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Abstract. In this paper, we develop and investigate a multiscale model
reduction technique within the framework of Interior Penalty Discontin-
uous Galerkin methods for problems in perforated domains. Previous
research for developing multiscale methods for perforated domains is
limited to continuous Galerkin formulations, which have some limita-
tions. Discontinuous Galerkin approaches provide some advantages as
they avoid partition of unity functions, allow more flexibility in con-
structing of basis functions and can be easily parallelized. We will
present numerical examples for various 2D and some 3D examples to
demonstrate the efficiency and accuracy of the proposed schemes.

1. Introduction

Many problems in perforated domains exhibit multiscale nature due to vari-
ations in the perforation sizes and their geometries. These include problems in
porous media [15, 3], processes in membranes, and filters [13]. Due to scale
disparity, some types of model reduction techniques are needed. Typical ap-
proaches construct reduced-order models on a coarse grid, where the coarse-grid
sizes are much larger than the perforation sizes. Some successful approaches in-
clude homogenization methods where the macroscopic equations are formulated
on a coarse grid. In these approaches, the macroscale equations are formulated in
the domain without perforations. Due to perforations, the macroscopic equations
can be of the form different from a microscopic equations.

Some numerical approaches for multiscale model reduction include numerical
homogenization [2], multiscale finite element methods [15, 10, 1], Localized Or-
thogonal Decomposition [3], and generalized multiscale finite element methods
(GMsFEM) [9]. Due to page limitation, we can not give an exhaustive list of ref-
erences here. In these approaches, the multiscale basis functions are constructed
in each coarse block to represent the local heterogeneities in each coarse region.
In some of the approaches, only a limited number of basis functions are con-
structed. The GMsFEM is a systematic approach to identify multiscale basis
functions via local snapshots and local spectral problems. The local snapshots
are constructed by solving local problems and contain the information about
local heterogeneities. By performing local spectral decomposition, the method
identifies multiscale basis functions.
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Some recent approaches concerning the development of multiscale methods in
perforated domains are done within continuous Galerkin framework (see [15] for
CrouzeixRaviart based multiscale methods). In these approaches, either local
multiscale basis functions are multiplied by partition of unity functions or multi-
scale basis functions are constructed via conforming boundary conditions. When
multiplying by partition of unity functions, there are several difficulties. First,
one needs to identify appropriate partition of unity functions that can honor
local boundary conditions on the perforations. Secondly, the partition of unity
functions modify the local heterogeneities. To avoid this, we propose using a
discontinuous Galerkin formulation. In terms of multiscale basis construction,
we mainly follow our previous developments. The main novelty of the paper is
developing a discontinuous Galerkin framework for problems in perforated do-
mains.

Developing discontinuous Galerkin methods in conjunction with the GMsFEM
is not new [15, 11, 5, 8]. In a number of papers, we have considered problems
without perforations. This paper is the first work where the Interior Penalty Dis-
continuous Galerkin (IPDG) framework for the GMsFEM in perforated domains
is developed. The main advantages of the IPDG framework are: (1) it avoids
partition of unity functions; (2) it uses non-overlapping partitions; (3) it can use
unstructured coarse and fine meshes; and (4) it provides block diagonal mass
matrices.

In this paper, we study developing the discontinuous Galerkin GMsFEM for
multiscale problems in perforated domains. We consider both elliptic flow equa-
tions and elasticity equations. We present the construction of local snapshot
spaces and local spectral decomposition. The multiscale basis functions are con-
structed independently for each coarse-grid blocks and coupled via IPDG cou-
pling.

We present some numerical examples. Our examples are performed for both
structured and unstructured coarse grids. We study both 2D and 3D exam-
ples. The numerical results show that one can achieve good accuracy with a few
basis functions. We present detailed numerical studies, which demonstrate our
approach can be used for solving problem in perforated domains.

The paper is organized as follows. In Section 2, we introduce the problem and
the fine-scale approximation using a Discontinuous Galerkin method. In Section
3, we present the framework of discontinuous Galerkin GMsFEM (GMsDGM)
and constructing coarse scale function spaces. The randomized snapshots using
an oversampling technique are discussed in Section 4. Next, in Section 5, we
present some numerical examples when we use various perforated domains and
high contrast medium. The three dimensional realization is shown in Section 6.
Finally, we conclude our work in Section 7.

2. Problem formulation and fine-scale approximation

We assume Ω ⊂ Rd (d = 2, 3) to be a bounded domain covered by inac-
tive/active cells or particles Bε (see Figure 1). In this work, we consider problems
in perforated domains (see left of Figure 4) or high-contrast domains (see right
of Figure 4). The perforated domain is denoted by Ωε = Ω\Bε. For the high-
contrast domain, we set Ωε = Ω, and define different permeability coefficients in
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two subdomains (Ω\Bε and Bε). we do not assume periodicity or scale separation
in this paper.

