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ON FINDING RIGHT HAND SIDES OF EQUATIONS OF
FLEXURAL-TORSIONAL VIBRATIONS OF A BAR

GAMLET F. KULIEV AND AYSEL T. RAMAZANOVA

Abstract. In the present paper, an inverse problem for equations con-
nected with flexural-torsional vibrations of a bar is studied. This prob-
lem is reduced to an optimal control problem and is studied by the
methods of optimal control theory.

1. Introduction

It is known that some problems of mathematical physics, mechanics, etc. are
described by fourth order partial equations. A tuning fork, a bar vibrations
equation, a rotary shaft, oscillating motions equation, plate vibrations equation
and so on are among these equations (see [1,4,8,12]). Therefore, investigation of
optimal control problems in processes described by these equations is urgent.

The principles of mathematical theory of control of vibrating elastic systems
were laid in the papers of A.G. Butkovsky, A.E. Egorov, K.A. Lurie, T.K. Sir-
azetdinov and others (see [2,11]). Note that basic principles of optimal control
for vibrating bars were developed in the paper [6]. The control connected with
frexural-torsional vibrations of a bar has a great significance in dynamics of air-
craft constructions. Therefore, the study of bar vibrations problems controls
described by differential equations is necessary both from practical and theoret-
ical point of view (see [8,11]). In recent years the problems of bar vibrations
control are intensively studied (see [3,10,15]).

2. Problem statement

We consider a boundary value problem for equations of flexural-torsional vibra-
tions a bar, described by the system of two differential equations in the domain
Q={0<z<l,0<t<T}

2 2 9 9
88332 (E(x)l(x) %) +p(x) A(z) gg—ﬂ(w)A(sﬂ)e(az) % = (2, 1), (2.1)
2 2 2
aaxg <E (z) Cy () gﬂg) - aamZ(G(az)C(x) 0)—
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where [ > 0, T' > 0 are the given numbers, y(z,t) is the lateral displacement of
the bar, 0 (z,t) is the turning angle of the bar cross-section, E (z) is the Young
modulus, I (z) is a polar inertia moment of the cross section with respect to
its gravity center, p (x) is the density of the bar material, A (x) is the area cross
section, e (x) is the distance from the gravity center to the centre of torsion, C,, (z)
is the sectional moment of inertia of the cross-section, G(x) a shear modulus,
C (x) is geometrical rigidity of free torsion, E(z)C,, (z) is the rigidity of flexural
torsion, G(x)C (z) is the rigidity of free torsion, g, @1, ¢o, ¢1 are the given
functions, the functions vy (z,t) and vy (x,t) to be defined.
To determine v (x,t) = (v1 (x,t), vo (z,t)) we give the additional conditions

y(d(t),tv) =¢(t),0(d(t) tv) =g(t), (2.6)
where x = d (t), p(t), g (t), t € (0,T) are the given functions.
We reduce this problem to the following optimal control problem: it is required
to find such a vector-function v (x,t) = (v1 (x,t), v (x,t)) € Lo (Q)x Lo (Q) that
minimizes the functional

1 T
J(v) = / [(y (d(t),t;0) — @)+ (0(d(t), t;v) — g (t)?] dt, (2.7)
2 Jo

together with the solution of boundary value problem (2.1)-(2.5). The function
v (z,t) = (v1 (z,t) ,v2 (z,1)) is said to be a control. We call problem (2.7), (2.1)-
(2.5) a reduced problem.
Suppose that the data of problem (2 1)-(2.5) satisfy the following conditions:
)E (z), I (z), p(x), A(z), e(x), Cy (z), G(x), C (z) are measurable, bounded
and pos1t1ve functions on the 1nterval [0, 1].

2) Yo € W22 (Oal)v 950 € W22 (Ovl) y P1 € Lo (Oal)a 851 € Lo (Oal)a Y e W21 (07T)a
g€ W5 (0,T),d(t) e KC*(0,T).

