 < α ≤ 1and
h(z) defined as in (1.1) with γj = 0, for all j = 1,m. Then, for any Pn ∈ ℘n,
n ∈ N,there exists c3 = c3(L, p, α) > 0 such that

‖Pn‖L∞ ≤ c3 ‖Pn‖Lp(h0,L)

{
(n+ 1)

1
αp , 1

2 ≤ α ≤ 1,

(n+ 1)
δ
p , 0 < α < 1

2 ,
(2.1)

and consequently,

‖Kn‖L∞ ≤ c3

{
(n+ 1)

1
αp , 1

2 ≤ α ≤ 1,

(n+ 1)
δ
p , 0 < α < 1

2 ,

where δ = δ(L), δ ∈ [1, 2] , is a certain number.
Thus, Theorem A provides an opportunity to observe the growth of |Pn(z)| on

the curve L. Note that, Theorem A for L := {z : |z| = 1} (i.e. κ = 0) provided
in [18]. The other classical results are similar to (2.1) we can find in [34]. The
evaluations of (2.1)-type for 0 < p < ∞, h(z) ≡ 1 (or h(z) 6= 1 ) was also
investigated in [35], [23], [24], [25, pp.122-133], [29], [14, Theorem 6], [2]-[9] and
others (see also the references cited therein), for different Jordan curves having
special properties.

According to 2.1, we can calculate α in the right parts of estimation (2.1) for

each case, respectively. In addition, for L ∈ Q̃(κ), 0 ≤ κ < 1 the estimation (2.1)
satisfies with α = 1

1+κ [9].
Now, let’s introduce ”special” singular points on the curve L.

Definition 2.3. We say that L ∈ Q̃ [ν] , 0 < ν < 2, if

a) L ∈ Q̃,
b) For ∀z ∈ L, there exists a r := r(L, z) > 0 and ν := ν(L, z),

0 < ν < 2, such that for some 0 ≤ θ0 < 2 a closed maximal circular
sector S(z; r, ν) :=

{
ζ : ζ = z + reiθπ, θ0 < θ < θ0 + ν

}
of radius r and

opening νπ lies in G = intL with vetrex at z.

It is well known that each quasicircle satisfies the condition b). Nevertheless,
this condition imposed on L gives a new geometric characterization of the curve.
For example, if the contour L∗ defined by

L∗ := [0, i] ∪
{
z : z = eiθπ,

1

2
< θ < 2

}
∪ [1, 0] ,

then the coefficient of quasiconformality k of the L∗ does not obtain so easily,
whereas L∗ ∈ Q

[
3
2

]
.

Definition 2.4. We say that L ∈ Q̃α [ν1, ..., νm] , 0 < ν1, ..., νm < 2, 0 < α ≤ 1,

if there exists a system of points {ζi} ∈ L, i = 1,m , such that L ∈ Q̃ [νi] for any
points ζi ∈ L, i = 1,m, and Φ ∈ Lipα, 0 < α ≤ 1, z ∈ Ω\ {ζi} .
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It is clear from Definition 2.3 (2.4), that each contour L ∈ Q̃α [ν1, ..., νm] ,
0 < ν1, ..., νm < 2, 0 < α ≤ 1, i = 1,m , may have “singularity” at the points
{ζi}mi=1 ∈ L. If a contour L does not have such “singularity”, i.e. if νi = 1,

i = 1,m, then it is written as L ∈ Q̃α, 0 < α ≤ 1.
Throughout this work, we will assume that the points {zi}mi=1 ∈ L are defined

in (1.1) and {ζi}mi=1 ∈ L are defined in Definitions 2.2 coincides. Without the
loss of generality, we also will assume that the points {zi}mi=1 are ordered in the
positive direction on the curve L.

In [26], it was shown the condition of “pay off” of singularity of curve and
weight function at the points {zi}mi=1 :

Theorem B. Let p > 0. Suppose that L ∈ Q̃α [ν1, ..., νm] , for some
0 < ν1, ..., νm < 1, 1

2−νi ≤ α ≤ 1; h(z) defined as in (1.1) and

γi + 1 =
1

α(2− νi)
, (2.2)

for each points {zi}mi=1 . Then, for any Pn ∈ ℘n, n ∈ N, there exists
c4 = c4(L, p, α) > 0 such that

‖Pn‖L∞ ≤ c4(n+ 1)
1
αp ‖Pn‖Lp(h,L) . (2.3)

and consequently,

‖Kn‖L∞ ≤ c4(n+ 1)
1
2α . (2.4)

Theorem B shows that, if the equality (2.2) is satisfied, then the growth of rate
of the polynomials Pn(z) (Kn(z)) on L does not depend on whether the weight
function h(z) and the boundary contour L have singularity or not. The condition
(2.2) is called the condition of “interference of singularity” of weight function h
and contour L at the “singular” points {zi}mi=1 .

Now, we assume the equality (2.2) does not hold for each singular points
{zi}mi=1. In [10], the case

γi + 1 <
1

α(2− νi)
was investigated.