The following problem is considered

L(u) = f in Ωε, u = gD on ΓD, B(u) = gN on ΓN , (2.1)

where L denotes a linear differential operator, B is a normal derivative operator
and ΓD ∪ ΓN = ∂Ωε.

• For the Laplace operator, we have

L(u) = −∇ · (κ∇u), B(u) = κ
∂u

∂n
(2.2)

where n is the outward unit normal on ∂Ωε.
• For the elasticity operator, we assume the medium is isotropic. Let u ∈

(H1(Ωε))d be the displacement field. The strain ε(u) ∈ (L2(Ωε))d×d, and
stress tensors σ(u) ∈ (L2(Ωε))d×d are defined as

ε(u) =
1

2
(∇u+∇uT ), σ(u) = 2µε(u) + λ∇ · u I,

where λ > 0 and µ > 0 are the Lamé coefficients. Then we have the
elasticity operater

L(u) = −∇ · σ, B(u) = σ n. (2.3)

For the fine-scale discretization, we let Th be a finite element partition of the
domain, and Γh be the set of all interior faces. Let e be a face shared by two
neighboring fine elements T1 and T2, then the jump and average of a vector
function u are given by

{u} =
u|T1 + u|T2

2
, [u] = u|T1 − u|T2 . (2.4)

The unit normal vector n is defined on e so that it points from T1 to T2.
We will use the standard IPDG scheme on the fine grid. Let Vh be the finite

element space on the fine grid mesh Th. The weak formulation of the problem
(2.1) is to find uh ∈ Vh such that

aDG(uh, v) = (f, v) (2.5)

for any v ∈ Vh. The bilinear form aDG is defined as follows:

• For the Laplace operator, we have

aDG(u, v) =
∑
T∈T h

∫
K
κ∇u · ∇vdx−

∑
e∈Γh

∫
e
{κ∇u · ne}[v]ds

−
∑
e∈Γh

∫
e
{κ∇v · ne}[u]ds+ γfine

∑
e∈Γh

∫
e
κ[u][v]ds,

(2.6)

where Vh = {v ∈ L2(Ωε) such that v|T ∈ P1(T ), ∀T ∈ Th}.
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• For the elasticity operator, we have

aDG(u, v) =
∑
K∈T h

∫
K

(2µε(u) : ε(v) + λ∇ · u∇ · v)dx

−
∑
e∈Γh

∫
e
{τ(u)}[v]ds−

∑
e∈Γh

∫
e
{τ(v)}[u]ds+ γfine

∑
e∈Γh

∫
e
(λ+ 2µ)[u][v]ds,

(2.7)

where Vh = {v ∈ (L2(Ωε))2 such that v|T ∈ (P1(T ))2, ∀T ∈ Th}, and
τ(·) = σ(·) · n.

We can write either of these equation in the matrix form

AfineUfine = Ffine, (2.8)

where Afine is the fine-scale stiffness matrix, Ffine is the fine-scale right-hand side
and Ufine is the fine-scale solution.

For the coarse-scale discretization, we will apply the Generalized Multiscale
Finite Element Method (GMsFEM) framework using DG coupling (GMsDGM).
The GMsFEM is a generalization of the classical multiscale finite element method
by systematically enriching the coarse spaces and taking into account small
scale information. The GMsDGM is based on the interior penalty discontinu-
ous Galerkin method. In GMsDGM, we design the snapshot space for each non-
overlapping coarse local domain. Then some spectral problems are performed to
obtain a reduced order space, which is the offline space. The coarse scale solution
of the problems are found in the offline space. In next section, we will intruduce
the necessary concepts, notations and consider multiscale space construction.

3. Coarse-scale discretization

Let TH be the coarse scale partition of the domain Ωε which consists of local
subdomains K. In the coarse grid mesh, the characteristic mesh size H >> h,
where h is the size of fine scale mesh and the fine grid is sufficiently fine to resolve
the fine-scale features. In Figure 1, we present the local subdomain in structured,
quasi-unstructured and unstructured coarse mesh.

In GMsDGM framework we have two main components: the construction of the
multiscale basis functions in non-overlapping local domains (offline computaion),
and the global coarse-grid level DG coupling. The offline computation mentioned
above usually contains two steps: (1) the construction of a shapshot space that
will be used to compute an offline space; and (2) the construction of an offline
space by performing a dimension reduction in the snapshot space.