Note that for each fixed vector-function v (z,t) = (v (z,t), va(x,t)) € Lo (Q)X
Ly (@), problem (2.1)-(2.5) has a unique generalized solution from the space
Wi (Q) [4,9,7].

3. On a property of the reduced problem (2.7), (2.1)-(2.5).

Show that infJ(v) =0.
veL2(Q)x L2(Q)
This issue is equivalent to the issue on density in L (0,7") x Lo (0,T) of the

image Ly (Q) x Lo (@) under the mapping
(Ulqu) -y (d (t) ,t;UhUQ) x 0 (d (t) ’t;/U17/U2) :
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For solving this issue, we use the Hahn-Banach theorem [5]. Let & (t) and &; (¢)
be the given functions from Ls (0,7") such that

T
/0y<d<t>,t;vl,vz>so<t>dt=o,

T
/ 6(d(t),t01,02) €1 (1) dt = 0, Yoy, 09 € L (Q). (3.1)
0
We want to know if this implies & (t) = 0, & (¢) =
Introduce the vector-function (wq (z,t), wo (z,t)) as the solution of the bound-
ary value problem
82 82101 82w1
%) <E (z) I (z) 8952> +P($)A($)W*
82’11)2
@A) e ) T =& (1) —a (1)), (3.2
82 62w2 82w2
922 (E (z) Cu (2) W) -G (z)C (x) a2
8221}2
—p(x)A@)e(@) a0 +p(2) (I (2)+ (3.3)
82
FA@) e (1) T = 6 (1) (0 — (1), (.1) € @
8w1 8’[1)2
_ —o 20 92 <<
Wil = w 2|,y =0, ot |, o |, 0,0 <z <, (3.4)
8w1 8w2
_ —o 20 9 _go<t<
8w1 8’(02
_ _o d 920 <t <

where § (z,t) is Dirac’s delta function.

Note that this problem has a unique generalized solution in VV22 -1 (Q)x VV22 -1 (Q)
[7].

By definition of the generalized solution of problem (2.1)-(2.5) we have: for
t = 0 the conditions y (z,0;v1,v2) = o (x), 0 (x,0;v1,v2) = @o (x) and the
following integral identities

2 2
I (@1 T558 = pe) 4 GG+ p ) Alwye (o) G0 ) daai

l
- /0 p () A (2) g1 (2) i (&, 0) da+

l
+/0 p(z)A(z)e(x)pr () pa (x,0)de = //Q vy - ppdadt, (3.7)

2 2
I (Fece@ 5255 - cwe@od

b () Awe (o) L — () (1) + A ) (0) T 2 ) s
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l
+ [ p@ A@) e @ o (@) 2 0.0 o
0
l
—Apmmum+Amw%mmamma%mW—
= //Q vg - podxdt, (x,t) € Q, (3.8)

are fulfilled for arbitrary functions puy, uo € W22 - (Q),

firlyeg = plier =0, (3.9)
O O

—o0, A = CR21 3.10

:u1|3; 0 — MQ‘,Z 0 — a:L‘ o0 ax o0 ( )
O o

Hl‘xfl lu’2|a; l ax - ax - ( )

From definition of the generalized solution of equation (3.2)-(3.6) we have: for
t =T the conditions w; (z,T) = 0, wy (z,T) = 0 and the integral identities

2w 2 w w
17Q<E@ﬂﬂmim;3£-WN@A@92;2?+ @wumeu»%;%?>wm_

! w1 (T
[ @ aw D g (0,0 do
l T
+Am><>@ﬁ%;mmwmmzé@wmw@ww (312)
’LU 2 2’LU

+p(x) A(x)e(x) %% —p(2) (I(z)+ A(z)e* (z)) atﬁt> dxdt—

!
Ows (z,0
- [ o 1@+ 4@ @) P2 g (0,0 ds =
T
- [[a®an@n.aw (3.13)
0
are fulfilled for arbitrary functions g1, g2 € W22 -1 (Q),
gl’r 0— 92‘37 =0 — 0 gl‘z [ — 92‘17 = O (314)
I 092 091 092
- —_ — _— = — == 0. 3.15
O =0 O =0 " O x=l O x=l ( )