In the present work, we investigate the case when

γi + 1 >
1

α(2− νi)
,

for each singular points {zi}mi=1 ∈ L and obtain the following main results:

Theorem 2.1. Let p > 0. Suppose that L ∈ Q̃α [ν1, ν2, ..., νm] , for some
0 < νi < 1 and 1

2−νi ≤ α ≤ 1, i = 1,m ; h(z) are defined in (1.1) and

γi + 1 >
1

α(2− νi)
(2.5)

for each points {zi}mi=1. Then there exists cj = cj(L, p, γi, νi, α) > 0, j = 5, 6,
such that, for any Pn ∈ ℘n, n ∈ N, we have:

max
z∈L

(
m∏
i=1

|z − zi|µi |Pn(z)|

)
≤ c5n

1
αp ‖Pn‖Lp(h,L) , (2.6)
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|Pn(zi)| ≤ c6n
si ‖Pn‖Lp(h,L) , (2.7)

where

µi :=
1

p

(
γi + 1− 1

α

)
, si =

γi + 1

p
(2− νi), i = 1,m. (2.8)

Corollary 2.2 Under the conditions of Theorem 2.1, we have:

max
z∈L

(
m∏
i=1

|z − zi|µi |Kn(z)|

)
≤ c5n

1
2α ,

|Kn(zi)| ≤ c6n
si ,

where µi and si (for p = 2) defined as in (2.8).
It follows from the conditions 1

2 ≤
1

2−νi ≤ α ≤ 1, i = 1,m , the conditions

(2.5) will be satisfied where γi > 0, i = 1,m. For that reason, we will call (2.5)
algebraic zero conditions of the order ηi := α(2− νi) (1 + γi)− 1 on each singular
point {zi}mi=1 ∈ L.

For the curve L ∈ C(1, λ, ν1), in case of one singular point z1 ∈ L, we have:
Corollary 2.3 If L ∈ C(1, λ, ν1) and

(γ1 + 1) ν1 > 1,

is satisfies at the point z1, then we have

|z − z1|µ1 |Pn(z)| ≤ c5

√
n ‖Pn‖L2(h,L) , (2.9)

|Pn(z1)| ≤ c6n
s1 ‖Pn‖Lp(h,L) , (2.10)

where

µ1 :=
1

2

(
γ1 + 1− 1

ν1

)
, s1 =

1

2
(1 + γ1) ν1. (2.11)

For Pn ≡ Kn, estimation (2.9) coincides from the result by P.K. Suetin,
[37, Theorem 3]. Therefore, Theorem 2.1 generalizes the result [37, Th3] for
1 ≤ ν1 ≤ 2 and extends the result to more general curves of the complex plane.
Similar results for integral over an area are obtained in [3], [4].

Theorem 2.1 is true under the condition 0 < ν1 < 1. For the analogous results
corresponding to the case 1 ≤ ν1 ≤ 2, we give a following definition.

Let S be rectifiable Jordan curve or arc and let z = z(s), s ∈ [0, |S|] ,
|S| := mesS, denote the natural representation of S.

Definition 2.5. [28, p.48] (see also [13]) We say that a Jordan curve or arc S
called Dini-smooth (DS), if it has a parametrization z = z(s), 0 ≤ s ≤ |S| , such

that z
′
(s) 6= 0, 0 ≤ s ≤ |S| and

∣∣∣z′(s2)− z′(s1)
∣∣∣ < g(s2 − s1), s1 < s2, where g

is an increasing function for which

1∫
0

g(x)

x
dx <∞.

Now, we shall define a new class of curves, which at the finite number points
have exterior corners and interior cusps simultaneously.
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Definition 2.6. We say that a Jordan curve L ∈ PDS(λ1, λ2, ..., λm),
0 < λi ≤ 2, i = 1,m, if L = ∂G consists of a union of finite number of Dini-
smooth arcs {Lj}mj=0 , connecting at the points {zj}mj=0 ∈ L such that for every

zi ∈ L, i = 1,m, they have exterior (with respect to G) angles λiπ, 0 < λi ≤ 2,
at the corner zi.

In this case, we have the following:

Theorem 2.4. Let p > 0. Suppose that L ∈ PDS(λ1, ..., λm), for some
0 < λi ≤ 2, i = 1,m; h(z) defined as in (1.1) and

γi + 1 >
1

λi
, (2.12)

for each point {zi}mi=1 . Then there exists cj = cj(L, p, γi, λi) > 0, j = 7, 8, such
that, for any Pn ∈ ℘n, n ∈ N, we have:

max
z∈L

(
m∏
i=1

|z − zi|µi |Pn(z)|

)
≤ c7n

1
p ‖Pn‖Lp(h,L) , (2.13)

|Pn(zi)| ≤ c8n
si ‖Pn‖Lp(h,L) , (2.14)

where µi := 1
p

(
γi + 1− 1

λ̃i

)
, si = γi+1

p λ̃i, i = 1,m; λ̃i :=

{
λi, if 0 < λi < 2,
2, if λi = 2.