For the offline computation, we first design local snapshot space Vsnap(K),
which is constructed for each local domain K ∈ TH . The snapshot space contains
a large library of local basis functions, which can be used to obtain a reliable ap-
proximation of the fine space. We decompose the local snapshot spaces Vsnap(K)
into two subspaces:

Vsnap(K) = V b
snap(K) + V i

snap(K),

where the first local snapshot space V b
snap(K) in the coarse grid block K is de-

fined as the span of all harmonic extensions, and the second local snapshot space
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V i
snap(K) is defined as V i

snap(K) = V 0
h (K), which is the restrictions of Vh on K

with zero trace on ∂K. For dimension reduction in the above snapshot spaces, we
use solutions of appropriate spectral problems in each snaphot space. Further-
more, eigenfunctions corresponding to the dominant eigenvalues of the spectral
problem are used to construct the offline basis functions. The resulting reduced
order space is called the local offline space VH(K) for the coarse-grid block K.
We can write

VH(K) = V b
H(K) + V i

H(K),

where V b
H(K) and V b

H(K) contain boundary and interior basis functions, respec-
tively. The global multiscale space VH is then defined as the sum of all these
VH(K), K ∈ TH .

Now, let VH be the coarse-scale offline space, which consists of functions that
are defined on each coarse grid block K ∈ TH ,

VH = span{φms
r,i , r = 1, · · · ,Mr, i = 1, · · · , Nc},

where Mr is the number of the multiscale basis functions in each Kr and Nc is the
number of the local domains. Note that φr,i is continuous in coarse element K,
but is not necessarily continuous along the coarse edges. We construct the coarse
scale system in this offline space using discontinuous Galerkin coupling, where
we need to penalize the jump of the solution on the coarse edges. In general, we
want to seek an approximation uH =

∑
r,i cr,iφr,i in VH such that

aDG(uH , v) = (f, v), ∀v ∈ VH .

We note that coarse-scale system can be formed by projecting the fine-scale ma-
trices onto the coarse grid. The projection matrix can be assembled using the
multiscale basis functions

R = [R1, R2, ..., RNc ], Rr = [φr,1, φr,2, ..., φr,Mr ],

where r = 1, · · · ,Mr and Rr is the local projection matrix in a coarse element K.
Using the projection matrix R, we can write the coarse-scale system as follows

AHuH = FH ,with AH = RTAfineR and FH = RTFfine,

where Afine and Ffine are defined in (2.8). After calculating the coarse-scale
solution uH , we can recover the solution on the fine grid by ums = RuH .

Now we present the details of constructing the boundary basis and interior
basis. To construct the local snapshot space V b

snap(K) for each fine-grid node
(vertex) on the boundary of K, we find ψl,K ∈ Vh(K) by solving

aDG(ψl,K , v) = 0 in K, ψl,K = gl on ∂K, (3.1)

where gl, l = 1, ..., JK are the local boundary conditions. In particular, let δl be
the delta function such that δl = 1 at the lth node of ∂K and δl = 1 on the rest
nodes of ∂K, where l = 1, ..., JK with JK being the total number of boundary
nodes. Then for Laplace equation in 2D, we have gl = δl; for Elasticity equation
in 3D, we have gl = (δl, 0, 0) or (0, δl, 0) or (0, 0, δl). The functions ψl,K defined
above are known as harmonic extensions.

The linear span of the harmonic extensions form the local snapshot space

V b
snap(K) = span{ψb1,K , ψb2,K , ..., ψbJK ,K}, (3.2)
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where JK is the number of snapshot basis in local domain K, and the subscript
b refers to boundary.

We then need to select some important modes in V b
snap(K) in order to form a

reduced order space V b
H(K). This is done by solving the local spectral problem

AΦb = λbSΦb, [amn] = aDG(ψbm,K , ψ
b
n,K), [smn] = s(ψbm,K , ψ

b
n,K), (3.3)

where s(ψbm,K , ψ
b
n,K) =

∫
∂K κψ

b
m,K ψ

b
n,K ds.

We choose the first M b eigenvectors {Φb
1,Φ

b
2, ...,Φ

b
Mb} corresponding to the

first M b smallest eigenvalues, λb1 ≤ λb2 ≤ ... ≤ λb
Mb . The offline basis are defined

using these eigenvectors φbi,K =
∑

j(Φ
b
i)jψ

b
j,K where (Φb

i)j is the jth component

of the vector Φb
i . Then we obtain the space V b

H(K) by

V b
H(K) = span{φb1,K , φb2,K , ..., φbMb,K}. (3.4)

These multiscale basis functions in V b
H(K) are called boundary basis functions.

Remark 3.1. The snapshot basis functions descibed above are referred to as the
Type 1 (V b

snap(K)).