Now in identities (3.7) and (3.8), in place of the functions p; and us we take
wi (x,t) and ws (x,t), while in the identities (3.12) and (3.13), in place of the
functions g; and go we take y (z,t;v1,v2) and 6 (z,t; vy, v2), respectively. Then
from (3.7) and (3.8) we subtract (3.12) and (3.13), respectively and sum the
obtained expression.
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Then we have:
l l
/ p(@) A(z) 1 (@) wi (2,0) dm‘*/ p(x)Az)e ()1 (z) w (x,0)dr+
’ 0
!
+/0 p(z)A(z)e(x) e (x)ws (z,0)de—

l
—prﬂum+Aww%wwmwwxamm+

Ows (z,0)
ot

vo (z) de—

! ow; (x,0) _
_/0 p(z) A(z) e (x) 1(% o (a) da+

l
+/0 p() (I(z)+Az)e® (z)) —2—"— 3w2 (z, 0 x)dr = // viwy + vaws) drdt—

T
—A(&@ywﬁiwmm+&@WMGLmeD%

V?Jl, vy € Lo (Q) .
Hence, from conditions (3.1) we have

l l
- [ r@A@ e @ i @0 ds+ [ p@) A@)e@ b (@) w (2,0 dot
0 0
!
*ApmAwnmwumw@ﬂm%

l
—prﬂu@+Aun%@wwwwﬂamm+

(‘)wl ($ O)

I ’ ! Ows (z,0)
+/Op(x)A(:1:) o <po(ﬂl?)délf—/0ﬂ(ﬂc)f“(“)e(%)2

ot

o () dx—

l own (z,0) _
- [ r@ Ao PG (@) drs

8w2 (:U 0)

5 @0 () de—

l
+Ap@mum+Amn%m)

— // V1w + UQ’LUQ) dx = 0,Yv,v9 € Loy (Q) X Lo (Q) . (3.16)

If we write this relation for arbitrary v} (z,t), v} (z,t) and vi (z,t), v3 (z,t),
then from the obtained two equalities it follows that

// U1 z,t) — vl (z ) wy (2, t)+( (x, t)—UQ(JJ,t))wg(ﬂ?,t)] dxdt = 0,

Vvl,vg € Ly (Q) X Lo (Q) .
Then, hence and by the analog of Lagrangain lemma [14, p. 95| it follows
that wy (x,t) = 0, wa (z,t) = 0 almost everywhere in (). Since w(z,t) =
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(wy (z,t), wa (z,t)) as the solution of problem (3.2)-(3.6) is a continuous vector-
function on @, then wy (z,t) = 0, we (x,t) = 0, (z,t) € Q, therefore, from (3.2)
and (3.3) it follows & (t) = 0 and &; (t) = 0. Thus, we get inf J (v) = 0.

’UELQ(Q)

4. Formula for increment of functional (2.7).

Now for a class of admissible controls we take a convex, closed set
Uad C L2 (Q) x Lz (Q) of vector-functions v (z,t) = (v (x,t), vy (x,1)).
Introduce the following problem adjoint to the problem (2.1)- (2 5), (2.7).