Corollary 2.5. Under the conditions Theorem 2.4, we have:

max
z∈L

(
m∏
i=1

|z − zi|µi |Kn(z)|

)
≤ c7n

1
2 , (2.15)

|Kn(zi)| ≤ c8n
si , (2.16)

for each points {zi}mi=1 .
Note that, C(1, α, λ1) ⊂ PDS(λ1) for each fixed 0 < λ1 ≤ 2 . In this, (2.15)

and (2.16) coincides with (1.5) and (1.6). Thus, the Corollary 2.5 generalizes the
corresponding result in [37].

Remark 2.2. a) The inequalities (2.1), (2.7) are sharp. For the polynomials
P ∗n(z) = 1+2z+ ...+(n+1)zn, h∗(z) = h0(z) and L := {z : |z| = 1} , there exists
a constant c9 = c9(h0) > 0 such that:

‖P ∗n‖C(L) ≥ c9

√
n ‖P ∗n‖L2(h∗, L) .

b) The inequalities (2.6) and (2.9) are sharp in the sense that for the arbitrary

polynomial Pn ∈ ℘n, L ∈ Q̃α [ν1] and for arbitrary small ε, 0 < ε < µ1, the
following is true:

|z − z1|µ1−ε |Pn(z)| ≤ c10n
1
pα

+ε ‖Pn‖Lp(h,L) ,

where

µ1 :=
1

p

(
γ1 + 1− 1

α(2− ν1)

)
.

In particular, for an arbitrary small ε∗, 0 < ε∗ < µ∗1 , there exists a contour L
such that:

|z − z1|µ
∗
1−ε∗ |Pn(z)| ≤ c11n

1
2

+ε∗ ‖Pn‖L2(h,L) ,
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where

µ∗1 :=
1

2

(
γ1 + 1− 1

ν1

)
.

3. Some auxiliary results

For a > 0 and b > 0, we shall use the notations “a � b” (order inequality), if
a ≤ cb and “a � b” are equivalent to c1a ≤ b ≤ c2a for some constants c, c1, c2

(independent of a and b) respectively.
The following definitions of the K-quasiconformal curves are well-known (see,

for example, [11], [21, p.97] and [30]):

Definition 3.1. The Jordan arc (or curve) L is called K− quasiconformal
(K ≥ 1), if there is a K−quasiconformal mapping f of the region D ⊃ L such
that f(L) is a line segment (or circle).

Let F (L) denote the set of all sense preserving plane homeomorphisms f of
the region D ⊃ L such that f(L) is a line segment (or circle) and lets define

KL := inf {K(f) : f ∈ F (L)} ,
where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal
curve, if KL <∞, and L is a K−quasiconformal curve, if KL ≤ K.

Remark 3.1. It is well-known that, if we are not interested with the coefficients of
quasiconformality of the curve, the definitions of “quasicircle” and “quasiconfor-
mal curve” are identical. However, if we are also interested with the coefficients
of quasiconformality of the given curve, then we will consider that if the curve L

is K− quasiconformal, then it is κ−quasicircle with κ = K2−1
K2+1

.

By Remark 3.1, for simplicity, we will use both terms, depending on the situ-
ation.

For z ∈ C and M ⊂ C, we set

d(z,M) = dist(z,M) := inf {|z − ζ| : ζ ∈M} .
For δ > 0 and z ∈ C let us set: B(z, δ) := {ζ : |ζ − z| < δ} , Ω(z, δ) := Ω∩ B(z, δ).

Lemma 3.1. [1] Let L be a K−quasiconformal curve, z1 ∈ L, z2, z3 ∈ Ω ∩
{z : |z − z1| � d(z1, Lr0)}; wj = Φ(zj), j = 1, 2, 3. Then

a) The statements |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| are equiv-
alent, and similarly so are|z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| .

b) If |z1 − z2| � |z1 − z3| , then∣∣∣∣w1 − w3

w1 − w2

∣∣∣∣ε � ∣∣∣∣z1 − z3

z1 − z2

∣∣∣∣ � ∣∣∣∣w1 − w3

w1 − w2

∣∣∣∣c ,
where ε = ε(L) < 1, c = c(L) > 1, 0 < r0 < 1 are constants, depending on L and
Lr0 := {z = ψ(w) : |w| = r0} .

Corollary 3.2. Under the assumptions of Lemma 3.1, if z3 ∈ Lr0(z3 ∈ LRr0),
then

|w1 − w2|K
2

� |z1 − z2| � |w1 − w2|K
−2

Let {zj}mj=1 be a fixed system of the points on L and the weight function h (z)

defined as (1.1).
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Recall that for 0 < δj < δ0 := 1
4 min {|zi − zj | : i, j = 1, 2, ...,m, i 6= j},we

put Ω(zj , δj) := Ω ∩ {z : |z − zj | ≤ δj} ; δ := min
1≤j≤m

δj , Ω(δ) :=
m⋃
j=1

Ω(zj , δ),

Ω̂ := Ω\Ω(δ). Additionally, let ∆j := Φ(Ω(zj , δ)), ∆(δ) :=
m⋃
j=1

Φ(Ω(zj , δ)),

∆̂(δ) := ∆\∆(δ).
Throughout this work, we will take R = 1 + ε0

n+1 , for some fixed 0 < ε0 < 1.