Remark 3.2. One can also use all the fine grid nodal basis as snapshots. This
snapshot space are referred to the Type 2 (V b

h (K)).

Figure 1. Top: Computational meshes for structured (left),
quasi-structured (middle) and unstructured (right) coarse meshes
with 100 local domains. Bottom: The first three boundary and
interior basis functions for the marked coarse region.

The interior basis functions. The local snapshot space V i
snap(K) for the

coarse grid block K is defined as V i
snap(K) = V 0

h (K). For the dimension reduction
on the snapshot space, we use following spectral problem to identify the important
modes: find φim,K in V 0

h (K) satisfying

aDG(φim,K , v) = λim(φim,K , v), ∀v ∈ V 0
h (K). (3.5)

Note that the subscript i refers to interior here. We arrange the eigenvalues in
an ascending order λi1 ≤ λi2 ≤ ... ≤ λi

M i . We select the first M i eigenfunctions

φi1, φ
i
2, ..., φ

i
M i corresponding to the first M i smallest eigenvalues. The space

V i
H(K) is spanned by these functions

V i
H(K) = span{φi1,K , φi2,K , ..., φiM i,K}. (3.6)
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The multiscale basis functions in V i
H(K) are called interior basis functions.

In Figure 1, we present the first three interior and boundary basis in perforated
domain for structured, quasi-structured and unstructured coarse meshes. We also
compare the eigenvalues for the interior and boundary basis functions when we
use diffrent type of meshes. When we calclulate boundary basis functions using
Type 1 (see Remark 3.1) and Type 2 (see Remark 3.2) snapshots, we can observe
that the first 30 eigenvalues are similar.

Chung at. al [5] presented a complete stability and convergence analysis of the
discontinious multiscale method for elliptic problem (without perforations). We
expect a similar behavior for the current algorithm. The error of the multiscale
method depends on the coarse-scale mesh size (H), the penalty parameter (γc),
and the number of interior and boundary basis functions choosen. Let Λi =
1/λi

M i+1
and Λb = 1/λb

Mb+1
, we have

||uh − uH ||2DG ≤
∑
K∈TH

H

κ
Λbm

(
1 +

γcH

h
Λbm

)∫
∂K
|κ∇up · n∂K |2

+
∑
K∈TH

H2ΛiK ||f ||2L2 +O(h),
(3.7)

where ‖u‖2DG =
∫

Ω |∇u|
2 + 1

h

∑
E∈EH

∫
E [u]2 and up is the projection of the uh in

the snapshot space.

Remark 3.3. The interior basis functions described above will only be used for
the case of the nonzero right hand side in equation (2.1) (see (3.7)).

4. Randomized snapshot space with oversampling

In this section, we present the numerical results for the Laplace problem in per-
forated domain with some big inclusions and additional small inclusions, and the
permeability coefficient is κ = 1. We remark that we can observe similar behavior
in the solutions for the elasticity problem, so we will omit the numerical results
for elasticity problem from now on. We introduce the construction of randomized
snapshots, and then show the multiscale solution using both standard snapshot
and randomized snapshot space. Note that the standard snapshot space means
the snapshot we calculated for Type 1 (see in Remark 3.1). We also compare the
convergence behavior for both snapshots. We calculate relative errors between
coarse-scale uH and fine-scale uh solutions using following weighted L2 and H1

norms

‖u‖2L2 =
∑
K

∫
K
κ|u|2, ‖u‖2H1 =

∑
K

∫
K
κ|∇u|2.

We consider the following test cases:

• Case 1: For source term f = 1 and boundary conditions: u = 0 on global
boundaries and u = 0 on boundary of inclusions.
• Case 2: For source term f = 0 and boundary conditions: u = 1 on global

boundaries and u = 0 on boundary of inclusions.

In the numerical examples, the fine mesh constains 44126 cells and the DOF
(degrees of freedom) of fine-scale system is DOFfine = 132378. For the coarse
scale approximation, we take structured coarse mesh with 100 local coarse blocks.
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In Table 1, we present relative errors for the Laplace problem for Case 1 and
Case 2 using standard snapshots. We note that for Case 1 with nonzero source
term, besides several boundary basis, we need to add one additional interior basis
in order to reduce the errors (see (3.7)). We observe this phenomenon by com-
paring left column of Table 1 and middle column of Table 1. For example, when
we take 16 basis, the L2 error reduces from 7.3% to 0.9% after adding one interior
basis. On the right column of Table 1, we present the convergence history for
Case 2, and we only take boundary basis functions. In this case, adding interior
basis hardly impact the results and can be omitted here. Next, we introduce