2 2 2 2
88952 (E (z) I (x) %) +p(x) A(z) aa;’gl —p(z)Az)e(x) 882/;2 =0, (4.1)
2 2 2 2
bz (B0 55 ) ~0@ew 55 - o at el G+
2 Py
+p (x) (I (x)+A(x)e (:c)) 52— 0, (4.2)
3% _ Oty B
¢1‘t T—w2’t -7 = ot _ T— Wt:T—O, (4.3)
) )
V1lpeo = Vilpey = aq’il = % = 0, (4.4)
) )
1/}2’35 0o — wZ‘w 1= 8122 - = % - = 0, (4.5)
[h1]p = [Welr = [86%] [%ﬁﬂ =0, (4.6)
2 2
[E ()1 (z) 88;/;1] [ 88;/’22] =0, (4.7)
2
5 (F@r@Ga )| = a0 -e).
2
[883: (E () Cp () %jf)h = (0d(t),t;v) —g(t). (4.8)

where I" is a line of x = d (t), t € (0,T), that divides the domain @ into two parts
Q1 and Q2, the symbol [w (z,t)]; means the difference between limit values of
the function w (z,t) in the sense of Ly on I, i.e. the difference between the traces
calculated when approaching I" from the side of domains Q1 and Q2 [9. p.264].
Note that (4.6)-(4.8) is called the adjoint conditions.
0

0
Let o, p0 € W4 (0,1) \W2 (0,1), ¢1,81 € W3 (0,1). Then by virtue of the
results of [4], problem (4.1)-(4.8) has a solution (¢ (x,t), 12 (x,t)), such that
U1 (x,t), Yo (z,t) € T/V24’2 (Qk), k = 1,2. Therefore, the following adjoint condi-
tions are fulfilled by itself:
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We take the two admissible controls:vy (x,t), vy (x,t) and we assign them
the increments dv; € Lo (Q) and dve € Lo (Q) in such a way that vy (z,t) +
dvy (z,t),v2 (x,t) + dva (x,t) € Uyg.
Find the increment of the functional (7)

1

T
5T (v) = J (v+ 6v) — J (v) = 2/0 (@) 1 + 601,02+ 902) — 0 (O] -

— [y (d(t),t;01,02) — @ (D] +
+[0(d(t) 101 + dv1,v2 + v2) — g (B> — [0(d (£) , £;01,02) — g (t)]Q} dt,
where
y (x,t;v1 + 0vy, v9 + dvg) = y (z,t;v1,v2) + dy (x, 1),
0 (z,t;v1 + dvy,va + dvg) = 0 (x,t;v1,v2) + 60 (x,t) .
Hence it follows that

T
5.7 (v) = / (@ ()t v1,02) — o (D] 8y (d(£) 1) di+

T
4 /0 0(d (), t;01,00) — g (1) 60 (d (¢) 1) dt + R, (4.9)
where
T
R=3 [ [y .0f+ @07

while (6y (,1),60 (2,1)) € Wi (Q) x Wi (Q) is the generalized solution of the
following boundary value problem:

2 2 2 2
5 (E@ 1@ 52 )+ 4w G — (@) Awye ) 53 =0, (420

0? 0260 0? 020y
9 (E@oa, . —p(0) A
bz (B0 55 ) - 52 (G C @) - pla) Ala)ea) 5+
0250
+p(2) (I (z) + A(z) e (z)) R dva, (4.11)
0y (z,1t) 006 (x,t)
fry = _— = - 4.12
5y (-Ta t) ’t:[) o6 (l’, t) |t:0 07 ot —0 ot —o 07 ( )
9y (z,t) 060 (x,t)
6y (.’L’, t) |x=0 59 ($7 t) |x:0 0’ 61, 0 ax — 07 ( 3)
00y (x,t) 000 (z,t)
6y (x7t)|x: = 60 ($’ t)|a:: = 07 - 5 = — X == 07
: : Oz z=l Oz x=l
i.e. for any function Vi, o € W' (Q),
771|t:T = T’2‘t:T = 07
771|:c:0 = 772|x:0 =0, 771|le = n2|x:l =0,
Om|  _ 0wl _g 9| _9ml _,
O =0 Ox =0 " Ox x=l O x=l ’
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the integral identities