Further, for any t > 1 and j = 1,m, we introduce:

wj : = Φ(zj), ϕj := argwj , L
j
t := Lt ∩ Ω

j
t ; F

j
t := Φ(Ljt ) (3.1)

Ωj
t : = Ψ(∆

′
t,j),

where

∆
′
t,1 : =

{
w = teiθ : t > 1,

ϕm + ϕ1

2
≤ θ < ϕ1 + ϕ2

2

}
,

∆
′
t,m : =

{
w = teiθ : t > 1,

ϕm−1 + ϕm
2

≤ θ < ϕm + ϕ1

2

}
,

and, for j = 2,m− 1

∆
′
t,j :=

{
w = teiθ : t > 1,

ϕj−1 + ϕj
2

≤ θ < ϕj + ϕj+1

2

}
.

L =
m⋃
j=1

Lj ; Lt =
m⋃
j=1

Ljt .

We will use the well known estimation for the Ψ
′

(see, for example, [12,
Th.2.8]): ∣∣Ψ′(τ)

∣∣ � d(Ψ (τ) , L)

|τ | − 1
. (3.2)

The following lemma is a consequence of the results given in [28], [13, pp.32-36],
and estimation (3.2) (see, for example, [12, Th.2.8]):

Lemma 3.3. Let a Jordan curve L ∈ PDS(λ1, ..., λm), 0 < λj ≤ 2,
j = 1,m. Then,

i) for any w ∈ ∆j , |Ψ(w)−Ψ(wj)| � |w − wj |λj , |Ψ′(w)| � |w − wj |λj−1 ;

ii)for any w ∈ ∆ ∆j , |Ψ(w)−Ψ(wj)| � |w − wj | , |Ψ′(w)| � 1.
Lemma 3.4. [7] Let L be a rectifiable Jordan curve h(z) defined as in (1.1).

Then, for arbitrary Pn(z) ∈ ℘n, any R > 1 and n ∈ N we have:

‖Pn‖Lp(h,LR) ≤ R
n+ 1+γ∗

p ‖Pn‖Lp(h,L) , p > 0. (3.3)

Remark 3.2. In case of h(z) ≡ 1, the estimation (3.3) has been proved in [17].

4. Proof of Theorems

Throughout proofs of all theorems, we will take n ≥
[

ε0
R0−1

]
, where

ε0, 0 < ε0 < 1, some fixed small constant. In addition, in case when n = 0, the
number n, participating in the all inequalities below will be changed to (n+ 1).
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4.1. Proof of Theorem 2.1.

Proof. Suppose that L ∈ Q̃α [ν1, ..., νm] , for some 0 < ν1, ..., νm < 1,
1

2−νi ≤ α ≤ 1, i = 1,m, be given and h(z) defined in (1.1). For any R > 1,

let us define R1 := 1 + R−1
2 . Let {ξj} , 1 ≤ j ≤ m ≤ n, denote zeros of polyno-

mial Pn(z) lying in Ω. The Blashke function [39] with respect to the zeros of the
polynomial Pn(z) is defined as follows:

Bm(z) :=
m∏
j=1

Bj(z) :=
m∏
j=1

Φ(z)− Φ(ξj)

1− Φ(ξj)Φ(z)
, z ∈ Ω,

It is easy to see that the Bm(ξj) = 0 and |Bm(z)| ≡ 1 at z ∈ L. For any p > 0
and w ∈ ∆ let us set:

gn(w) :=

m∏
j=1

[
Ψ(w)−Ψ(wj)

w

]pµj/2 [ Pn (Ψ(w))

wn+1Bm(Ψ(w))

]p/2
, w = Φ(z). (4.1)

The function gn (w) is analytic in ∆, continuous on ∆, gn (∞) = 0 and does
not have zeros in ∆. We take an arbitrary continuous branch of the gn (w) and
for this branch, we maintain the same designation. Then, the Cauchy integral
representation for the gn (z) is given by the formula

gn(w) = − 1

2πi

∫
|τ |=R1

gn (τ)
dτ

τ − w
, |w| = R.

Therefore, ∣∣∣∣∣∣
m∏
j=1

[
Ψ(w)−Ψ(wj)

w

]pµj/2 [ Pn (Ψ(w))

wn+1Bj(Ψ(w))

]p/2 ∣∣∣∣∣∣
≤ 1

2π

∫
|τ |=R1

m∏
j=1

∣∣∣∣Ψ(τ)−Ψ(wj)

τ

∣∣∣∣pµj/2 ∣∣∣∣ Pn (Ψ(τ))

τn+1Bj(Ψ(τ))

∣∣∣∣p/2 |dτ |
|τ − w|

,

or

Jn : =
m∏
j=1

[|Ψ(w)−Ψ(wj)|]pµj/2 |Pn (Ψ(w))|p/2 (4.2)

≤ 1

2π

m∏
j=1

max
|w|=R

|w|pµj/2
∣∣wn+1Bj(Ψ(w))

∣∣p/2
min
|τ |=R1

|τ |pµj/2 |τn+1Bj(Ψ(τ))|p/2

×
∫

|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµ
∗
j/2 |Pn (Ψ(τ))|p/2 |dτ |

|τ − w|
.