Case 1, M i
H = 0

M b
H(DOFc) L2 H1

2 (400) 90.7 94.7
4 (500) 36.6 53.9
8 (900) 10.3 31.7

16 (1700) 7.3 27.3

Case 1, M i
H = 1

M b
H(DOFc) L2 H1

2 (400) 82.7 90.2
4 (500) 32.7 48.5
8 (900) 8.3 25.7

16 (1700) 0.9 9.7

Case 2,M i
H = 0

M b
H(DOFc) L2 H1

2 (200) 26.9 92.2
4 (400) 5.4 37.4
8 (800) 1.1 16.7

16 (1600) 0.2 7.0
Table 1. Laplace problem for Case 1 and Case 2 on structured
coarse mesh with 100 local domains. Left: Case 1 using only
boundary basis. Middle: Case 1 using one additional interior
basis. Right: Case 2 using only boundary basis.

the randomized snapshot and oversampling techniques. The construction of ran-
domized oversampling snapshot can substantially save the computational cost for
snapshot calculations. In this algorithm, instead of solving local harmonic prob-
lems (3.1) for each fine grid node on the boundary of the local domain, we solve
a small number of local harmonic extension problems in oversampled domains
with random boundary conditions [4]. More precisely, we let

ψj,K+ = rj , on ∂K+,

where rj are independent identical distributed standard Gaussian random vectors
on the fine grid nodes of the boundary. Note that when we use randomized
snapshots, we only generate a fraction of the snapshot vectors by using random
boundary conditions. This can substantially reduce the size of the snapshot sapce.
The oversampling techniques are also employed, that is, we solve local problems
in the extended local domain K+ = K + m, where m is the number of the fine
cell layers that are added to the original local domain K. The oversampling
strategy is used to reduce the boundary effects in the construction of randomized
snapshot basis functions. Fine-scale and coarse-scale solutions using standard
and randomized snapshot spaces on the structured coarse mesh are presented in
Figure 2. We observe good coarse-scale solutions for both snapshot spaces.

The L2 and H1 relative errors for randomized snapshot space are presented in
Table 2 for different sizes of the snapshot space using oversampling techniques.
We report the results when the size of the randomized snapshots is 25%, 30% and
35% of the size of the standard snapshot. The results for oversampling with 2
fine cells layers are shown on the top of each tables, the results for oversampling
with 4 fine layers are shown on the bottom part. We observe that the errors
are comparable when we use standard or randomized snapshots. For example, in
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Figure 2. Laplace problemusing structured coarse mesh with
100 local domains for Case 2 (f = 0). DOFfine = 132378 and
DOFc = 2000 (M b

H = 20). Left: Fine-scale solution. Middle:
Coarse-scale solution using standard snapshot space (0.1% L2-
error). Right: Coarse-scale solution using randomized snapshot
space with oversampling K + 4(1.9% L2-error).

the Case 2 (f = 0) for coarse scale system with size 2000, coarse-scale solution
have 0.1% of L2 error for standard snapshot space and 1.9% for the randomized
snapshot space (the size of the randomized snapshots is 35% of whole snapshot
space) with oversampling K+ = K+4 when we take 20 boundary basis functions.
We note that as we increase the size of randomized snapshot spaces or enlarge the
oversampling size of local domain, we can get better results. The comparisons
are shown in Figure 3.

25%

M b
H(DOFc) L2 H1

K+ = K + 2
2 (200) 29.4 -
4 (400) 17.6 68.4
8 (800) 15.3 52.5

16 (1600) 12.6 45.8
K+ = K + 4

2 (200) 33.7 -
4 (400) 8.3 44.9
8 (800) 5.0 33.4

16 (1600) 3.4 17.5

30%

M b
H(DOFc) L2 H1

K+ = K + 2
2 (200) 31.9 -
4 (400) 10.9 53.5
8 (800) 6.5 35.5

16 (1600) 5.5 27.4
K+ = K + 4

2 (200) 33.9 -
4 (400) 8.2 44.3
8 (800) 5.2 33.1

16 (1600) 3.0 16.5

35%

M b
H(DOFc) L2 H1

K+ = K + 2
2 (200) 32.5 -
4 (400) 8.3 46.3
8 (800) 4.5 31.5

16 (1600) 3.4 19.9
K+ = K + 4

2 (200) 33.8 -
4 (400) 6.9 53.9
8 (800) 4.3 31.7

16 (1600) 2.1 14.9
Table 2. Laplace problem for Case 1 using randomized snapshot
space on structured coarse mesh with 100 local domains. Over-
sampling with 2 and 4 fine layers.