2 2
//Q (E(:c)l(:c) %EI% —p(z)A(z )8§tya£1 +p(z)A(z)e(x )6§t96£1> dt—

—/ ovy - mdxdt =0, (4.14)
9250 9o 8250
// < ) ox 9.2 ox a2 -GC—— o2 N2+
8y 8 950 0
4p(x) A(z) e (2) 75% —p(x) (I () + A(z) e (x)) &;;) ddt—
—/ Ovg - madxdt =0 (4.15)
Q

are fulfilled. As the functions ¥; (x,t), 12 (x,t) are the generalized solutions of
problem (4.1)-(4.8), for any functions g1, g € W2 (Q),

91|t 0= 92’t — =0,

Giloo = galoo =0, DL =921 g
Tlz=0 2lz=0 — or 0 or 0 ’
991 992
—o, W 92
gl‘x 1= 92|x 1= o - ox - )

the following integral identities are fulfilled

0*Y1 0% oY1 0g1
//Q <E($)I($) gu? ga2 P OAR) HE Gt

Fo(e) A(w)e () 22 ?;) dudi—

- /T [y (d (), t;v1,02) = (8)] g1 (d(t) 1) dt =0, (4.16)
() A(w) e @) 35‘;3895 (@) (1 (@) + A @) ¢* () a(;”j o) dact-
- /OT 0(d (1), ts01,02) — g (D] g2 ( () ) dt = 0. (4.17)

In identities (4.14) and (4.15) instead of ny (x,t) and s (x,t) we take ¢ (z,1)
and 9 (z,t), in the identities (4.16) and (4.17) instead of g1 (x,t) and go (x,t) we
take dy (x,t) and 06 (z,t) respectively, subtract the obtained relations and sum

them.
— // vy - Prdxdt — / ovg - Wodxdt+
Q Q

Then we have
T
T /0 [y (A () £ 01, v2) — o (8] 8y (A (£) . 1) dadi+
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T
—I-/ [0(d(t),t;v1, vo) —g ()] 06 (d(t),t)dzdt = 0. (4.18)
0
Therefore from formulas (4.9) and (4.18) it follows that
0J (U) = // v - Prdxdt + // ovs - Yodxdt + R. (4.19)
Q Q

5. Estimating the increment of the solution of problem
(4.10)-(4.13) and the residual term R

Let show that for the generalized solution of boundary value problem (4.10)-
(4.13) the following estimation is valid:

18y (2, )12 2.1 ) + 166 (2, D121 gy < e (19021, @) + Io0ly0) » (5:1)

here and in the sequel, by ¢ we will denote different constants independent of
estimated values and on admissible controls.
For proving estimation (5.1), we apply the Faedo-Galerkin method.
0

Let {w; (z)};2, be a fundamental system in W3 (0,1) and

i@ @ydo = { LIz
Ow,xwkx T=N 0 i £k
We look for approximate solutions (6y™ (z,t), 66" (z,t)) of problem (4.10)-

(4.13) in the form 6y (z,t) = SN | eN (t) w; (z) and 66N (x,8) = SN | e (8) wi (2)
from the following relations

l 825yN d2wp (x) l 825yN
/0 E(x)I (z) 90 da? dx + /0 p(z)A(z) oz r (z) dz—
l 250N l
—/ p(z)A(z)e(x) “hE Wr (z)dx = / v (z,t)wy (x)dz, p=1,N, (5.2)
0 0
! 9260 d*w,, (x)
/0 B(2) Ou () T2 T g

l 2w T l
- [eweman T [hwame @

! ) 256N
+ [ 0@ 1@+ 4@ @) gy ) da -
l
:/ dvy (x,t)wp (x)dz, p=1,N, (5.3)
0
le\”t:o = cé\”tzo =0, (5.4)
N N
dei| - _den) o 1w (5.5)
dt |,y dt |,_g