Since
∣∣Bj(ζ)

∣∣ = 1, for ζ ∈ L, then for arbitrary ε, 0 < ε < ε1, there exists a
circle |w| = 1 + ε

n , such that for any j = 1, 2, ...,m, the following inequalities are
satisfied: ∣∣Bj(Ψ(w)

∣∣ > 1− ε,
∣∣bj(Ψ(w)

∣∣ > 1− ε.
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Then

|Bm(ζ)| > (1− ε)m � 1,

for ε ≤ n−1 and ζ ∈ LR1 . Further

|Φ(ζ)| = R1 > 1, |Φ(ζ)|n+1 = Rn+1
1 � 1,

for ζ ∈ LR1 . On the other hand, we obtain

|w|pµj/2 � 1,
∣∣wn+1Bm(Ψ(w))

∣∣p/2 � 1, z ∈ LR.

According to this estimations, from (4.2), we have:

Jn �
∫

|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj/2 |Pn (Ψ(τ))|p/2 |dτ |
|τ − w|

.

Multiplying the numerator and determinator of the integrand by h1/2(Ψ(τ)) ·
|Ψ′(τ)|1/2 and applying the Hölder inequality, we obtain:

Jn �

 ∫
|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|γj |Pn (Ψ(τ))|p
∣∣Ψ′(τ)

∣∣ |dτ |


1/2

(4.3)

×

 ∫
|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj−γj
|dτ |

|Ψ′(τ)| |τ − w|2


1/2

=: Jn,1 × Jn,2,

By replacing the variable τ = Φ(ζ) and according to Lemma 3.4, we get

Jn,1 � ‖Pn‖p/2Lp . (4.4)

Then, from (4.2)-(4.4), we get:

m∏
j=1

|z − zj |µj |Pn (z)| (4.5)

� ‖Pn‖Lp

 ∫
|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj−γj
(|τ | − 1) |dτ |

d(Ψ(τ), L) |τ − w|2


1/p

.

By denoting last integral as

J̃n,m :=

 ∫
|τ |=R1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj−γj
(|τ | − 1) |dτ |

d(Ψ(τ), L) |τ − w|2


1/p

, (4.6)

we see that to prove the theorem it suffices to estimate the integral J̃n,m. Since
the points {zj}mj=1 ∈ L are distinct, according to notations (3.1), for arbitrary

fixed j, 1 ≤ j ≤ m, we get: (
J̃n,m

)p
(4.7)
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=
m∑
i=1

∫
F iR1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj−γj
(|τ | − 1) |dτ |

d(Ψ(τ), L) |τ − w|2

�
m∑
i=1

∫
F iR1

m∏
j=1

|Ψ(τ)−Ψ(wj)|pµj−γj
(|τ | − 1) |dτ |

d(Ψ(τ), L) |τ − w|2
=:

m∑
i=1

J̃ in,jo(F
i
R1

),

where, for each subarc l ⊂ F iR, J̃ in,j0(l) is denoted by

J̃ in,j0(l) :=

∫
l

|Ψ(τ)−Ψ(wj0)|pµj0−γj0 (|τ | − 1) |dτ |
d(Ψ(τ), L) |τ − w|2

. (4.8)

It remains to estimate the integrals J̃ in,j0(F 1
R1

) for each i = 1,m. For simplicity
of our next calculations, we assume that

m = 1, j0 = 1, µ := µ1; s∗ := s∗1, γ := γ1, ν := ν1. R = 1 +
ε0

n+ 1
. (4.9)

In this situation, the integral J̃ in,j(L
1
R1

) can be written as:

J̃1
n,1(F 1

R1
) :=

∫
F 1
R1

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
d(Ψ(τ), L) |τ − w|2

. (4.10)

Under this assumptions, L ∈ Q̃α [ν] , for some 0 < ν < 1, 0 < α ≤ 1. Then,
according to [22], ψ ∈ Lip ν and there exists the number δ, 0 < δ < δ0 < diamG,
such that

Φ ∈ Lip 1

2− ν
, z ∈ Ω(z1, δ). (4.11)

We accept the notation

L1
R1,1 : = L1

R1
∩ Ω(z1, δ), L

1
R1,2 := LR1\L1

R1,1;F 1
R1,i := Φ(L1

R1,i); (4.12)

L1
1 : = L1 ∩B(z1, δ), L

1
2 := L1\L1

1; F 1
i := Φ(L1

i ), i = 1, 2.

Taking into consideration these notation, from (4.10), we have:

J̃1
n,1(F 1

R1
) =

∫
F 1
R1

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
d(Ψ(τ), L) |τ − w|2

(4.13)

=

3∑
i=1

∫
F 1
R1,i

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
d(Ψ(τ), L) |τ − w|2

= :

2∑
i=1

J̃1
n,1(L1

R1,i),

where

J̃1
n,1(F 1

R1,i) :=

∫
F 1
R1,i

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
d(Ψ(τ), L) |τ − w|2

, i = 1, 2. (4.14)

We consider the individual cases.
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1) Let z ∈ L1
R,1. Let us denote ζ̃ ∈ L1

R1,1
such that d(ζ, L) =

∣∣∣ζ − ζ̃∣∣∣ and

w̃ := Φ(ζ̃);

L1,1
R1,j

: =
{
ζ ∈ L1

R1,j : |ζ − z1| ≤ c1

∣∣∣ζ − ζ̃∣∣∣} , (4.15)

L1,2
R1,j

: =
{
ζ ∈ L1

R1,j : c1

∣∣∣ζ − ζ̃∣∣∣ < |ζ − z1| < δ
}
,

F 1,i
R1,i

: = Φ(L1,i
R1,i

), i, j = 1, 2.