We conclude that in perforated domain with additional small inclusions, when
we use randomized snapshot space with oversampling (see Figure 3): (1) we can
get solutions with a desired accuracy using randomized snapshots; (2) oversam-
pling randomized snapshot space can reduce the model size and therefore save
the computational cost for snapshot calculations.
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Figure 3. The L2 relative errors for different coarse system on
structured coarse mesh with 100 local domains for Case 2 : Left:
error comparision for the different size of randomized snapshot
space with oversampling domainK+ = K+4; Rrght: errors for the
35% randomized snapshot space for different size of oversampling
layer K+ = K + 2 and K+ = K + 4.

5. Numerical examples in arbitrary perforated domain or
high-constrast medium

In this section, we consider a multiscale solution using arbitrary geometry
or medium. We generate the geometry/medium with random distribution of
the inclusions/particles, given ratio between volume of inclusions and domain
volume. Note that the inclusions/particles can have different sizes. For the coarse
discretization in this section, we consider to use structured, quasi-structured and
unstructured coarse meshes. We use open-source Gmsh sofware [12] for mesh
constructions.

For the structured coarse mesh, we refine the coarse mesh and obtain the fine
mesh which is campatible with the coarse edges. For the construction of the un-
structured coarse mesh, we use Metis graph partitioner [14]. Usually our graph
partitioners aim at: (1) obtain similar size in each partition of blocks (local do-
mains), and (2) minimize the number of edges on the boundary of each block
to reduce the communication for standard parallel solvers. Numerical implemen-
tation of the fine-scale and multiscale solvers are based on the FEniCS library
[16].

We will consider numerical example both in perforated domains and high-
contrast medium. In Figure 4, we show interior and boundary basis functions for
perforated domain (left) and high contrast medium (right) in unstructured coarse
mesh with 100 local domains. In this example, we use boundary basis functions
of Type 2 (see Remark 3.2).

5.1. Perforated domains with random distribution of the inclusions.
We consider similar test cases Case 1 and Case 2 as in previous sections for
Laplace problem. We take κ = 1 in the perforated domain with random distri-
bution of inclusions. The fine mesh constains 38006 cells. For the coarse mesh,
we test with quasi-structured and unstructured meshes with 25, 50 and 100 local
domains, but only show the error history for 100local domains.

First, we will compare the results when we use quasi-unstructured mesh and
unstructured mesh for the same geometry (see left of Figure 4). In Table 3,
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Figure 4. Multiscale basis functions in perforated (left) and
hign-contrast (right) domains with 100 local domains in unstruc-
tured coarse mesh.

we present the L2 and H1 relative errors for Case 1 and Case 2 using quasi-
unstructured (left of Table 3) amd unstructured (right of Table 3) coarse meshes
with 100 local coarse domains. We omit the error tables when we use 25 and 50
local domains, and remark that errors can be reduced as we take larger number
of local domains. In particular, for Case 1, when we take 20 boundary basis
functions and 1 interior basis function using unstructutred coarse mesh, the L2

error is 20.8% for 25 local domains, and 10.9% L2 error for 50 local domains, and
we can reduce error to 6.7% for 100 local domains. For Case 2, we can observe
generally better results compared with Case 1. This behavior can be explained by
the convergence analysis (3.7). Also in Case 2, the number of local domains has
less influence on the errors. Compared with quasi-structured and unstructured
coarse meshes, we obtain similar results. Thus for the numerical examples in the
following sections, we will use unstructured coarse meshes due to they are easier
to generate.

100 local domains

M b
H(DOFc) L2 H1

Case 1, M i
H = 1

2 (200) 67.5 79.6
4 (400) 49.0 62.7
8 (800) 21.2 37.9

20 (2000) 7.8 23.6
Case 2, M i

H = 0
2 (300) 25.8 66.7
4 (500) 18.8 49.7
8 (900) 5.4 25.4

20 (2100) 0.9 10.5

100 local domains

M b
H(DOFc) L2 H1

Case 1, M i
H = 1

2 (200) 73.0 81.7
4 (400) 53.1 64.9
8 (800) 24.4 40.0

20 (2000) 6.7 22.3
Case 2, M i

H = 0
2 (300) 25.8 66.7
4 (500) 18.8 49.7
8 (900) 5.4 25.4

20 (2100) 0.9 10.5
Table 3. Laplace problem in domain with random inclusions.
Numerical results for Case 1 (top) and Case 2 (bottom) using
coarse grid with 100 local domains. DOFfine ≈ 114018. Left:
quasi-unstructured mesh. Right: unstructured mesh.
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Next, we consider the domains with different ratio m between volume of inclu-
sions and the volume of the whole domain. We take m = 0.35 and 0.2.