Equalities (5.2) and (5.3) are the system of linear ordinary differential equations

of second order for the unknowns cl¥ () and ¢} (¢), i = 1, N, solved with respect to
2 N 2 N
d d;” and & dfgi . Under the conditions on the problem data, this system is uniquely
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2 .N
solvable under initial conditions (5.4) and (5.5), moreover d S, dfgl € Ly (0,7),

i=1,N.
. . . . dcﬁ) dcé\;
Multiplying each of the equalities (5.2) and (5.3) by its own —#, — and
summing over p from 1 to N, we come to the equalities

! 026yN 93syN ! 926yN asyN
/E(m)[(m T 4o +/ () A ) S5 2Nd
0

C0x2 920t
- /Olp< ) A(w)e (@) L0V 4, / CUAPREEY
250N 935N
[ E@ 0@ G G
- /0 l GCdGNgii%]:dx— /O lp(x)A(a;)e(a?)éﬂ;gvagiNdx—i—
[ @+ a@ew) o = [ B 6

Suppose that G (z),C (x) are independent of z.
Then from (5.6), (5.7) it follows that
1d

= Ol E(@) () (%Sf;vfm(xm(x) (%{V)Z
+E (2) Cy (2) (82?) et (agf) 4
o (a) (@) + A (x) & (@) (8‘;?) @) A e @) (8;{“;?)] do =

! asyN aaeN)
= ov + dv — | dx.
/0( ot 2 (@) =5,

We integrate the last equality with respect to t from 0 to ¢ :
l 25, N\ 2 Ny 2
0°6y 0oy
/0 E(2)I () < - ) +p(@)A(2) <6t ) -

+E () Cy (2) (W> GC<859N> + (5.8)

Ox? Ox
256~ 056~ dsy™ >] o
T =

2
@) (1@ + A2 @) (%) =2 e (T

N
_2/ / (51}185y 5v28(sagt >dxds.

In equality (5.8) we make some transformations

/ol E(x)1 (z) (a;iy;v)zﬂ’(m”(x) <82N>2+
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+E () Cy (2) (W) GC (‘%9N> +

Ox? ox
NN 2
+p(z) (I(z) + A(z)e* (z)) (a(;) _

—p(z) A(z)e(z) ((%)2 + (a(;iNf)] da <
o [ (1005
/OZE(QC)I(x) (32‘;%N)2dx+/(le(x)A(x) (1—e(z)) (?)2@%
o [ Bwene (%) ars oo (B0 s

96N\ 2
+Apmu<>+A<><m—Awn@ﬂ(8t>dw<

or

t pl
< / / (v (z,5)) + (6vz (2, 5))? deds+

L (Y

Assume that 1 —e(x) > a9 > 0, I (z) + A(z)e(x)(e(x)—1) > a3 > 0
Va € [0,1], where g, a1 > 0 are the given numbers.
Since E (z), I (x), A(x), Cy (z), p(x) are positive functions on the segment
0

[0,1], by equivalence of the norms in the space W3 (0,1), from the last inequality
by means of elementary transformations we get:

e (5e) s (522
(P o s
<o [ [ (6o + 0 s

o [l () ()

250N (2. 5)\ 2
+ (8 6yaxg i )) + (50N (:U,s))2+
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950N (z,5)\> (960N (z,5)\> (0256 (z,5)\°
+<(’9t ) +<8x ) +<8:1:2 ) dxds.

Hence, applying the Gronwall lemma, we have:

/Oz [(5yN @0) 1 (85y1\(;t(m,t)>2 . <85y1(;§x,t)>2 N <825yaji§x’t)>2

956N (z, t)>2 . (aaeN (z, t))2 . (a?aeN (, t)>2

N 2 <
+ (66" (z,t)) +dz + < pr o 52 dzx <

< ¢ (0v1l13,g) + < 1002l ) + ¥t € [0.7].