1.1) Then

J̃1
n,1(F 1

R1,1) = J̃1
n,1(F 1,1

R1,1
) + J̃1

n,1(F 1,2
R1,1

),

According to Lemma 3.1 and (3.2), for J̃1
n,1(F 1,1

R1,1
) we have:

J̃1
n,1(F 1,1

R1,1
)

� (R1 − 1)

∫
F 1,1
R1,1

|dτ |
|Ψ(τ)−Ψ(w̃)|1−pµ+γ |τ − w|2

(4.16)

� (R1 − 1)

∫
F 1,1
R1,1

|dτ |
|τ − w̃|(1−pµ+γ)(2−ν) |τ − w|2

� (R1 − 1)1−(1−pµ+γ)(2−ν)

∫
F 1,1
R1,1

|dτ |
|τ − w|2

� (R1 − 1)1−(1−pµ+γ)(2−ν) · 1

R−R1
� n

1
α .

Now, lets estimate the integral J̃1
n,1(F 1,2

R1,1
). According to Lemma 3.1, for

ζ ∈ J̃1
n,1(F 1,2

R1,1
) we have R−R1 < |τ − w1| � 1. We set ε0 := |τ | − 1. In this case,

we take the discs centered at the point w1, and radius 2sε0, s = 1, 2, ...N , where
we choose a number N such that the circle is QN =

{
τ : |τ − w1| = 2Nε0

}
, that

satisfies the conditions QN ∩ {t : |t| = R} 6= ∅, QN+1 ∩ {t : |t| = R1} = ∅. Then,

setting F sR1,1
:= F 1,1

R1,1
∩
{
t : 2s−1εo ≤ |t− w1| ≤ 2sεo

}
, we have:

J̃1
n,1(F 1,2

R1,1
) (4.17)
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=

∫
F 1,2
R1,1

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
|Ψ(τ)−Ψ(w̃)| |τ − w|2

=

∫
F 1,2
R1,1

∣∣∣∣Ψ(τ)−Ψ(w1)

Ψ(τ)−Ψ(w̃)

∣∣∣∣ 1

|Ψ(τ)−Ψ(w1)|1−pµ+γ

(|τ | − 1) |dτ |
|τ − w|2

�
∞∑
s=1

∫
F sR1,1

[
|τ − w1|
|τ | − 1

]ε |dτ |
|τ − w1|(1−pµ+γ)(2−ν)

(|τ | − 1) |dτ |
|τ − w|2

�
∞∑
s=1

(
2sεo
εo

)ε εo

(2s−1εo)
1
α

∫
F sR1,1

|dτ |
|τ − w|2

� 2
1
α ε

1− 1
α

o

∞∑
s=1

(
2ε

2
1
α

)s−1 ∫
F sR1,1

|dτ |
|τ − w|2

� n · ε1− 1
α

o

∞∑
s=1

(
2ε

2
1
α

)s−1

= n · n
1
α
−1
∞∑
s=1

(
2ε

2
1
α

)s−1

� n
1
α ,

where ε = ε(L) < 1 defined from Lemma 3.1.
1.2) For any ζ ∈ L1

R1,2
, δ < |ζ − z1| < δ0 and, from (4.14), we obtain:

J̃1
n,1(F 1

R1,2) (4.18)

=

∫
F 1
R1,2

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
|Ψ(τ)−Ψ(w̃)| |τ − w|2

� (δ0)pµ−γ
∫

F 1
R1,2

(|τ | − 1) |dτ |
|τ − w̃|

1
α |τ − w|2

� 1

n
· 1

(R1 − 1)
1
α

∫
F 1
R1,2

|dτ |
|τ − w|2

� n
1
α

2) Let z ∈ L1
R,2.

2.1) Under the notations (4.15), we have

J̃1
n,1(F 1

R1,1) = J̃1
n,1(F 1,1

R1,1
) + J̃1

n,1(F 1,2
R1,1

),

and analogously to the estimations (4.16) and (4.17), it is easy to obtain the
following:

J̃1
n,1(F 1,1

R1,1
) � n

1
α ; J̃1

n,1(F 1,2
R1,1

) � n
1
α . (4.19)

2.2) According to notations (4.15), integral can be written as follows:

J̃1
n,1(F 1

R1,2) = J̃1
n,1(F 1,1

R1,2
) + J̃1

n,1(F 1,2
R1,2

).
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Then, according to Lemma 3.1 and (3.2), for J̃1
n,1(F 1,1

R1,2
) we have:

J̃1
n,1(F 1,1

R1,2
) =

∫
F 1,1
R1,2

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
|Ψ(τ)−Ψ(w̃)| |τ − w|2

� (R1 − 1)

∫
F 1,1
R1,2

|dτ |
|Ψ(τ)−Ψ(w̃)|1−pµ+γ |τ − w|2

(4.20)

� (R1 − 1)

∫
F 1,1
R1,2

|dτ |
|τ − w̃|(1−pµ+γ)(2−ν) |τ − w|2

� (R1 − 1)1−(1−pµ+γ)(2−ν)

∫
F 1,1
R1,2

|dτ |
|τ − w|2

� (R1 − 1)1−(1−pµ+γ)(2−ν) · 1

R−R1
� n

1
α .