Figure 5. Laplace problem in domain with random inclusions for
m = 0.35 and 0.2. Numerical solutions for Case 1 using unstruc-
tured coarse grid with 100 local domains. Coarse-scale solutions
are performed using 20 boundary basis functions and one interior
basis function, DOFc = 2100. Top: Fine and coarse solution for
m = 0.35, DOFfine = 103692, L2-error is 8.0%. Bottom: Fine and
coarse solution for m = 0.2, DOFfine = 139380, L2-error is 8.0%.

In Figure 5, we depict the numerical results for Case 1 (f = 1) for two different
geometries withm = 0.35 and 0.2. We observe good accuracy for these cases when
the multiscale system is only 1.7% of fine-scale system size (when the number of
basis M b

H = 20 and M i
H = 1).

In Table 4, we present errors for Case 1 and Case 2, when we take m equal
0.35 and 0.2 respectively. Note that in these examples, we use unstructured
coarse meshes. Remark that we also test for m = 0.14 but we will omit the
solution figure and the error table for this case, we only present error behavior
of this case in Figure 6. For Case 1 we observe that the increasing of ratio
between volume of inclusions and domain volume leads to the increasing of the
errors, and we can reduce errors by taking more local domains. For Case 2, the
accuracy of multiscale solution depends not much less on the m and additional
small inclusions.

From the presented numerical results for perforated domains, we get following
conclusions:

• As we mentioned, we can get more accurate solutions using the struc-
tured coarse mesh. However, the difficulty lies in generating the corre-
sponding fine mesh, which are compatible with the coarse edges. The
quasi-structured and unstructured meshes can give us a good accuracy
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100 local domains

M b
H(DOFc) L2 H1

Case 1, M i
H = 1

4 (400) 49.5 62.1
8 (800) 22.3 39.5

16 (1600) 9.8 27.8
20 (2000) 8.0 25.4

Case 2, M i
H = 0

4 (500) 14.7 38.7
8 (900) 4.7 22.0

16 (1700) 1.2 11.2
20 (2100) 0.8 8.1

100 local domains

M b
H(DOFc) L2 H1

Case 1, M i
H = 1

4 (400) 53.0 66.6
8 (800) 27.5 44.5

16 (1600) 10.4 28.8
20 (2000) 8.0 26.1

Case 2, M i
H = 0

4 (500) 14.0 46.3
8 (900) 4.7 24.7

16 (1700) 1.1 12.5
20 (2100) 0.8 10.4

Table 4. Laplace problem in domain with random inclusions for
m = 0.35 (left, DOFfine = 103692) and m = 0.2 (right, DOFfine =
139380). Numerical results for Case 1 (top) and Case 2 (bottom)
using unstructured coarse grid.

Figure 6. The L2 relative errors for different size of the coarse-
scale system for Case 1 (left) and Case 2 (right) for different
perforated domains.

in solutions and they are much easier to construct. The quasi-structured
coarse mesh works slightly better than the unstructured mesh.
• For unstructured coarse mesh we can easily refine coarse mesh and obtain

more accurate results. However, when we increase the number of the local
domains we also increase the size of coarse-scale system.
• L2 and H1 relative errors are similar in Case 2, when the domains have

different ratios between volume of inclusions and the volume of whole
domain (see the left of the Figure 6). Taking 20 boundary basis functions
in unstructured coarse mesh with 50 local domains, we obtain 1.0% of L2

error for m = 0.35, 1.1% for m = 0.2.
• For Case 1, L2 and H1 relative errors are very sensitive to the geom-

etry (see the left of the Figure 6). The errors are increasing when we
enlarge the ratio between volume of inclusions and domain volume. For
20 boundary basis functions and one interior basis function using coarse
unstructured coarse mesh with 50 local domains, we obtain 16.2% of L2

error for m = 0.35 and 12.9% for m = 0.2.
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5.2. High-contrast medium with random distribution of particles. In
this section, we consider the numerical results for Laplace problem with source
term f = 1 or f = 0 and zero Diriclet boundary condition in high-contrast
medium:

• Case 3 : For high-constrast domain with κ = 1 on background, κ = 104,
103 and 102 for different types of high-permeability particles.

Figure 7. Laplace problem in high-constrast domain(left) in the
Case 3 with f = 1. Fine-scale solution (middle) and coarse-
scale solution (right) using unstructured coarse grid with 50 local
domains. Coarse-scale solutions are performed using 20 boundary
basis functions and one interior basis function DOFc = 1800 with
3.7% of L2-error. DOFfine = 159966.

f = 1, M i
H = 1

M b
H(DOFc) L2 H1

4 (250) 87.8 91.8
16 (850) 13.4 27.8
35 (1800) 3.7 15.8

f = 0, M i
H = 0

M b
H(DOFc) L2 H1

4 (200) 13.0 91.6
16 (800) 2.3 27.9
35 (1750) 0.8 16.4

Table 5. Laplace problem for high-contrast domain for Case 3
using unstructured coarse mesh. Numerical results for f = 1 (top)
and f = 0 (bottom) using unstructured coarse mesh. DOFfine =
139380. Left: 25 local domains. Middle: 50 local domains. Right:
100 local domains.