From the last inequality it follows

[ L foreor (=) s (o5

+ (W)Q + (66N (2,8))” + <<%91;t(:p,t))2 +

950N (z,6)\°> (026N (z,t)\’ ) )
+ <8x> + (axg> dr <c (||5U1HL2(Q) + H5U2||L2(Q))

From the sequence (5yN , 06N ) we can choose a subsequence weakly convergent

in W22’1 (Q) x VV22’1 (Q) to some element (dy, d6) € VV22’1 (Q) x I/V22’1 (Q).
By virtue of weak lower semicontinuity of the norm in the Hilbert space, we
get that for oy (x,t) and §0 (z,t) the following estimation is valid

18912, 21,) + 180122 gy < € (18011120 + 1502112 0))

Since W' (Q) is boundedly imbedded in Ly (') [9, pp. 73-74], hence it follows
that

16y (d (£) , )7y 0.0y < € H511H?;V22,1(Q) <c <”5U1H%Q(Q) + H5’U2H%2(Q)> , (59)

166 (d (£) , )|y 0.1y < € ||59||124/2271(Q) <c (||5U1H%2(Q) + ‘|5U2H%2(Q)> - (5.10)

As in [7, pp. 214-215], it is easy to show that (dy (x,t),d0 (z,t)) is the gener-
alized solution of problem (4.10)-(4.13).
From inequalities (5.9) and (5.10) it follows

1

T
R [ v .07+ @ .07 <

<c (\|5v1||i2(@ + Hmnim)) . (5.11)
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6. Gradient of the functional and optimality condition

Thus, from (4.19) and (5.11) it follows that the gradient of the functional J (v)
equals

J (v) = (Y1 (z,t;0) , o (2, ;0)).
Let v°(x,t) = (v}(z,t),v8(z,t)) be an optimal control in problem (2.7), (2.1)-
(2.5). As Uy is a convex set in La(Q) x L2(Q)
(J' (v),v— v0> > 0,Yv = (v1,v2) € Uyq,

here we get

Theorem 6.1. For the control v° (z,t) = (V) (z,t),v3 (z,t)) € Usa to be an
optimal control in problem (2.7), (2.1)-(2.5), it is necessary and sufficient that

//Q (¢1 (:U,t; UO) (v% (z,t) — o) (x,t)) +

) (x,t;vo) (v% (z,t) — 03 (x,t))) dxdt >0, Yv = (v1, v2) € Ugq. (6.1)

Example 6.1. We consider a boundary value problem for equations of flexural-
torsional vibrations of a bar, described by the system of two differential equations
in the domain Q ={0 <z <1,0<t<1}

oty 0%y 0%0

— 4+4——-2— = 1),

oot Ao ~2gr T u@h)

o' 9% 282y 0%0

LA AL S N L ¢
ozt Ox? oz o T (z,2),
dy 2 2 2 o 00
Yo =0, — =z*(1—2)",0l,_g=2"(1—2)", — =0,
=0 Ot |, =0 Ot |,_g
dy y
y|:v:0 y‘zzl 0, or or 1 0, |:c:0 ’$:1 0,
ol o,
Oz z=0 Oz =1 o
In the special case, the coefficients of equations (2.1)-(2.2) were taken in the from:
1 1
E=Z I=2p=1 e=5 A=4,C,=2G=1C=1
Let Uyg = La(Q) x La2(Q).
In order to determine v (z,t) = (vy (x,t), va (z,t)), we give the additional

conditions:
y ((t - 1)2,t;v) —t(t—1) (—2+20)% 0 ((t 128 v) = (t— 1)t (—2+2t)°.

In this special case the functional (2.7) has the form
1T 2 40 42 2)2
J(v):§ (y<(t—1) ,t;v)—t(t—l) (—t +2t)) +
0

+ (0 ((t — 1)t v) — (-1 (=t* + 2t)2>1 dt.
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On the example, as there are no constraint on controls, for
v=1z,t) = (V) (x,t),v(x, 1)) = (24t,22 + 122 — 122?)

Jl(vo) = (¢1($at§ UO),ng(w,t; UO)) = (070)'

Then

minJ (v) =0.
veL2(Q)xL2(Q)

In this case necessary and sufficient condition (6.1) is fulfilled by itself.
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