Analogously to (4.18), we get:

J̃1
n,1(F 1,2

R1,2
) =

∫
F 1,2
R1,2

|Ψ(τ)−Ψ(w1)|pµ−γ (|τ | − 1) |dτ |
|Ψ(τ)−Ψ(w̃)| |τ − w|2

� (δ0)pµ−γ
∫

F 1,2
R1,2

(|τ | − 1) |dτ |
|τ − w̃|

1
α |τ − w|2

(4.21)

� 1

n
· 1

(R1 − 1)
1
α

∫
F 1
R1,2

|dτ |
|τ − w|2

� n
1
α
−1

∫
F 1
R1,2

|dτ |
|τ − w|2

� n · n
1
α
−1 = n

1
α .

Combining estimations (4.5), (4.10), (4.13)-(4.21) and according to notations
(4.9), for arbitrary z ∈ LR, we obtain:

|z − z1|µ |Pn (z)| � n
1
αp · ‖Pn‖Lp , p > 0. (4.22)

The estimation (4.22) satisfied on LR. We show that it is also carried out on
L. For R > 1, let w = ϕR(z) denote the univalent conformal mapping of GR onto
B normalized by ϕR(0) = 0, ϕ′R(0) > 0, and let {ζj} , 1 ≤ j ≤ m ≤ n, zeros of
Pn(z), lying on GR. Let

Bm,R(z) :=
m∏
j=1

Bj,R(z) =
m∏
j=1

ϕR(z)− ϕR(ζj)

1− ϕR(ζj)ϕR(z)
(4.23)

denote a Blashke function with respect to zeros {ζj} , 1 ≤ j ≤ m ≤ n, of Pn(z).
Clearly,

|Bm,R(z)| ≡ 1, z ∈ LR; |Bm,R(z)| < 1, z ∈ GR. (4.24)
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For any µ > 0 and z ∈ GR, let us set:

Hn (z) :=

[
Pn (z)

Bm,R(z)

]1/µ

.

The function Hn (z) is analytic in GR, continuous on GR and does not have zeros
in GR. We take an arbitrary continuous branch of the Hn (w). Then, applying

maximal modulus principle to [Hn (z)]1/µ (z − z1), we have:∣∣∣∣∣
[
Pn (z)

Bm,R(z)

]1/µ

(z − z1)

∣∣∣∣∣ (4.25)

≤ max
ζ∈GR

∣∣∣∣∣
[
Pn (ζ)

Bm,R(ζ)

]1/µ

(ζ − z1)

∣∣∣∣∣ ≤ max
ζ∈LR

|Pn (ζ)|1/µ |ζ − z1|

�
(
n

1
αp · ‖Pn‖Lp

)1/µ
, z ∈ L,

and, therefore we find:

|(z − z1)µPn (z)| � n
1
αp · ‖Pn‖Lp , z ∈ L. (4.26)

Since the system of points {zj}mj=1 are isolated, according to assumption (4.9),
we get:

max
z∈L

 m∏
j=1

[|z − zj |]µj |Pn(z)|

 � n 1
αp · ‖Pn‖Lp , p > 0, (4.27)

and we complete the proof of estimation (2.6).
Now, we prove the estimation (2.7). For each R > 1, p > 0 and z ∈ GR, let us

set

Tn (z) :=

[
Pn (z)

Bm,R(z)

]p/2
, (4.28)

where Bm,R(z) is a Blashke function defined in (4.23). The function Tn (z) is

analytic in GR, continuous on GR and does not have zeros in GR. We take an
arbitrary continuous branch of the Tn (z) and for this branch we maintain the
same designation. Then, the Cauchy integral representation for the Tn (z) in GR
gives

Tn (z) =
1

2πi

∫
LR

Tn (ζ)
dζ

ζ − z
, z ∈ GR,

or ∣∣∣∣∣
[
Pn (z)

Bm,R(z)

]p/2 ∣∣∣∣∣ ≤ 1

2π

∫
LR

∣∣∣∣ Pn (ζ)

Bm,R(ζ)

∣∣∣∣p/2 |dζ||ζ − z|
≤
∫
LR

|Pn (ζ)|
p/2 |dζ|
|ζ − z|

,

since |Bm,R(ζ)| = 1, for ζ ∈ LR. Lets now z ∈ L. Multiplying the numerator and

determinator of the integrand by h1/2(ζ), by the Hölder inequality, we obtain

∣∣∣∣ Pn (z)

Bm,R(z)

∣∣∣∣p/2 ≤ 1

2π

∫
LR

h(ζ) |Pn(ζ)|p |dζ|


1/2
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×


∫
LR

|dζ|
m∏
j=1
|ζ − zj |γj |ζ − z|2


1/2

=:
1

2π
Jn,1(LR)× Jn,2(LR).