In Figure 7, we show fine-scale and coarse scale solutions for Case 3. In Ta-
bles 5, we present errors for Case 3 with f = 1 and f = 0 using unstructured
coarse mesh. The results show that our proposed algorithm works efficiently for
problems with high-contrast medium. Similarly as in the previous sections, when
we take f = 1, we need to add some interior basis to reduce the errors. For
f = 0, only taking boundary basis can give us good results. We also test Case 3
using different distributions of particles in the high-contrast medium with various
high-permeability values, our results show equally good behaviors.

6. Numerical results for three-dimensional problems

In this section, we present numerical results for the Laplace problem in perfo-
rated domains for 3D case and discuss computational costs. We consider problems



226 ERIC T. CHUNG, YALCHIN EFENDIEV, MARIA VASILYEVA, AND YATING WANG

with zero force term and κ = 1. We use the following Dirichlet boundary condi-
tions: u = 1 on the global boundary and u = 0 on the boundary of inclusions.
As for penalty term, we use γfine = 4.0 for fine-scale calculation, γfine = 0, and
γc = 4.0 for coarse-scale calculation. For coarse-scale calculation we consider
structured and unstructured coarse meshes (see Figure 8. For the construction
of the unstructured coarse mesh, we use Metis graph partitioner [Metis].

Figure 8. Structured (left) and untructured (right) coarse mesh
in 3D. Global (Ωε) and local (K) domains and corresponding first
3 boundary basis functions in K

Figure 9. Perforated domain and coarse-scale solution using
structured coarse mesh with 512 local domains (left) and unstruc-
tured coarse mesh with 216 local domains (right).

In Figure 9, we present the 3D domain and the numerical solution using mul-
tiscale solver. The coarse mesh with 512 local domains. For construction of
the geometry we used Netgen software. Fine-scale mesh contains Nc = 390756
cells and size of the fine-scale system is DOFfine = 1588356. The solution was
obtained using 40 boundary basis functions, where the coarse-scale solver has
DOFc = 20480 (1.2% from DOFfine).

At offline stage, we compute multiscale basis function in each local domain
(coarse cell). Since calculations in each local domain can be performed indepen-
dently, we can calculate multicale basis functions in parallel by run the program
with multiple processers whose number is equal to number of the local domains.
For numerical solution in Figure 9, we use 512 local domains. Computational
time for construction of the multiscale basis functions in one local domains is
17.3 seconds (local domain contains Nc = 787 cells). If we divide fine mesh into
216 local domains, the computational time increases twice to 35.9 seconds (lo-
cal domain contains Nc = 1548 cells). For 128 and 64 local domains, we spend
87.6 seconds (local domain contains Nc = 3112 cells) and 184.4 seconds (local
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domain contains Nc = 6327 cells), respectively. After one online computation, we
construct (initiating time) and solve (solving time) coarse-scale system. Solving
time for the coarse-scale system on coarse mesh with 512 local domains using
20 multiscale basis functions is 17.5 seconds and initiating time is 59.6 seconds.
When we increase the number of the multiscale basis functions to 40, the initiat-
ing time increases twice, but solving time stays the same. Remark that the size
of the coarse-scale system is equal to the number of local domains multiplying by
number of basis functions.

Numerical solution for the unstructured coase mesh is presented in Figures 9.
The coarse mesh contains 216 local domains and fine mesh contains Nc = 1005559
cells. Coarse-scale system have size DOFc = 4320 and fine-scale system size is
DOFfine = 4022236. Multiscale basis construcion in one local domains with
Nc = 4559 cells takes 14.3 second (offline stage) and is performed in parallel.
Initialializing and solving the coarse-scale system takes 126 and 46 seconds, re-
spectively.

In general, we can improve the accuracy of our approaches by using adaptivity
[5] and online method [6]. One can find some related works in the review paper
[7]. We can also use parallel computations in assembling and solving coarse scale
system.

7. Conclusion

In this paper, we consider multiscale problems in perforated domains. Our
aim is to solve the problem on a coarse grid, where each coarse grid contains
many perforations. We use Generalized Multiscale Finite Element framework to
construct multiscale basis functions in each coarse block. These multiscale basis
functions are coupled via IPDG framework, which allows parallel computations
of basis functions and avoiding parition of unity functions. Because of the latter,
one can easily impose various boundary conditions in each coarse domain. We
present numerical results for 2D and 3D cases.
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