Then, since |Bm,R(z)| < 1, for z ∈ L, from Lemma 3.4, we have:

|Pn (z)| � (Jn,1(LR) · Jn,2(LR))2/p � ‖Pn‖p · (Jn,2(LR))2/p , z ∈ L. (4.29)

By using notations (3.1), for the integral Jn,2, we obtain

(Jn,2(LR))2 =
m∑
i=1

∫
LiR

|dζ|
m∏
j=1
|ζ − zj |γj |ζ − z|2

(4.30)

�
m∑
i=1

∫
LiR

|dζ|
|ζ − zi|γi |ζ − z|2

=:

m∑
i=1

J in,2(LiR),

where

J in,2(LiR) :=

∫
LiR

|dζ|
|ζ − zi|γi |ζ − z|2

, i = 1,m, (4.31)

since the points {zj}mj=1 ∈ L are distinct. Therefore, it remains to estimate the

integrals J in,2(LiR) for each i = 1,m. setting z = z1, and assume that m = 1,

under the notations (4.12), we have:

|Pn (z1)| � ‖Pn‖Lp

∫
LiR

|dζ|
|ζ − zi|2+γ1

.

= ‖Pn‖Lp

 ∫
L1
R,1

|dζ|
|ζ − z1|2+γ1

+

∫
L1
R,2

|dζ|
|ζ − z1|2+γ1

 . (4.32)

By applying (3.2), we obtain:∫
L1
R,1

|dζ|
|ζ − z1|2+γ1

=

∫
F 1
R,1

d(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w1)|2+γ1 (|τ | − 1)

(4.33)

�
∫

F 1
R,1

|dτ |
|Ψ(τ)−Ψ(w1)|1+γ1 (|τ | − 1)

� n
∫

F 1
R,1

|dτ |
|τ − w1|

(γ1+1)(2−ν1)

� n
(γ1+1)(2−ν1)

;∫
L1
R,2

|dζ|
|ζ − z1|2+γ1

� (δ)−2−γ1mesL1
R1,1 � 1. (4.34)

Then, from (4.32), we get:

|Pn (z1)| � n
(γ1+1)(2−ν1)

p ‖Pn‖Lp ,
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and, according to our assumption m = 1, we complete the proof of estimation
(2.7). �

4.2. Proof of Remark 2.2.

Proof. a) Let L := {z : |z| = 1} , h∗(z) ≡ 1 and P ∗n(z) =
n∑
j=0

(j + 1)zj . Then,

L ∈ Q̃1;

|P ∗n(z)| ≤
n∑
j=0

∣∣(j + 1)zj
∣∣ =

(n+ 1)(n+ 2)

2
, |z| = 1.

On the other hand,

|P ∗n(1)| = (n+ 1)(n+ 2)

2
.

Therefore,

‖P ∗n‖L∞ =
(n+ 1)(n+ 2)

2
; ‖P ∗n‖L2(1,L) =

√
(n+ 1)(n+ 2)(2n+ 3)

3
π.

Then,

‖P ∗n‖L∞ =

√
3(n+ 1)(n+ 2)

4π(2n+ 3)
‖P ∗n‖L2(1,L) ≥

√
3

8π
·
√
n ‖P ∗n‖L2(1,L) .

b) Verified directly using the scheme of the proof. �

4.3. Proof of Corollary 2.3.

Proof. If L ∈ C(1, α, λ1), then the curve L = ∂G has an interior (with respect to
G) (2 − λ1)− angle at the z1. Then, according to [22], ψ ∈ Lip 1

2−λ1 , and so, by

[22], Φ ∈ Lip 1
λ1
. Therefore, L ∈ Q̃α

[
1
λ1

]
(2.1). In this case, for p = 2, from (2.2)

and (2.4), we obtain the proof. �

Theorem 2.4 is proved analogously to the proof of Theorem 2.1, with using
Lemma 3.3.
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[26] N.P. Özkartepe, F. G. Abdullayev, On the interference of the weight and boundary
contour for algebraic polynomials in the weighted Lebesgue spaces I, Ukr. Math. J.
(2016) (submitted).

[27] Ch. Pommerenke, Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.



THE “ALGEBRAIC ZERO” CONDITION FOR ORTHOGONAL POLYNOMIALS . . . 173

[28] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag,
Berlin,1992.

[29] I. Pritsker, Comparing Norms of Polynomials in One and Several Variables, J. Math.
Anal. and Appl. 216 (1997), 685-695.

[30] S. Rickman, Characterisation of quasiconformal arcs, Ann.Acad. Sci. Fenn., Ser. A,
Math. 395 (1966), 30.

[31] V.I. Smirnov, Sur la theorie des polynomes orthogonaux a une variable complexe J.
Leningrad Fiz.-Math. Fellow. 2(1928), no. 1, 155-179.
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